
µ-join: Efficient Join with Versioned
Dimension Tables

Mika Takata(B), Kazuo Goda, and Masaru Kitsuregawa

The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
{mtakata,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The star schema is composed of two types of tables; fact
tables record business process, whereas dimension tables store descrip-
tion of business resources and contexts that are referenced from the fact
tables. Analytical business queries join both tables to provide and ver-
ify business findings. Business resources and contexts are not necessarily
constant; the dimension table may be updated at times. Versioning pre-
serves every version of a dimension record and allows a fact record to
reference its associated version of the dimension record correctly. How-
ever, major existing versioning practices (utilizing a binary join opera-
tor and a union operator) cause processing redundancy in queries join-
ing a fact table and a dimension table. This paper proposes µ-join, an
extended join operator that directly accepts a fact table and an arbi-
trary number of dimension tables, and presents that this operator reduces
the redundancy and speeds up fact-dimension joins queries. Our experi-
ment demonstrates that µ-join offers speedup using the synthetic dataset
(up to 71.7%).

Keywords: Relational database · Join · Dimension table

1 Introduction

Versioning dimension tables is a widely employed practice to offer referential
integrity in the star schema [12]. The star schema is a popular approach for
organizing business data into relational database. The schema is composed of
two types of tables. Fact tables record business process, whereas dimension tables
store description of business resources and contexts. Analytical business queries
join both tables to provide and verify business findings. Business resources and
contexts are not necessarily constant. Suppose that database records a com-
pany’s sales history. Daily sales events are recorded into a fact table, whereas
product names and prices are stored in a dimension table. The company may
update its business resources or contexts, for example, by launching new prod-
ucts, discontinuing existing products, and changing products names or prices.
These updates are not necessarily frequent, but they may actually happen; the
updates of business resources and contexts are described in the dimension table.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bhattacharya et al. (Eds.): DASFAA 2022, LNCS 13245, pp. 88–95, 2022.
https://doi.org/10.1007/978-3-031-00123-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-00123-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-00123-9_6


µ-join: Efficient Join with Versioned Dimension Tables 89

Versioning preserves every version of a dimension record and allows a fact
record to reference its associated version of the dimension record correctly. Exist-
ing versioning practices using a binary join and a union can answer queries join-
ing a fact table and a versioned dimension table. One major practice joins a
fact table and multiple versions of a dimension table one by one and then elimi-
nates redundant tuples. Another practice merges multiple versions of a dimension
table, joins it with the fact table, and then eliminates redundant tuples if nec-
essary. These practices do not necessarily offer optimized processing, but rather
induce inefficient processing.

This paper proposes, µ-join, an extended join operator, which can directly
join a fact table and multiple versions of a dimension table by considering the
join condition on a join key and a version compatibility. The µ-join operator
allows database engines to evaluate the join conditions at an early phase and to
reduce the version-related complication. Thus, the database engine potentially
improves the join performance. This paper presents our experiments to clarify
the benefit of µ-join in terms of query response time using a synthetic dataset.
To our knowledge, similar attempts have not been reported in literature.

The remainder of this paper is organized as follows. Section 2 describes ver-
sioned dimension tables and their problem. Section 3 defines a version-aware
fact-dimension join operation and presents the µ-join operator. Section 4 presents
the experimental study. Section 5 shows related work and Sect. 6 concludes the
paper.

2 Join with Multiple Versions of Dimension Tables

Let us exhibit another example of a versioned dimension table, which has moti-
vated this study. Figure 1 presents an example database of Japanese public
healthcare insurance claims. Japan has employed the universal service policy; all
the certified healthcare services necessary to the citizens are basically covered
by the public healthcare insurance system. When providing an insured patient
with healthcare services, healthcare service providers (e.g., hospitals) are sup-
posed to submit an insurance claim to request the compensation of the expense
to the public healthcare insurers. Let us think about the design of database
for managing the insurance claims. One typical solution is to record insurance
claims in a fact table (S in the figure). Each claim contains the description of
diagnosed diseases, which are coded in the standardized format. Such descrip-
tive information of disease codes is to be stored in a separate dimension table.
The disease code system does not remain unchanged. Rather, it may change at
times. Figure 1 presents a partial portion of the real Japanese disease code stan-
dard, indicating that the disease code system changed twice from June, 2020
to October, 2021. For example, the disease code indicating Apparent strabis-
mus changed from 8831256 to 3789010 after January, 2021. When healthcare
researchers analyze the database, they need to interpret each insurance claim by
referencing an appropriate disease description record according to the recorded
disease code and the claiming date. Thus, the database must keep all historical



90 M. Takata et al.

Fig. 1. An example of a fact table and versioned dimension tables

updates of the dimension tables (R1, R2, and R3 in the figure) for answering
such queries. This complication is not limited to disease codes. Insurance claims
contain more information such as medical treatments and medicinal drugs, the
descriptive information of which change every month, in order to reflect the
evolution of medical science and industry.

