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Abstract—Finding partial periodic patterns in very large
databases is a challenging problem of great importance in many
real-world applications. Most previous work focused on finding
these patterns in temporal (or transactional) databases and did
not recognize the spatial characteristics of items. In this paper,
we propose a more flexible model of partial periodic spatial
pattern that may be present in spatiotemporal database. Three
constraints, maximum inter-arrival time (maxIAT ), minimum
period-support (minPS) and maximum distance (maxDist), have
been employed to determine the interestingness of a pattern in
a spatiotemporal database. The maxIAT controls the maximum
duration in which a pattern must reappear to consider its
occurrence as periodic within the data. The minPS controls the
minimum number of periodic occurrences of a pattern within the
data. The maxDist controls the maximum distance between the
items in a pattern. All patterns satisfying these three constraints
are returned. An efficient algorithm, called SpatioTemporal-
Equivalence CLAss Transformation (ST-ECLAT), has also been
described to discover all partial periodic spatial patterns in
a spatiotemporal database. This algorithm employs a novel
smart depth-first search technique to discover desired patterns
effectively. Experimental results demonstrate that the proposed
algorithm is efficient. We also present a case study in which we
apply our model to find useful information in the air pollution
database.

Index Terms—data mining, pattern mining, periodic patterns,
spatiotemporal database

I. INTRODUCTION

Partial periodic pattern mining is an important data mining
model with many real-world applications [1]. A partial pe-
riodic pattern represents a set of items that repeats itself at
regular intervals in the data. It is thus useful in characterizing
the cyclic behavior. Most previous works [2]–[4] focused on
finding partial periodic patterns in temporal (or transactional)
databases. In some applications, e.g. market basket, such a
model has proved to be important and meaningful. However, in
other applications, the occurrence information of items alone
may not always be sufficient to represent the significance of
a pattern. Consider the following examples.
• Environmental studies. Air pollution is a major factor

affecting climate change and public health. Several air
quality monitoring stations have been set up across the

world to monitor air pollutants [5]. The data generated
by these stations represent a spatiotemporal database. The
information regarding the geographical regions (or sets of
neighboring stations) where people have been regularly
exposed to unhealthy or hazardous levels of air pollution
may be found very useful to the Ecologists in devising
environmental policies to slow and reverse the climate
change and improve public health.

• Road traffic analytics. Traffic congestion is a serious
problem in smart cities. To confront this problem, several
sensors have been placed on road segments to monitor
congestion. The data generated by these sensors represent
a spatiotemporal database. The information regarding the
neighboring road segments where people have regularly
faced traffic congestion throughout a day(s) or certain
time periods of a day may be found useful to the users
for urban planning and traffic monitoring.

In the above examples, we can see that users may be
interested in finding only those periodically occurred patterns
where items are close to each other in a coordinate system.
Notably, the current partial periodic pattern models are not
ideal for these applications because they disregard the crucial
information about the spatial (or geometric) characteristics
of an item. In the literature, the spatial characteristics of an
item within the data have been exploited to find spatial co-
occurrence patterns [6], [7]. However, it has to be noted that
these studies do not take into account the periodic occurrence
information of a pattern in the data.

With this motivation, this paper proposes a more flexible
model of partial periodic spatial pattern that exists in a spa-
tiotemporal database. The proposed model considers a pattern
in a spatiotemporal database as a partial periodic spatial pattern
if it satisfies the user-specified maximum inter-arrival time
(maxIAT ), minimum period-support (minPS) and maximum
distance (maxDist) constraints. The maxIAT controls the
maximum time interval within which a pattern must reappear
in the data. The minPS controls the minimum number of pe-
riodic occurrences of a pattern within the data. The maxDist
controls the maximum distance between any two items in978-1-7281-0858-2/$31.00 ©2019 IEEE



a pattern. The patterns generated by the proposed model
satisfy the downward closure property. That is, all non-empty
subsets of a partial periodic spatial pattern are also partial
periodic spatial patterns. This property facilitates the mining
of partial periodic spatial patterns in very large databases
practicable. An efficient algorithm, called SpatioTemporal-
Equivalence CLAss Transformation (ST-ECLAT), has been
introduced to discover all partial periodic spatial patterns in
a spatiotemporal database. The proposed algorithm employs
smart depth-first search technique to discover all desired
patterns efficiently. Experimental results demonstrate that our
algorithm is not only memory efficient, but also 10 to 100
times faster than a naı̈ve extended ECLAT [8] algorithm. We
also present a case study in which we apply our model to find
useful information in the air pollution database.

