
General Dominant Relationship Analysis based on Partial
Order Models

Zhenglu Yang
University of Tokyo

4-6-1 Komaba, Meguro-ku
Tokyo, Japan

yangzl@tkl.iis.u-
tokyo.ac.jp

Botao Wang
University of Tokyo

4-6-1 Komaba, Meguro-ku
Tokyo, Japan

botaow@tkl.iis.u-
tokyo.ac.jp

Masaru Kitsuregawa
University of Tokyo

4-6-1 Komaba, Meguro-ku
Tokyo, Japan

kitsure@tkl.iis.u-
tokyo.ac.jp

ABSTRACT
Due to the importance of skyline query in many applications, it has
been attracted much attention recently. Given an N-dimensional
datasetD, a pointp is said to dominate another pointq if p is better
thanq in at least one dimension and equal to or better thanq in the
remaining dimensions. Recently, Li et al. [9] proposed to analyze
more general dominant relationship in a business model that, users
are more interested in the details of the dominant relationship in a
dataset, i.e., a pointp dominates how many other points. In this
paper, we further generalize this problem that, users are more inter-
ested in whom these dominated points are. We show that the frame-
work proposed in [9] can not efficiently solve this problem. We find
the interrelated connection between the partial order and the dom-
inant relationship. Based on this discovery, we propose efficient
algorithms to answer the general dominant relationship queries by
querying the partial order representation of spatial datasets. Exten-
sive experiments illustrate the effectiveness and efficiency of our
methods.

Categories and Subject Descriptors
H.2 [Database Management]: Query processing
General Terms
Algorithms, Performance
Keywords
dominant relationship analysis, partial order

1. INTRODUCTION
Recently, the skyline query has attracted considerable attention

because it is the basis of many applications, e.g., multi-criteria de-
cision making [2], user-preference queries [6] and microeconomic
analysis [9]. Skyline mining [2] aims to find those points, which are
not dominated by others, in a d-dimensional spatial dataset. This
problem can be seen as a special class of pareto preference queries
[6]. Fig. 1 shows one classic example of skyline query that cus-
tomers are always interested in those “best” hotels that are better
than others at least at one of the two criteria, the distance and the
price, with smaller values. The skyline of the example dataset in
Fig. 1 consists ofa andc.

Efficient skyline querying methodologies have been studied ex-
tensively [2] [5] [7] [11] [17] [12] [10] [4] [1]. However, all the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

Figure 1: Example of the skyline query

above papers concerned only the pure dominant relationship among
a dataset, i.e., a pointp is whether dominated by others or not, and
got those non-dominated ones as results. Recently, Li et al. [9] pro-
posed to analyze more general dominant relationship in a business
model that, users are more interested in the detail of the dominant
relationship in a dataset, i.e., a pointp dominates how many other
points and is dominated by how many others. In Fig. 1, although
the hotelb is not a skyline, its manager also wants to know how
many hotelsb dominates (i.e. 2) and how many hotels dominatesb
(i.e. 2), from where the manager can know the business position of
b in the local area.

However, in the real world, users are always interested in not
only “how many” objects are dominating/dominated by a specific
object, but also “whom” they are, which was however, not men-
tioned in [9]. This problem can be seen as a general dominant rela-
tionship analysis to the ones proposed in [9]. It is naively thought,
can be easily solved by associating each object with its correspond-
ing cuboid in DADA. So when users query the dominant relation-
ship, these objects will be extracted simultaneously. Nevertheless,
due to a huge number of duplicate existence in DADA, the storage
overhead and the query time will be unacceptable for users. In this
paper, we aim at proposing efficient and effective methods to an-
swer the “whom” problem, based on our discovery that there is an
interrelated connection between the general dominant relationship
and the partial order.

