
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Efficient Discovery of Weighted
Frequent Neighborhood Itemsets in Very
Large Spatiotemporal databases
R. UDAY KIRAN1,2, P. P. C. REDDY3, K. ZETTSU1, MASASHI TOYODA2, MASARU
KITSUREGAWA2,4 AND P. KRISHNA REDDY3,
1National Institute of Information and Communications Technology, Tokyo, Japan (e-mail: {uday_rage,zettsu}@nict.go.jp)
2The University of Tokyo, Tokyo, Japan (e-mail: {uday_rage,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp)
3International Institute of Information Technology-Hyderabad, Telangana, India (e-mail: pradeepchandra.p@research.iiit.ac.in, pkreddy@iiit.ac.in)
4 National Institute of Informatics, Tokyo, Japan

Corresponding author: R. Uday kiran (e-mail: uday_rage@tkl.iis.u-tokyo.ac.jp).

ABSTRACT Weighted Frequent Itemset (WFI) mining is an important model in data mining. It aims
to discover all itemsets whose weighted sum in a transactional database is no less than the user-specified
threshold value. Most previous works focused on finding WFIs in a transactional database and did not
recognize the spatiotemporal characteristics of an item within the data. This paper proposes a more flexible
model of Weighted Frequent Neighborhood Itemsets (WFNI) that may exist in a spatiotemporal database.
The recommended patterns may be found very useful in many real-world applications. For instance, an
WFNI generated from an air pollution database indicates a geographical region where people have been
exposed to high levels of an air pollutant, say PM2.5. The generated WFNIs do not satisfy the anti-
monotonic property. Two new measures have been presented to effectively reduce the search space and the
computational cost of finding the desired patterns. A pattern-growth algorithm, called Spatial Weighted
Frequent Pattern-growth, has also been presented to find all WFNIs in a spatiotemporal database.
Experimental results demonstrate that the proposed algorithm is efficient. We also describe a case study
in which our model has been used to find useful information in air pollution database.

INDEX TERMS Data mining, weighted frequent itemset, pattern-growth technique, spatiotemporal
database

I. INTRODUCTION

FREQUENT Itemset Mining (FIM) is an important data
mining model [1]–[3] with many real-world applications

[4]. FIM aims to discover all itemsets in a transactional
database that satisfy the user-specified minimum support
(minSup) constraint. The minSup controls the minimum
number of transactions that an itemset must cover in the data.
Since only a single minSup is used for the whole data, the
model implicitly assumes that all items within the data have
the uniform frequency. However, this is the seldom case in
many real-world applications. In many applications, some
items appear very frequently in the data, while others rarely
appear. If the frequencies of items vary a great deal, then we
encounter the following two problems:

1) If minSup is set too high, we miss those itemsets that
involve rare items in the data.

2) To find the itemsets that include both frequent and rare

items, we have to set minSup very low. However, this
may cause a combinatorial explosion, producing too
many itemsets, because those frequent items associate
with one another in all possible ways and many of them
are meaningless depending upon the user or application
requirements.

This dilemma is known as the rare item problem [5]. When
confronted with this problem in real-world applications, re-
searchers have tried to find frequent itemsets using multi-
ple minSups [6], [7], where the minSup of an itemset
is expressed with minimum item support of its items. An
open problem of this extended model is the methodology to
determine the items’ minimum item supports.

Cai et al. [8] introduced Weighted Frequent Itemset Min-
ing (WFIM) to address the rare item problem. WFIM takes
into account the weights (or importance) of items and tries
to find all Weighted Frequent Itemsets (WFIs) that satisfy the

VOLUME 4, 2016 1

Uday et al. et al.: IEEE ACCESS

user-specified weight constraint in a transactional database.
Several weight constraints (e.g., weighted sum, weighted
support, and a weighted average) have been discussed in
the literature to determine the interestingness of an itemset
in a transactional database. Selecting an appropriate weight
constraint depends on the user or application requirements.
Some of the practical applications of WFIM include market-
basket analytics [8], spectral signature analytics in astronom-
ical databases [9], and finding events in Twitter data [10].

This paper argues that though studies on WFIM consider
the importance of items within the data, they disregard
the spatiotemporal characteristics of an item. Consequently,
WFIM is inadequate to find only those WFIs that have
items close (or neighbors) to one another in a spatiotemporal
database. A naïve approach to tackle this problem involves
discovering all WFIs from the data and pruning the WFIs
whose items are not neighbors to each others. Unfortunately,
this approach is inefficient due to its huge search space
and the computational cost. With this motivation, this paper
introduces the model of Weighted Frequent Neighborhood
Itemsets (WFNI) that may exist in a spatiotemporal database.
Before we describe the contributions of this paper, we discuss
the usefulness of the proposed itemsets with a real-world
application.

Air pollution is a significant factor for many cardio-
respiratory problems found in the people living in Japan.
In this context, the Atmospheric Environmental Regional
Observation System (AEROS) constituting of several mon-
itoring stations has been set up by the Ministry of Environ-
ment, Japan. The data generated by these stations represent
a non-binary spatiotemporal database. An WFNI found in
this pollution database provides the information regarding the
geographical region (or a set of neighboring stations) where
people have been exposed to high levels of an air pollutant.
This information is useful for the users of the pollution
control board in devising appropriate policies to control the
industrial emissions.