The rest of the paper is organized as follows. Related work
is presented in Section 2. Section 3 introduces the model
of partial periodic spatial pattern. Section 4 describes the
ST-ECLAT algorithm. Experimental results are reported in
Section 5. Section 6 concludes the paper with future research
directions.

II. RELATED WORK

Tanbeer et al. [2] described a model to find full periodic-
frequent patterns in a transactional database. A major limita-
tion of this model is that it fails to discover partial periodic-
frequent patterns in a transactional database. When confronted
with this problem in real-world applications, researchers have
tried to find partial periodic (frequent) patterns using alterna-
tive measures, such as sequence periodic ratio [4] and period-
support [3]. It has to be noted that these studies do not
take into account the spatial characteristics of an item within
the database. On the contrary, the proposed model takes into
account both the spatial and temporal characteristics of the
items within the database.

The problem of finding spatiotemporal co-occurrence pat-
terns (or association rules) in spatiotemporal databases has
received a great deal of attention [6], [7]. Unfortunately,
all spatiotemporal co-occurrence pattern mining algorithms
determine the interestingness of a pattern by taking into
account only its support and disregard the periodic occurrence
information of a pattern within the data. On the contrary,
the proposed study takes into account the spatiotemporal
characteristics of the items within the database to find partial
periodic spatial patterns.

III. PROPOSED MODEL

For brevity, we describe the model of partial periodic spatial
pattern using a spatial database and a temporal database. A
hypothetical air pollution data is used for illustration purposes.

Let I = {i1, i2, · · · , in}, n ≥ 1, be a set of geo-
metric (or spatial) items. Let Pij denote a set of coordi-
nates for an item ij ∈ I . The spatial database SD is a
collection of items and their coordinates. That is, SD =
{(i1, Pi1), (i2, Pi2), · · · , (in, Pin)}. The above notion of spa-
tial database facilitates us to capture items of various geometric

forms, such as point, line, or polygon. Two items, ip, iq ∈ I ,
are said to be neighbors to each other if Dist(ip, iq)(=
Dist(iq, ip)) ≤ maxDist, where Dist(.) is a distance func-
tion and maxDist is a user-specified maximum distance.

TABLE I: Spatial database

Item Coordinates
a (0,0)
b (3,3)
c (0,7)
d (5,3)
e (5,6)
f (7,7)
g (7,1)

TABLE II: Neighbors

Item Neighbors
a bd
b acdefg
c bde
d abefg
e bcdfg
f bdeg
g bdef

Example 1. Let I = {a, b, c, d, e, f, g} be a set of items (or
air quality measuring stations). A spatial database of these
items is shown in Table I. Given the distance measure as
Euclidean, the distance between a and b, i.e., Dist(a, b) =
4.24. If the user-specified maxDist = 6, then a and b are
considered as neighbors because Dist(a, b) ≤ maxDist.
Table II lists the neighbors of every item in Table I.

Definition 1. (Spatial pattern.) Let X ⊆ I be an itemset (or a
pattern). If X contains k items, then it is called a k-pattern. A
pattern X in SD is said to be a spatial pattern if the maximum
distance between any two of its items is no more than the
user-specified maxDist. That is, X is a spatial pattern if
max(Dist(ip, iq)|∀ip, iq ∈ X) ≤ maxDist.

Example 2. The set of items a and b, i.e., ab is a pat-
tern. This pattern contains two items. Therefore, it is a 2-
pattern. The pattern ab is also a spatial pattern because
max(Dist(a, b)) ≤ maxDist. On the contrary, abf ⊃ ab
is not a spatial pattern because Dist(a, f) 6≤ maxDist or
max(Dist(a, b), Dist(a, f), Dist(b, f)) 6≤ maxDist.