To illustrate the core idea of this paper, here we show a simple
example. Fig. 2 represents the partial order (encoded as DAG for-
mat) of the example dataset in Fig. 1 in 2-dimensional space. We
can know the pointb dominates the pointsd ande and is dominated
by the pointsa andc, by counting theout-link andin-link of d,
respectively. It indicates theSubspace Analysis Queries [9] 1,

SAQ(b, D, S′) = |dominating(b, D, S′)| − |dominated(b, D, S′)|

= 2 − 2 = 0

1In fact, the example here is a special case of that described in [9],
where the pointb can be any point, not necessary in the original
dataset. We will discuss it in Section 5.

Figure 2: DAG representation in 2-d space

whereD is the set of the original points,S′ is the 2-dimensional
space. The meaning of the result, i.e., 0, indicates the number of
the points which are dominated byb is the same as those domi-
nateb. Here we solve not only thehow many problem, but also
thewhom problem. From this example, we know that the general
dominant relationships of a dataset can be represented into their
corresponding partial order representation (i.e., DAGs).

Our contributions in this paper are as follows:

• We generalize the dominant relationship queries proposed
in [9], asGeneral Dominant Relationship Queries
(GDRQs). We find the interrelated connection between
GDRQs and the partial order analysis.

• We propose efficient and effective algorithms to answerGDRQs
based on partial order representation of spatial datasets.

• We conduct comprehensive experiments to illustrate the ef-
fectiveness and efficiency of our methods.

The remainder of this paper is organized as follows. In Section
2, we discuss the related work. In Section 3, we present the pre-
liminaries of this paper. A naive method based on existing strategy
to answerGDRQs is introduced in Section 4. The query process-
ing strategies for generalized dominant relationship analysis using
partial order representation is described in Section 5. The perfor-
mance analysis are reported in Section 6. We conclude the paper in
Section 7.

2. RELATED WORK
Skyline query was first introduced in [2]. The problem comes

from some old classic topics, such as convex hull [13] and maxi-
mum vectors [8].

Skyline query algorithms can be classified into two categories.
The first one is non-index based method, i.e., BNL [2], SFS [5], DC
[2]. The second category is index based method, i.e., NN [7], BBS
[11]. From the view point of dimension concerned, the existing
algorithms can be also classified into two categories, i.e., full space
based method [7] [11], and subspace based method [17] [12] [15].
Other related work on skyline mining includes mining skyline in
distributed environments [1], skyline query in data stream [10] [14],
interesting skyline points in high-dimensional space [4].

All the above works concerned only the pure dominant relation-
ship and, outputted those points which are not “dominated” by oth-
ers. Note that in addition to the original meaning in [2], “domi-
nated” here can be a variant, i.e., k-dominant [4].

In contrast, Li et al. [9] proposed to analyze a more general
dominant relationship from a microeconomic aspect. The users are
always interested in not only the binary dominant relation between
the points in a dataset, but also the statistical information, i.e., how
many other points are dominating/dominated by a specific point.
In [9], the authors proposed three basicDominant Relationship
Queries (DRQs) and constructed a data cube, DADA, to effi-
ciently organize the information necessary toDRQs. Moreover, a
novel data structure, D*-tree, was proposed to fulfill efficient com-
putation forDRQs.

However, in the real world, users are always interested in not
only “how many” objects are dominating/dominated by a specific
object, but also “whom” they are, which was however, not men-
tioned in [9]. This problem cannot be easily solved by using the

Figure 3: Example dataset

methodologies proposed in [9] because of the large duplicate stor-
age cost in DADA. In this paper, we propose efficient data structure
and strategies to solve such kind of general dominant relationship
queries based on our discovery that GDRQ has interrelated connec-
tion with partial order.

3. PRELIMINARIES
Given ad-dimension spaceS={s1, s2, . . . , sd}, a set of points

D={p1, p2, . . . , pn} is said to be a dataset onS if every pi ∈ D
is ad-dimensional data point onS. We usepi.sj to denote thejth

dimension value of pointpi. For each dimensionsi, we assume that
there exists a total order relationship. For simplicity and without
loss of generality, we assume smaller values are preferred [2] (i.e.,
MIN operation) in this paper.