Versioning preserves every version of a dimension record and allows a fact
record to reference its associated version of the dimension record correctly.
Unfortunately, most current database management systems do not support such
dimension versioning explicitly. Instead, implementing the dimension versioning
on the relational schema is a major engineering approach. They can be roughly
grouped into three policies. Snapshot versioning stores every entire version of
a dimension table as a separate table. Differential versioning stores only the
difference of every version from the first version as a separate table. Incremental
versioning stores only the difference of every version from the previous version
as a separate table. Snapshot versioning is relatively simple, but it consumes
redundant space and may cause additional processing due to tuple redundancy.
Incremental versioning only consumes smaller space, but it is complicated, need-
ing additional processing to reproduce a tuple of a specific version.

Analytical queries often performed across a fact table and such a versioned
dimension table. Those queries must be written to guarantee that each fact
record can reference its associated version of the dimension record. One typical



µ-join: Efficient Join with Versioned Dimension Tables 91

practice uses a binary join operation to join a fact table and every version of a
dimension table, merges the join results, and then eliminates non-effective and
redundant tuples. This practice often causes inefficient processing due to redun-
dant work and elimination work. Another practice merges all possible versions
of a dimension table, joins the merged dimension table, and then eliminates non-
effective and redundant tuples. This practice do not necessarily offer optimized
processing, but it is likely to induce inefficient processing.

3 The µ-join Operator

In this section, we introduce a new database operator, named µ-join. The µ-join
operator extends the existing binary join and it can directly join a fact table and
multiple versions of a dimension table by considering the join condition on a join
key and a version compatibility. Being implementing this new operator, database
engines can efficiently perform version-aware fact-dimension join queries.

Version-Aware Fact-Dimension Join Operation. First, we define a ver-
sioned dimension table and version-aware fact-dimension join operation.

Definition 1 (Versioned dimension table). Let Ř be a versioned dimension
table, having <Ř> versions, where the k-th version Řk is defined as Řk := {r|r ∈
Ř∧ ek(r)}, where ek(r) is true if and only if a tuple r is effective at a point of a
version number k (0 ≤ k < <Ř>).

Definition 2 (Snapshot versioning). When snapshot versioning is deployed,
each version Řk is directly stored as a separate table R

(s)
k as R

(s)
k ← Řk.

Definition 3 (Differential versioning). When differential versioning is deployed,
the first version Ř0 is directly stored as a separated table R

(d)
0 and the difference

of each version Řk from the first version Ř0 is stored as a separate table R
(d)
k

in the database as R
(d)
0 ← Ř0, R

(d)
k ← Řk � Ř0(k > 0), where the operator �

produces the difference of a left-hand table from a right-hand table as a table1.

Definition 4 (Incremental versioning). When incremental versioning is deplo-
yed, the first version Ř0 is directly stored as a separate table R

(i)
0 and the dif-

ference of each version Řk from the first version Ř0 is stored as a separate table
R

(i)
k in the database as R(i)

0 ← Ř0, R
(i)
k ← Řk � Řk−1(k > 0).

Next, we define version-aware fact-dimension join operation that can be per-
formed over a fact table S and a versioned dimension table Ř.

1 Assuming that a record given in a right-hand table is deleted in a left-hand table,
the operator � returns the deleted record with the deleted flag. This is analogous to
the minus operator in the normal arithmetic system. The similar technique is widely
deployed in database logging [8]. In our implementation, the deleted flag is stored in
a separated attribute.



92 M. Takata et al.

Definition 5 (Version-aware fact-dimension join operation). A version-aware
fact-dimension join operation S ��v,Y=X Ř of a fact table S and a versioned
dimension table Ř is defined as S ��v,Y=X Ř :=

⋃
0≤k<<Ř>{s ∪ r|s ∈ S ∧ r ∈

Řk ∧sY = rX ∧v(s) = k}, where an attribute set Y is a foreign key of S, another
attribute set X is a primary key of Ř and a function v(s) return a version number
indicating a version of the dimension table Ř with which a tuple s of the fact
table S is associated. The equation Y = X denotes a join key condition and the
equation v(s) = k denotes a version compatibility condition.

µ-join Operator. The version-aware fact-dimension join operation presented
in Definition 5 can be expressed by a combination of multiple binary join oper-
ations, a union operation, and a selection operation. Thus, it can be performed
on conventional database engines. However, such practices are likely to cause
processing inefficiency as discussed in Sect. 2.