A transaction ttid = (tid, ts, Y ), where tid ≥ 1 rep-
resents the transaction identifier, ts ∈ R+ represents the
timestamp and Y ⊆ I is a pattern. An (irregular) tem-
poral database TDB is a collection of transactions. That
is, TDB = {t1, t2, · · · , tm}, 1 ≤ m ≤ |TDB|, where
|TDB| represents the size of database. If a pattern X ⊆ Y ,
it is said that X occurs in transaction ttid. The times-
tamp of this transaction is denoted as tsXtid. Let TSX =
{tsXtida , ts

X
tidb

, · · · , tsXtidc}, tida, tidb, tidc ∈ (1, |TDB|), de-
note the set of all timestamps in which the pattern X has
appeared in the database. The support of X in TDB, denoted
as SUP (X), represents the number of transactions containing
X in TDB. That is, SUP (X) = |TSX |.

Example 3. The temporal database of the items in Table
I is shown in Table III. The first transaction in this table
provides the information that the stations a, b, c, e, f and g
have recorded hazardous quantities1 of air pollution at the
timestamp of 1. Similar statement can be made on remaining

1A measured quantity of an air pollutant by a sensor is considered hazardous
to the people if it exceeds a threshold value specified by the Air Quality Index
Standards.



TABLE III: Running example: temporal database

tid ts items tid ts items tid ts items
1 1 abcefg 5 6 acd 9 12 abef
2 2 abcf 6 7 bcdfg 10 13 abdef
3 3 ab 7 8 acde 11 14 eg
4 5 cdeg 8 11 acefg 12 15 acdfg

transactions in Table III. The size of this temporal database,
i.e., m = |TDB| = 12. The spatial pattern ab appears in
the transactions whose timestamps are 1, 2, 3, 12 and 13.
Therefore, tsab1 = 1, tsab2 = 2, tsab3 = 3, tsab9 = 12 and
tsab10 = 13. The complete set of timestamps at which ab
has occurred in Table III, i.e., TSab = {1, 2, 3, 12, 13}. The
support of ab, i.e., SUP (ab) = |TSab| = 5.

A recurrence of a pattern X is considered periodic if the
inter-arrival time is no more than the user-specified maximum
inter-arrival time (maxIAT ). It is formally defined as follows.

Definition 2. (A periodic inter-arrival time of X in TDB.)
Let tsXa and tsXb , 1 ≤ a < b ≤ m, denote two consecutive
timestamps at which X has appeared in TDB. The time
difference between tsXa and tsXb is defined as an inter-arrival
time of X , and denoted as iatXp , 1 ≤ p ≤ SUP (X) − 1.
That is, iatXp = tsXb − tsXa . Let IATX denote the set of all
inter-arrival times of ab in TDB. An inter-arrival time of X ,
iatXp ∈ IATX , is considered periodic if iatXp ≤ maxIAT .

Example 4. In Table III, the spatial pattern ab has appeared
consecutively in the transactions whose timestamps are 1 and
2. Therefore, an inter-arrival time of ab, i.e., iatab1 = 2− 1 =
1. Similarly, other inter-arrival times of ab in Table III are:
iatab2 = 3 − 2 = 1, iatab3 = 12 − 3 = 9 and iatab4 = 13 −
12 = 1. The set of all inter-arrival times of ab, i.e., IAT ab =
{1, 1, 9, 1}. If the user-specified maxIAT = 1, then iatab1 ,
iatab2 and iatab4 are considered as the periodic occurrences of
ab because iatab1 ≤ maxIAT , iatab2 ≤ maxIAT and iatab4 ≤
maxIAT . On the contrary, iatab3 is considered as an aperiodic
(or irregular) occurrence of ab because iatab3 6≤ maxIAT .