DEFINITION 1 (DOMINATE). A point p is said to dominate
another pointq on S if and only if ∀sk ∈ S, p.sk ≤ q.sk and
∃st ∈ S, p.st < q.st.

A partial order onD is a binary relation� onD such that, for all
x,y,z ∈ D, (i) x � x (reflexivity), (ii) x � y andy � x imply x=y
(antisymmetry), (iii)x � y andy � z imply x � z (transitivity).
We use (D,�) to denote the partial order set (or poset) of D. We
denote by≺ the strict partial order onD, i.e.,x ≺ y if x � y and
x 6= y. Givenx,y ∈ D, x andy are said to be comparable if either
x ≺ y or y ≺ x; otherwise, they are said to be incomparable.

The Definition 1 can be translated into the ordering context as
follows:

DEFINITION 2 (DOMINATE IN ORDERING CONTEXT). A point
p is said to dominate another pointq on S if and only if∀sk ∈ S,
p.sk � q.sk and∃st ∈ S, p.st ≺ q.st.

The partial order (D,�) can be represented by a DAGG =
(D, E), where(υ, ω) ∈ E if ω � υ and there does not exist
another valuex ∈ D such thatω � x � υ. For simplicity and
without loss of generality, we assume thatG is a single connected
component.

DEFINITION 3 (DOMINATING SET, DGS(P, D, S’)). Given a
point p, we use DGS(p, D, S’) to denote the set of points from D
which are dominated by p in the subspace S’ of S.

DEFINITION 4 (DOMINATED SET, DDS(P, D, S’)). Given a point
p, we use DDS(p, D, S’) to denote the set of points from D which
dominate p in the subspace S’ of S.

The problems that we want to solve are as follows:

PROBLEM 1 (GENERAL POINT QUERY(GPQ)). Given a dataset
D, dimension space S’ and a point p, find DGS(p, D, S’) and DDS(p,
D, S’).

Note that GPQ is the generalized model of subspace analysis
queries (SAQ)[9].

EXAMPLE 1. Consider the 3-dimensional dataset D ={a, b,
c, d, e, f} in Fig. 3 (a). Given a query pointb, dimension space
S′={D1, D2}, the dominating set DGS(b, D, S′) = {d, e} and the
dominated set DDS(b, D, S′) = {a, c}. We will use this dataset as
a running example in the rest of this paper.

Figure 4: The strategy of DADA for GPQ (this figure is best
viewed in color)

PROBLEM 2 (GENERAL L INEAR OPTIMIZATION QUERY). Given
a dataset D, dimension space S’ and a plane L, find the sets of
points from D which have the aggregate maximum, max(|DGS(p,
D, S’)|), where p is any point in the plane L, in the subspace S’.

PROBLEM 3 (GENERAL COMPARATIVE DOMINANT QUERY).
Given two sets of points A and B in a dataset D, and dimension
space S’, find the sets of points from B which are dominated by
some point from A in the subspace S’.

The first problem statement is merely a special case of the sec-
ond and the third. For clarity of presentation we deal first with the
task of determining the dominating/dominated set based on a ran-
dom point. The general linear optimization query and the general
comparative dominant query are then reduced to the first problem
by considering the line L and the dataset A/B as a set of points.

4. A NAIVE METHOD
To solve the problems defined in Section 3, a natural idea is to

extend the framework proposed in [9]. In this section, we briefly
introduce this naive strategy and then, illustrate its weak points.