This paper proposes µ-join, a new database operator to be implemented in
database engines. The µ-join operator extends the existing binary join. This
operator directly accepts a fact table S and multiple versions of a dimension
table Ř0, Ř1, · · · , Ř<Ř>−1 to join them by considering the join condition on
a join key and a version compatibility according to Definition 5. The native
implementation of the µ-join operator allows the database engine to evaluate
the join key condition sY = rX and the version compatibility condition v(s) = k
at an early phase to reduce the redundant tuple processing that is likely to be
imposed by the binary-join practice.

In addition, the database engine is allowed to build a version index data
structure to identify target relational tables (storing a versioned dimension table)
with which each incoming fact tuple s joins. This is beneficial for differential
versioning and incremental versioning, which induces complexity in the identifi-
cation of target relational tables. Suppose a fact tuple s has an apparent version
k, meaning that the tuple s is supposed to join with Řk. In snapshot versioning,
obviously the target dimension tuple with which the tuple s joins is stored in the
dimension table R

(s)
k . However, the target dimension tuple with which the tuple

s joins is stored in any of R(d)
0 and R

(d)
k in differential versioning or R(i)

0 , · · · , R(i)
k

in incremental versioning. The version index data structure accepts a primary
key value x (for the attribute X) and an apparent version number k as input,
and returns a version number indicating a target relational table storing a ver-
sioned dimension table with which a fact tuple having x and k is associated.
The database engine is allowed to efficiently identify the target relational table
storing a versioned dimension table for each incoming fact tuple, thus improving
the efficiency of the join processing.

In the hash-based implementation of µ-join operator, hash tables are built
from target relational tables storing a versioned dimension table in the first
phase in similar to hash binary joins. At the same time, the version index data
structure is built from the target relational tables. Building the version index
data structure does not incur major performance overhead because dimension
tables are often much smaller than fact tables and the majority part of the version
index building is shared with the normal hash table building. In the second phase,



µ-join: Efficient Join with Versioned Dimension Tables 93

a fact table is scanned; each fact tuple probes in the version index data structure
to identify the target table, and then probes in the identified target table. Thus,
the µ-join operator offers an opportunity for database engines to improve the
processing efficiency for the version-aware fact-dimension join operation. Also,
µ-join is so intuitive that it can encapsulate the logic complication of version
management in the database engine. That would potentially relieve the database
designer’s effort.

4 Evaluation

We present our experiment to clarify the benefit of the µ-join operator in terms
of query response time. We revised the TPC-H data generator (dbgen) so that it
could produce versioned dimension tables. The revised generator was enabled to
produce multiple versions of dimension tables, where every version of a dimension
table contained different tuple content2 from its previous version, according to nv

(nv ≥ 1) that specifies the number of versions to be generated for each dimension
table. The first version is identical to the original dimension table according to
the TPC-H specification. In addition, the revised generator appended a version
attribute, for each fact table, indicating a dimension version with which each fact
tuple is supposed to join. For a given fact table, we divided the date attribute
(e.g., O ORDERDATE) space into nv periods and determined a version of each
fact tuple based the period with which the date value is associated. We generated
the TPC-H dataset with versioned dimension tables organized with three version
management policies.

For comparison, we tested the query execution according to the conventional
binary-join practices and the new µ-join operator. Binary join (naive) per-
forms the conventional binary-join operator to join a fact table and each version
of a dimension table, merges the join results, and eliminates non-effective or
redundant tuples. Binary join (pre-dedup 1) merges all possible versions of
a dimension table, performs the conventional binary-join operator to join a fact
table and the merged dimension table, and eliminates non-effective or redundant
tuples. Binary join (pre-dedup 2) merges all possible versions of a dimension
table, eliminates redundant dimension tuples as much as possible, performs the
conventional binary-join operator to join a fact table and the merged dimen-
sion table, and eliminates non-effective or redundant tuples. µ-join performs
the µ-join operator to directory join a fact tuple and all possible versions of a
dimension table, without generating any non-effective or redundant tuples. We
implemented these execution cases in the same code base from scratch and mea-
sured the average execution time of five trials for each test. We only employed
the on-core hash join algorithm (accommodating an entire hash table in mem-
ory) rather than the nested-loop join algorithm without any selection predicates.
The query execution was single-threaded and conducted on Linux with two Intel
2 We only updated a non-key attribute for each dimension table. For example, we gen-

erated a new version of PART by shifting the value of P RETAILPRICE randomly
within the ±5% range from its previous version.



94 M. Takata et al.

0
100
200
300
400
500
600
700
800

0 2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
[s
ec

]

nv (number of versions)

(a) Snapshot versioning

0 2 4 6 8 10 12
nv (number of versions)

(b) Differential versioning

0 2 4 6 8 10 12
nv (number of versions)

Binary join (naive)
Binary join (pre-dedup 1)
Binary join (pre-dedup 2)
-join

(c) Incremental versioning

Fig. 2. Evaluation on different numbers of versions

Xeon two processors (56 processing cores in total running as 2.60 GHz) and 96GB
DRAM with 31TB RAID-6 storage by twenty-four disks.