Definition 3. (Period-support of X in TDB.) The period-
support of X , denoted as PS(X), captures the number of pe-
riodic occurrences of X in TDB. That is, PS(X) = |ÎATX |,
where ÎATX ⊆ IATX such that if there ∃iatXp ∈ IATX

with iatXp ≤ maxIAT , then iatXp ∈ ÎATX . In other words,

ÎATX represent the set of all periodic inter-arrival times of
X in TDB.

Example 5. The set of all periodic inter-arrival times of ab,
i.e., ÎAT ab = {1, 1, 1}. Thus, the period-support of ab, i.e.,
PS(ab) = |ÎAT ab| = |{1, 1, 1}| = 3. In other words, ab has
appeared periodically three times within the data.

Definition 4. (Partial periodic spatial pattern X .) A spatial
pattern X is said to be a partial periodic spatial pat-
tern if its period-support is no less than the user-specified
minimum period-support (minPS). That is, X is a par-
tial periodic spatial pattern if PS(X) ≥ minPS and

max(Dist(ip, iq|∀ip, iq ∈ X)) ≤ maxDist.

Example 6. If the user-specified minPS = 3, then ab is a
partial periodic spatial pattern because Dist(a, b) ≤ maxDist
and PS(ab) ≥ minPS. This pattern provides the useful
information that the people in the geographical regions of the
stations a and b have been regularly exposed to hazardous
levels of pollution. The complete set of partial periodic spatial
patterns generated from Tables I and III have been listed in
Table IV.

TABLE IV: All partial periodic spatial patterns generated from
Tables I and III. The term ‘Pat.’ represents ‘Pattern.’

Pat. PS Pat. PS Pat. PS Pat. PS
a 4 c 4 b 3 e 3
ab 3 cd 3 d 3 f 3

Definition 5. (Problem definition.) Given a spatial database
(SD), temporal database (TDB), maximum inter-arrival time
(maxIAT ), minimum period-support (minPS) and maxi-
mum distance (maxDist), the aim of partial periodic spatial
pattern mining is to discover all patterns in SD and TDB that
satisfy the following two conditions: (i) the maximum distance
between any two items in a pattern is no more than the user-
specified maxDist and (ii) the period-support of a pattern
must be no less than the user-specified minPS.

The constraints, maxIAT and minPS, can also be expressed
in percentage of (tsmax − tsmin) and (|TDB| − 1), respec-
tively. The tsmin and tsmax respectively denote the minimum
and maximum timestamps of all transactions in TDB.

The partial periodic spatial patterns generated by the pro-
posed model satisfy the downward closure property. That is,
all non-empty subsets of a partial periodic spatial pattern are
also partial periodic spatial patterns. This property facilitates
the proposed model practicable on real-world very large
databases.

IV. PROPOSED ALGORITHM

The proposed SpatioTemporal-Equivalence CLAss Trans-
formation (ST-ECLAT) extends ECLAT [8] to find partial
periodic spatial patterns in spatiotemporal database. A key
difference between ECLAT and ST-ECLAT is as follows:
ECLAT performs typical depth-first search on the itemset
lattice. On the contrary, proposed algorithm conducts smart
depth-first search on the itemset lattice by utilizing the prior
information regarding the items’ neighbors. We now describe
the basic idea of ST-ECLAT algorithm.

A. Basic idea: smart depth-first search

In the smart depth-first search, we consider a partial periodic
spatial pattern as a prefix pattern and explore only those
immediate supersets whose items are common neighbors to
all items in a prefix pattern (see Example 7). The formal
definitions of prefix pattern and suffix items are given in
Definitions 6 and 7, respectively. The correctness of our idea
is shown in Property 1.



Example 7. In the smart depth-first search, we first identify
all neighbors for every item in the database. Next, we start
with the first item a ∈ S. As a is a partial periodic spatial
pattern, we consider a as a prefix pattern. Next, we consider
the neighbors of a in S − a (i.e., (S − a) ∩Na = {b, d}) as
suffix items, and perform depth-first search on the supersets of
a containing only these two items. Notice that all other items
in S−a are not taken into account for exploration because they
implicitly fail the maxDist constraint. Since ab is a partial
periodic spatial pattern, we consider ab as a prefix pattern, and
common neighbors of a and b in S−ab, i.e., (S−ab)∩(Na∩
Nb) = d is considered as a suffix item. As abd is not a partial
periodic spatial pattern, we verify for ad and end the depth-
first search for item a. The above smart depth-first search is
repeated for remaining items in S. This approach of exploring
only common neighbors of a prefix pattern reduces the search
space effectively.