The authors in [9] partition the data space by using griding strat-
egy. For example, Fig. 4 (a) shows a dataset in 2-dimensional
space (i.e.,{D1, D2}). In Fig. 4 (b), each grid records the num-
ber of the points which current grid dominates. For instance, the
colorful grids are all those which dominates three points. Instead
of recording each grid information, [9] proposed D∗-tree to record
the compressed information (upper/lower bound of a region that
dominates the same number of points). For example, the colorful
grids can be partitioned into three regions, i.e., blue, yellow and
red, which are represented by their upper bound, i.e.,{1, 4}, {3,
4} and{4, 2}, respectively. The whole D∗-tree is shown in Fig. 4
(c), which is constructed based on the rule defined in [9] (Defini-
tion 4.7). Fig. 4 (d) shows the compressed information about the
three colorful regions, i.e., the lower bound (1st column), the upper
bound (2nd column) and the number of points dominated (3rd col-
umn). Given a pointPquery, to get the number of the pointsPquery

dominates, it needs to start from the root of the D∗-tree and move
down the node with the upper bound that can dominatePquery.
Once it knows thatPquery is contained in a region that the node
dominates, the desired number of the points which are dominated
by Pquery can be output.

Yet there are two issues arising when processing the general
dominant relationship queries by using DADA’s strategy. Firstly,
the “whom” problem can not be efficiently solved. For example,
although the colorful regions in Fig. 4 (b) all dominate three points,
they have different dominating sets, i.e.,{b, d, e} for blue and yel-
low regions and{f, d, e} for red region. Although by adding the
dominating set into each node of the D∗-tree can naively answer
the question (as shown in Fig. 5), this simple solution will intro-
duce serious burden of data duplication problem. Therefore, the
strategy of DADA is not appropriate for the general dominant rela-
tionship analysis problem. Another issue is that the search strategy
in DADA while traversing the D∗-tree is inefficient.

5. A PARTIAL ORDER BASED METHOD
In this section, we propose to efficiently apply the properties of

the partial order to analyze the general dominant relationship. We

Figure 5: The extension of DADA for general dominant rela-
tionship analysis (this figure is best viewed in color)

Figure 6: DAG representation of the example dataset in 2-
dimensional space{D1, D2}

assume that the partial orders of a spatial dataset are available. In
practice, we use the techniques proposed in [16] to discovery all
the partial orders, which are represented in DAG format.

5.1 Querying Partial Orders
We propose several strategies to efficient answering different kinds

of queries. The semantic meaning kept in the partial orders is the
key used to extract the general dominant relationship.

5.1.1 General Point Query (GPQ)
Given a datasetD, a query pointPquery and a subspaceS′, the

most basic GPQ is to compute the points dominate or dominated by
Pquery. We can further differentiate two cases based on whether
the pointPquery is in the datasetD or not. Note that in [9], the
authors did not mention the difference of these two cases,Pquery ∈
D andPquery /∈ D. Hence, DADA deals with the two cases in the
same manner.

• Pquery ∈ D

An important observation in this case is that, ifPquery is in D,
all the general dominant relationship related toPquery can be easily
discovered by traversing the DAG in a specific subspace. No disk
access is performed because we don’t need to check their individual
value of each dimension.

As an example, Fig. 6 shows the DAG representation in sub-
space{D1, D2}. To facilitate the counting process, the numbers of
points dominating/dominated by current node (point) are inserted
into each node. This process is executed in the precomputed-mode.
Suppose the query point isb, we can get the points dominated by
b immediately, which is 2. Upon users are interested in whom
these two points are, it goes downward following the out-link of
b, and gets the dominating set ofb as{d, e}. In DADA [9] frame-
work, however, it needs to traverse the D*-tree to get the corre-
sponding class. For example, assume the query point isb, the or-
der of the traversed nodes in D*-tree, as shown in Fig. 4 (c), is
{〈1, 1〉,〈2, 1〉,〈2, 2〉,〈3, 4〉}. Then it finds the dominating set ofb
by checking the class of{〈3, 4〉}. Obviously, DADA consumes
more time compared with our strategy when the query pointp is in
D.