Figure 2 presents the execution performance of a query joining LINEITEM
and versioned PART on different numbers of dimension versions. Figure 2(a)
shows µ-join speeds up a fact-dimension (w/two versions) join up to 31.7% from
the best case of binary-join practices on snapshot versioning. As more versions
are involved, µ-join achieves higher speedups up to 71.7% for twelve versions.
Figure 2(b) shows µ-join consistently achieves speedups up to 2.89% for two
versions and 48.9% for twelve versions on differential versioning. Figure 2(c)
shows µ-join performs comparably with the best case of binary-join practices
on incremental versioning. These results indicate that µ-join achieves significant
speedups by evaluating the join key condition and the version compatibility at
an early phase and by using the version index data structure to reduce the
redundant tuple processing.

5 Related Work

Various join operator was explored for improving analytical query performance
on database such as hash join, merge join, and nested loop join [1,2,13,15,16].
As a data structure, the columnar-based system was explored for statistical
process to enhance analytical query performance [9,14,17]. To evolve analytical
efficiency on database, many operations were implemented such as min, max,
and group-by [7]. Stored procedures were explored to incorporate a user’s specific
requirements into database systems [6,7,18]. Sql-like operators were extended by
the standard SQL to allow analysts easily do certain types of analytics [3–5,10].
Cohort analysis operation was attempted to integrate complicated processing
into an operator based on requirements from real world [11]. Although such
operators have been studied, join across a fact table and multiple versions of a
dimension table has not been studied yet in literature to our best knowledge.

6 Conclusion

This paper proposes µ-join, an extended join operator that directly accepts a
fact table and an arbitrary number of dimension tables, and presents that this



µ-join: Efficient Join with Versioned Dimension Tables 95

operator speeds up fact-dimension joins queries. Our experiment demonstrates
that µ-join offers speedup up to 71.7% from the best case of binary-join practices
for twelve versions using the synthetic dataset. There remain open problems.
The query language and the query optimization should be studied to allow users
to intuitively exploit µ-join on the standard query interface. We would like to
consider the problems in future research.

References

1. Barber, R., et al.: Memory-efficient hash joins. PVLDB 8(4), 353–364 (2014)
2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
3. Bosc, P., Dubois, D., Pivert, O., Prade, H.: Flexible queries in relational databases

- the example of the division operator. Theor. Comput. Sci. 171(1–2), 281–302
(1997)

4. Bosc, P., Pivert, O.: SQLF: a relational database language for fuzzy querying.
IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

5. Chatziantoniou, D., Ross, K.A.: Querying multiple features of groups in relational
databases. In: VLDB, vol. 96, pp. 295–306 (1996)

6. Eisenberg, A.: New standard for stored procedures in SQL. SIGMOD Rec. 25(4),
81–88 (1996)

7. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

8. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, Burlington (1993)

9. Gupta, A., et al.: Amazon redshift and the case for simpler data warehouses. In:
SIGMOD, pp. 1917–1923 (2015)

10. Hosain, S., Jamil, H.: Algebraic operator support for semantic data fusion in
extended SQL. In: ICCTIS, pp. 1–6. IEEE (2010)

11. Jiang, D., et al.: Cohort query processing. PVLDB 10(1), 1–12 (2016)
12. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. Wiley, Hoboken (2011)
13. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Application of hash to data base

machine and its architecture. New Gener. Comput. 1(1), 63–74 (1983)
14. Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database architecture for

the new bottleneck: memory access. VLDB J. 9(3), 231–246 (2000)
15. Patel, J.M., Carey, M.J., Vernon, M.K.: Accurate modeling of the hybrid hash join

algorithm. In: SIGMETRICS, pp. 56–66 (1994)
16. Shapiro, L.D.: Join processing in database systems with large main memories.

ACM Trans. Database Syst. 11(3), 239–264 (1986)
17. Stonebraker, M., et al.: C-store: a column-oriented DBMS. In: Making Databases

Work: The Pragmatic Wisdom of Michael Stonebraker, pp. 491–518. ACM/Morgan
& Claypool (2019)

18. Yu, X., et al.: PushdownDB: accelerating a DBMS using S3 computation. In: ICDE,
pp. 1802–1805. IEEE (2020)


	-join: Efficient Join with Versioned Dimension Tables
	1 Introduction
	2 Join with Multiple Versions of Dimension Tables
	3 The -join Operator
	4 Evaluation
	5 Related Work
	6 Conclusion
	References