Definition 6. (Prefix pattern.) Let PPSI = {i1, i2, · · · , in}
be an ordered set of partial periodic spatial items (or 1-
patterns) with respect to a measure M (say, period-support).
The prefix pattern α is an ordered subset of PPSI . That is,
α = {i1, i2, · · · , ik} ⊆ PPSI, k ≤ n.

Definition 7. (Suffix items.) Let PPSI−α denote an ordered
set of remaining items. An item ip ∈ (PPSI − α) and p > k
is a suffix item if ip is a neighbor for all items in α. That is,
ip ∈ (PPSI − α) is a suffix item if ip ∈ ∩ij∈αN(ij).

Property 1. Let N(α) = {N(i1)∩N(i2)∩ · · · ∩N(ik)} de-
note the common neighbors of all items in α. If α∪ip is a par-
tial periodic spatial pattern, then ip ∈ (N(α)∩ (PPSI −α)).
If ip 6∈ (N(α)∩ (PPSI−α)), then α∪ ip cannot be a partial
periodic spatial pattern because max(Dist(ia, ib)|∀ia, ib ∈
(α ∪ ip)) > maxDist.

B. ST-ECLAT

The ST-ECLAT is presented in Algorithms 1 and 2. Since
the algorithms to determine the distances between the items
and the calculation of period-support for a pattern from its
list of timestamps is straightforward, we have not presented
these two algorithms in the paper. We now illustrate these
two algorithms using the databases in Tables I and III. Let
maxDist = 6, maxIAT = 1 and minPS = 3. Let Euclidean
distance be the distance function.

First, we identify neighbors for each item by scanning the
spatial database. The neighbors for each item in I are shown in
Table II (line 1 in Algorithm 1). Next, we scan the temporal
database and construct the list of timestamps (or ts-list) for
every item in the database. Simultaneously, we also calculate
the period-support for each item. Fig. 1(a) shows the items’
ts-list and PS values after scanning the temporal database
(line 2 in Algorithm 1). Since the proposed patterns satisfy
the downward closure property, we prune the items that have
period-support less than minPS. The remaining items are
considered as partial periodic spatial items (or 1-patterns) and
sorted in descending order of their PS value. Fig. 1(b) shows
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Fig. 1: Finding partial periodic spatial items. (a) After scanning
the temporal database and (b) Sorted list of partial periodic
spatial items

the sorted list of partial periodic spatial items along with their
ts-lists and PS values (line 3 in Algorithm 1). Let S and
TS(S) denote the sorted list of partial periodic spatial items
and their ts-lists, respectively. Next, we initialize prefix pattern
α = ∅ and call depthFirstSearch function by passing α, TS(S)
and S as neighbors of α (line 4 in Algorithm 1).

The depthFirstSearch algorithm initially verifies whether
there exists any neighbor for the prefix pattern α (line 1 in
Algorithm 2). Since S 6= ∅, the first item in S, i.e., a and
its ts-list are popped as prefix pattern (line 2 in Algorithm
2). This item is also generated as a partial periodic spatial
item (line 3 in Algorithm 2). Next, we identify common
neighbors in α and a, i.e., N(α ∩ a) = N(a) = {b, d}, as
suffix items. Fig. 2(a) shows the prefix pattern a, its suffix
items and their ts-lists (line 3 in Algorithm 2). Since a is
a partial periodic spatial pattern, we perform a ∪ b, generate
its ts-list and suffix items (see Fig. 2(b)). Next, we calculate
period-support of ab by scanning its ts-list (line 8 and 9
in Algorithm 2). As the PS(ab) ≥ minPS, we generate
ab as a partial periodic spatial pattern and recursively call
the depthFirstSearch algorithm with α = ab, TS(d) and
N(ab) = d (lines 10 to 12 in Algorithm 2). The prefix pattern
abd is generated by performing ab ∪ d. Next, we generate ts-
list of abd, i.e., TS(abd) = TS(ab) ∩ TS(d) as shown in
Fig. 2(c). The suffix item is set to ∅. As PS(abd) < minPS,
we consider abd as uninteresting pattern and avoid searching
its supersets. Next, we generate ad and determine it as an
uninteresting pattern. As the depth-first search on a and its
neighboring items is completed, we choose the next item
c ∈ S−a as prefix pattern. All of the above steps are repeated
until S is empty. All partial periodic spatial patterns generated
from Tables I and III are shown in Table IV.