• Pquery /∈ D

As explained in Section 4, DADA [9] can not efficiently distin-
guish different dominating sets, which have the same number of
points dominated. We propose to solve this problem by travers-
ing the partial order representation (DAGs). To illustrate this, we
parse the example DAG in Fig. 6, by adding someV irtual Nodes,
which act as real nodes that dominates different set of points in the
original dataset. Fig. 7 (a) shows all the virtual nodes (denoted as
Vi). We can see that for the nodes which dominate three points,

Figure 7: All virtual nodes representation in 2-dimensional
space{D1, D2} (this figure is best viewed in color)

—————————————————————————————————
Algorithm 1: Creating Virtual Nodes
—————————————————————————————————
Input : Partial order representationDAG
Output : Virtual nodes setV
1. for each partial orderDAG and its subspaceS′ do
2. initializei=1
3. traverseGAG based on breadth first order
4. delete all the nodes and pathes traversed
5. if the left part (LP) is still a single connected component
6. insert a new virtual nodeVi into the virtual node table
7. merge top nodes ofLP to find smallest value of each

dimension inS′, record it as upper boundUi of Vi

8. between the original point andUi, find blank regions not
occupied by other virtual nodes, record left bottom corners
of these blank regions as the low bounds ofVi

9. i++
—————————————————————————————————

Figure 8: Creating Virtual Nodes

there are two virtual nodes (i.e., V6 and V7). Fig. 7 (b) illustrates
the virtual nodes effect in grid model. It can be deemed as a seman-
tic format of that used in DADA (i.e., as shown in Fig. 4 (b)).

To store the information of these virtual nodes, a naive solution
is to store all the DAGs shown in Fig. 7 (a), which is obviously
impractical because of the data duplication. We propose to use a
more compressive method that, with the help of the DAG shown
in Fig. 6, we only need to save the out-link node and the occupied
region (represented by its upper bound/lower bound) of each virtual
node. For example, Fig. 7 (c) shows the outlinks of the virtual
nodes V6 and V7 and their occupied regions. Suppose we know
that a query pointPquery is in the region occupied by V6, then the
point b in Fig. 6 will be first visited according to the out-link of
V6. The remain process will be the same as that in the first case,
whenPquery ∈ D. Note that here the number of the points in the
dominated set of V6 is 2+1=3 becauseb itself is dominated by V6.

The pseudo code of creating the virtual nodes is shown in Fig.
8. To create the virtual nodes, we traverse the DAG (i.e., Fig. 6)
following the Breadth First Order (line 3). We delete all the nodes
and the pathes traversed, and judge if the left part of the DAG is
a single connected component because a virtual node can not exist
if there is a gap appears in the left part of the DAG. For example,
suppose after we successfully get the virtual nodeV4, the next tra-
verse order should be{a, b}. If we delete the nodesa andb, then
the nodec should be also deleted. The proof can be easily got by
contradiction. Because we do not traverse the path which cover the
nodec, we terminate the routing path. This is the reason why we
need to check that the left part of the DAG is a single connected
component or not (line 5). We insert a new virtual node Vi into a
table (line 6), and record the occupied regions of Vi by using the
upper bound and lower bound of the regions (line 7 and line 8).
Note that the virtual node creation algorithm is executed in the pre-
process model for the case when a query pointp /∈ D. The pseudo
code of General Point Query (GPQ) processing algorithm is shown
in Fig. 9. It is self explainable and due to limited space, we skip
the detail.

5.1.2 General Linear Optimization Query (GLOQ)
The GLOQ problem in this section and the GCDQ problem in

the next section can be solved by extending the methods used in
the last section.

—————————————————————————————————
Algorithm 2: GPQ Processing
—————————————————————————————————
Input : Partial order representationDAG, a query point

Pquery , a subspaceS′

Output : GPQ(Pquery , D, S′)
1. if Pquery ∈ D
2. for each child nodeci of Pquery in DAG and its subspaceS′

3. putci in the result set GPQ(Pquery , D, S′)
4. else // whenPquery /∈ D
5. searchPquery to find its corresponding representative virtual nodeVi

6. if (the out-link nodeoi of Vi exists)
7. putoi in the result set GPQ(Pquery , D, S′)
8. for each child nodeci of Pquery in DAG and its subspaceS′

9. putci in the result set GPQ(Pquery , D, S′)
—————————————————————————————————

Figure 9: GPQ processing algorithm

We deal with the GLOQ processing based on such a fact: if the
upper bound of an occupied region and the origin point fall on the
same side ofL, then all the representative virtual nodes enclosed
by the the upper bound of an occupied region and the origin point
can not intersectL.