V. EXPERIMENTAL RESULTS

As there exists no algorithm to find partial periodic spatial
patterns in a spatiotemporal database, we show that ST-ECLAT
is efficient by evaluating against a naı̈ve extended ECLAT
algorithm (referred as n-ECLAT).

A. Experimental setup

The algorithms, n-ECLAT and ST-ECLAT, have been writ-
ten in Python 3 and executed on a machine with 2.5 GHz
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Fig. 2: Performing depth-first search on the itemset lattice
using item a. (a) prefix pattern a, (b) prefix pattern ab, (c)
prefix pattern abd and (d) prefix pattern ad

Algorithm 1 ST-ECLAT (Set of items (I), spatial
database (SD), temporal database (TDB), maximum distance
(maxDist), maximum inter-arrival time (maxIAT ), mini-
mum period-support (minPS)

1: Scan the spatial database and find neighbors for each item
using a distance function. Let N(ij) denote the set of
neighboring items for an item ij .

2: Scan the temporal database and generate ts-list for each
item. Simultaneously, calculate period-support for each
item ij by traversing its ts-list.

3: Find partial periodic spatial items by pruning uninteresting
items that have period-support less minPS. Sort the
partial periodic spatial items in descending order of their
support values. Let S denote this sorted list of partial
periodic spatial items. Let TS(S) denote the set of ts-
lists for all partial periodic spatial items in S.

4: Initialize α = ∅ and call depthFirstSearch(α, TS(S), S).

processor and 8 GB RAM. The experiments have been con-
ducted on real-world air pollution database.

Atmospheric Environmental Regional Observation System
(AEROS) represents a set of air quality monitoring stations
set up by the Ministry of Environment, Japan. Each station

Algorithm 2 depthFirstSearch(α, TS(N(α)), N(α))

1: while TS(N(α))! = ∅ do
2: ij , ts-list(ij) = TS(N(α)).pop();{extract item and its

ts-list from TS(N(α)) using pop function}
3: output α ∪ ij as a partial periodic spatial pattern;
4: set N(α ∪ ij) = N(α) ∩N(ij);
5: set suffixItems = ∅.
6: for ik,ts-list(ik) in TS(N(α)) do
7: if ik ∈ N(α ∪ ij) then
8: generate ts-list(α ∪ ik) = ts-list(α) ∪ ts-list(ij);
9: PS(α∪ik)=calculatePeriodSupport(ts-list(α∪

ik)).
10: if PS(α ∪ ik) ≥ minPS then
11: suffixItems.append(ik, ts-list(α ∪ ik));
12: depthFirstSearch(α ∪ ij , suffixItems, N(α ∪ ij));

reports the measured air pollutants, such as PM2.52 and SO2,
at hourly intervals. In this paper, we confine our experimen-
tation to PM2.5 pollutant, which is a major cause of many
cardio-respiratory problems reported in Japan. The PM2.5
recordings generated by these stations from 1-April-2018 to
30-April-2018 has been transformed into a temporal database
such that each transaction contains the following information:
transaction identifier, timestamp in hours, station identifiers
that have recorded PM2.5 values no less than 16 µg/m3.
The pollution database contained 1600 items (or stations) with
720 transactions. It is a high dimensional dense database with
minimum, average and maximum transaction lengths equal to
11, 460 and 971, respectively.

B. ST-ECLAT vs n-ECLAT

Figure 3a shows the number of partial periodic spatial
patterns generated in Pollution database at different minPS
and maxIAT values. The maxDist value has been set to 7
kilometers. It can be observed that maxIAT has a positive
effect on the generation of partial periodic spatial patterns,
while minPS has a negative effect on the number of patterns
being generated from the database.

Figure 3b show the maximum memory consumed by ST-
ECLAT and n-ECLAT algorithms in Pollution database at
different minPS and maxIAT values. The maxDist is set
at 5 kilometers. Please note that the legends ‘SminPS = x’
and ‘nminPS = x’ in all figures respectively represent the
performance results of ST -ECLAT and n-ECLAT algorithms
at minPS = X . The following observations can be drawn
from these figures: (i) The memory requirements of ST-
ECLAT and n-ECLAT algorithms depend on the number of
partial periodic spatial patterns being generated at minPS
and maxIAT values. (ii) At any given maxIAT and minPS
value, memory consumed by ST-ECLAT is only half of that
of n-ECLAT for any database. It is because the smart depth-
first search technique facilitated ST-ECLAT to generate all
partial periodic spatial patterns by visiting fewer itemsets in
the itemset lattice.

Figure 3c show the runtime requirements of ST-ECLAT
and n-ECLAT algorithms in Pollution database at different
minPS and maxIAT values. The following observations can
be drawn from these figures: (i) The runtime requirements of
ST-ECLAT and n-ECLAT algorithms depend on the number
of partial periodic spatial patterns being generated at minPS
and maxIAT values. (ii) At any given maxIAT and minPS
value, ST-ECLAT is faster than n-ECLAT by 10 to 100 times
in any database. It is because the smart depth-first search
technique facilitated ST-ECLAT to generate all partial periodic
spatial patterns by visiting fewer itemsets in the itemset lattice.

C. A case study: finding areas where people have been regu-
larly exposed to hazardous levels of PM2.5 pollutant

Some of the interesting patterns generated from Pollution
database are shown in Table V. The spatial location of the

2Atmospheric particulate matter that have a diameter of less than 2.5
micrometers
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Fig. 3: Evaluation of n-ECLAT and ST-ECLAT algorithms

TABLE V: Few interesting patterns generated in Pollution
database

S.No. Patterns (or station ids) color
1 {868, 872, 874, 876, 881} Green
2 {4372, 4256, 4312, 4263, 4335,- Red

4230, 4236, 4329, 4377}
3 {1193, 1225, 1261, 1266} Blue
4 {3946, 3954, 3503, 4032, 3097, 3939} Pink

Fig. 4: Areas where people have been regularly subjected to
unhealthy levels of PM2.5 concentrate

sensors present in each of these patterns are shown in Figure 4.
It can be observed that most sensors in this figure are situated
at bay areas (or shipyards). Thus, it can be inferred that people
working or living near these bay areas have been regularly
exposed to high levels of PM2.5. Such information may be
found very useful to the Ecologists in devising policies to
control pollution and improve public health. Please note that
more in depth studies, such as finding high polluted areas on
weekends or particular time intervals of a day, can also be
carried out with our model.

VI. CONCLUSIONS AND FUTURE WORK

This paper exploited the spatiotemporal characteristics of
the items within the data and proposed a flexible model of
partial periodic spatial pattern that may exist in a spatiotem-

poral database. A novel depth-first search technique using the
prior knowledge regarding the neighbors of items has been
suggested to reduce the search space and the computational
cost of the proposed model. An efficient algorithm, called ST-
ECLAT, has also been described to find all partial periodic
spatial patterns in a spatiotemporal database. Experimental
results demonstrate that the proposed algorithm is not only
memory efficient, but also 10 to 100 times faster than the
basic extended ECLAT algorithm. We have also presented a
case study to demonstrate the usefulness of proposed patterns
in real-world applications.

In this paper, we have studied the problem of finding partial
periodic spatial patterns by considering static and certain data.
As part of future work, we would like to extend the proposed
model to data streams and uncertain databases. It is also
interesting to investigate parallel algorithms to find all partial
periodic spatial patterns in very large databases.
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