Note that there may be existing multiple representative virtual
nodes which dominate the most points inD, so we need to store the
intermediate result. The whole work flow of the original version
algorithm is similar to the one proposed in [9] (Section 5.1). We
need first get all possible virtual nodes which dominate the most
points inD. Once we get these virtual nodes, then the remaining
task is the same as that in GPQ processing.

5.1.3 General Comparative Dominant Query (GCDQ)
To handle the GCDQ problem, we need to pre-construct two

DAGs for bothA andB, respectively. Because of the definition
of skyline, all the non-skyline points inA are dominated by some
skyline points in the same dataset,A. Hence, we first need to ex-
tract the skyline points ofA. This can be easily done by checking
the first level of DAG representation ofA because the nodes there
are not dominated by any other points, i.e.,a andc in Fig. 6. Then
the problem reduces to find GPQ(Pquery, D, S′), wherePquery is
the skyline point ofA. This simplified problem has been solved in
the former part of Section 5.2. The final result set is the union of
both.

6. PERFORMANCE ANALYSIS
We performed the experiments using a 1.6GHz Intel Pentium(R)M

PC with a 3G memory, running Windows XP. All the algorithms
were written in C++, and compiled in an MS Visual C++ envi-
ronment. We employ the three most popular synthetic benchmark
datasets,independent, correlated andanti-correlated [2], with
dimensionalityd in the range [3, 7] and cardinality in the range
[100k, 500k]. The default values of dimensionality and cardinal-
ity were 5 and 100k, respectively. Detailed implementation of the
algorithms used to compare is described as follows:

1. Naive. Naivewas tested with the extension of DADA [9], by
storing the dominated/dominating points in the correspond-
ing class, as explained in Section 4.

2. ParOrder. ParOrderwas implemented as described in this
paper (as explained in Section 5).

6.1 Effectiveness of Compression
In this experiment, we explored the compression benefits ofParOrder

compared withNaive while processing general dominant relation-
ship queries. Following the definition used in [9], we use a metric
called compression ratio, which is the size of theParOrder as a
proportion ofNaive. Hence, a smaller ratio indicates better com-
pression.

Fig. 10 shows the compression ratio for each type of data dis-
tribution with varying dimensionality and cardinality. Among the
three types of data, correlated data is always the winner which

Figure 10: Compression ratio of varying dimensionality and
cardinality

Figure 11: Query processing (anti-correlated) of GPQ queries

has the most compressive effect. The reason is that many cells
in ParOrder dominates the same set of points for correlated data.
Independent data has the least compression as it is more difficult
for cells to dominate the same set of points and hence,ParOrder
can not efficiently summarize the data into partial order represen-
tation. The performance of anti-correlated data is between those
of the correlated and independent data on compression rate. As il-
lustrated in Fig. 10 (a), the higher the dimensionality is, the better
the compression ratio will be. The reason is due to the more sparse
data cube as dimensionality increasing. Fig. 10 (b) illustrates the
compression effect with different cardinality.

6.2 Query Performance
In this section, we evaluated the query answering performance

of ParOrder. There are two cases while testing the GPQ queries,
the query pointp is in the original spatial datasetD or not.

To test the effect of GPQ query, we randomly selected 10,000
different points fromD for the first case and generated 10,000 dif-
ferent points for the second case. For each pointp, we queried
its dominating number in all subspaces. Due to limited space, we
present only the result on the anti-correlated dataset.

Fig. 11 (a) and Fig. 11 (b) show the query time against dimen-
sionality when the query pointp ∈ D andp /∈ D, respectively.
We can see that theParOrder algorithm outperforms theNaive
in both cases. This is because the compact representation of partial
orders can lead to faster routing. From Fig. 11 (a) and Fig. 11
(b), we can also know that the performance difference between the
Naive method and theParOrder in the first case is much larger
than that in the seconde case. The reason is that we can directly
traverse the DAGs in the first case, instead of judging the virtual
nodes in the second case.

To test the effect of GLOQ query, we randomly generated 10,000
different GLOQs based on the synthetic dataset. Fig. 12 (a) show
the query time against dimensionality. We can see that theParOrder
approach is always better than theNaive.

To test the effect of GCDQ query, we randomly generated 10,000
different GCDQs based on the synthetic dataset with inA andB
containing 100 points each. Fig. 12 (b) show the query time against
dimensionality. As expected, theParOrder approach performs
the best.

7. CONCLUSIONS
In this paper, we have introduced General Dominant Relation-

Figure 12: Query processing (anti-correlated) of GLOQ and
GCDQ queries

ship Analysis, which could not be easily solved by existing strate-
gies. Due to the interrelated connection between the partial or-
der and the dominant relationship, we have proposed efficient data
structures and strategies to answer the general dominant relation-
ship queries. The experimental results and performance study con-
firmed the efficiency and effectiveness of our strategies.

8. REFERENCES
[1] W.T. Balke, U. Guentzer and J.X. Zheng. Efficient

distributed skylining for web information systems. InEDBT,
pages 256-273, 2004.

[2] S. Borzsonyi, D. Kossmann and K. Stocker. The skyline
operator. InICDE, pages 421-430, 2001.

[3] G. Casas-Garrica. Summarizing sequential data with closed
partial orders. InSDM, pages 380-391, 2005.

[4] C.Y. Chan, H.V. Jagadish, K.L. Tan, A.K.H. Tung and Z.
Zhang. Finding k-Dominant skylines in high dimensional
space. InSIGMOD, pages 503-514, 2006.

[5] J. Chomicki, P. Godfrey, J. Gryz and D. Liang. Skyline with
presorting. InICDE, pages 717-719, 2003.

[6] W. Kieβling. Foundations of preferences in database
systems. InVLDB, pages 311-322, 2002.

[7] D. Kossmann, F. Ramsak and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. InVLDB,
pages 275-286, 2002.

[8] H.T. Kung, F. Luccio and F.P. Preparata. On finding the
maxima of a set of vectors. InJACM, 22(4): pages 469-476,
1975.

[9] C. Li, B.C. Ooi, A.K.H. Tung and S. Wang. DADA: A data
cube for dominant relationship analysis. InSIGMOD, pages
659-670, 2006.

[10] X. Lin, Y. Yuan, W. Wang and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In
ICDE, pages 502-513, 2005.

[11] D. Papadias, Y. Tao, G. Fu and B. Seeger. An optimal and
progressive algorithm for skyline queries. InSIGMOD,
pages 467-478, 2003.

[12] J. Pei, W. Jin, M. Ester and Y. Tao. Catching the best views
of skyline: A semantic approach based on decisive
subspaces. InVLDB, pages 253-264, 2005.

[13] F. Preparata and M.I. Shamos. Computational geometry: In
introduction.Springer-Verlag, 1985.

[14] Y. Tao and D. Papadias. Maintaining sliding window skylines
on data streams. InTKDE, 18(3): pages 377-391, 2006.

[15] T. Xia and D. Zhang. Refreshing the Sky: The compressed
skycube with efficient support for frequent updates. In
SIGMOD, pages 491-502, 2005.

[16] Z. Yang, B. Wang, and M. Kitsuregawa. ParCube: A Partial
Order Model Based Data Cube for General Dominant
Relationship Analysis.Technical Report, University of
Tokyo, Japan, 2006.

[17] Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu and Q. Zhang.
Efficient computation of the skyline cube. InVLDB, pages
241-252, 2005.