High Utility Itemset Mining (HUIM) [11]–[13] general-
izes WFIM (respectively, FIM) by taking into account the
items’ internal utility and external utility values. However,
discovering WFIs (respectively, frequent itemsets) using a
HUIM algorithm is inefficient due to the additional cost of
transforming a binary spatiotemporal database into a non-
binary spatiotemporal database. (This topic is further dis-
cussed in latter parts of this paper).

This paper proposes a more flexible model of WFNI
that may exist in a spatiotemporal database. An itemset
in a spatiotemporal database is considered as an WFNI if
it satisfies the user-specified minimum weighted sum and
maximum distance constraints. The generated WFNIs do not
satisfy the anti-monotonic property. Two upper bound mea-
sures, called estimated weighted sum (EWS) and cumulative
neighborhood weighted sum (CNWS), have been employed
to reduce the search space and the computational cost of
finding the desired itemsets.EWS aims to identify candidate
items whose supersets may be WFNIs. CNWS seeks to

identify those items that have to be projected (or build con-
ditional pattern bases) to find all WFNIs. A pattern-growth
algorithm, called Spatial Weighted Frequent Pattern-growth
(SWFP-growth), has also been presented to find all WFNIs
in a spatiotemporal database efficiently. Experimental results
demonstrate that SWFP-growth is not only memory and
runtime efficient, but also scalable as well. We also describe
a case study in which we apply our model to find useful
information in air pollution database.

Reddy et al. [14] proposed the model of WFNI by taking
into account the items as points. This paper generalizes
the model of WFNI by taking into account items of any
geometric form (e.g„ point, line, or polygon). We will also
provide the correctness of our algorithm. Furthermore, we
strengthen the paper with extensive experiments and describe
the real-world application of the proposed model using air
pollution database.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the previous literature related to the problem.
Section 3 introduces the proposed model of WFNI that may
exist in a spatiotemporal database. Section 4 describes the
SWFP-growth. Experimental results are reported in Section
5. Section 6 concludes the paper with future research direc-
tions.

II. RELATED WORK
A. FREQUENT ITEMSET MINING
Frequent itemsets are an important class of regularities that
exist in databases. Since it was first introduced in [2], the
problem of finding these itemsets has received a great deal of
attention. Several algorithms (e.g., Apriori [2], ECLAT [15]
and Frequent Pattern-Growth (FP-growth) [3], [16]) have
been described in the literature to find frequent itemsets.
Though there exists no universally acceptable best algorithm
to find frequent itemsets in any database, FP-growth is widely
accepted as the best algorithm to mine frequent itemsets in
real-world databases [17]. Consequently, several extensions
of FP-growth using GPUs, disks and parallel processing have
been discussed to find frequent itemsets efficiently.

FP-growth is a depth-first search algorithm that discov-
ers frequent patterns using pattern-growth technique. The
pattern-growth technique briefly involves the following two
steps: (i) compress the database into a tree, and (ii) re-
cursively mine the entire tree to find all frequent itemsets.
We also employ a pattern-growth based algorithm to find all
WFNIs in a spatiotemporal database. However, it has to be
noted that the tree structure and the mining procedure of our
algorithm are different from that of the FP-growth algorithm.

B. WEIGHTED ITEMSET MINING
Cai et al. [8] introduced WFIM to address the rare item prob-
lem in FIM. Two Apriori algorithms, called MinWAL(O)
and MinWAL(M), have been discussed for finding WFIs in a
transactional database. Unfortunately, both algorithms suffer
from the performance issues involving multiple database
scans and the generation of too many candidate itemsets. Yun

2 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

and John [18] discussed a pattern-growth algorithm, called
WFIM, to find the weighted frequent itemsets. Uday et al.
[10] described an improved WFIM based on the concept of
cutoff weight, which represents the maximum weight among
all weighted items.

Cai et al. [9] used a variant of WFIM algorithm to find
weighted frequent itemsets in an astronomical database. An
entropy-based weighting function has been employed to de-
termine the interestingness of an itemset.

In the literature, researchers have studied WFIM by taking
into account other parameters. Tao et al. [19] proposed a
weighted association rule model by taking into account the
weight of a transaction. An Apriori-like algorithm, called
WARM (Weighted Association Rule Mining) algorithm, was
discussed to find to the itemsets. Vo et al. [20] proposed a
Weighted Itemset Tidset tree (WIT-tree) for mining the item-
sets and used a Diffset strategy to speed up the computation
for finding the itemsets. Lin et al. [21] studied the problem of
finding weighted frequent itemsets by taking into account the
occurrence time of the transactions. The discovered itemsets
are known as recency weighted frequent itemsets. Further-
more, Lin et al. [22] extended the basic weighted frequent
itemset model [8] to handle uncertain databases. Chowdhury
et al. [23] discussed a weighted frequent itemset model with
an assumption that weights of items can vary with time and
proposed the algorithm AWFPM (Adaptive Weighted Fre-
quent Pattern Mining). Please note that though some of the
above studies consider the temporal occurrence information
of items within the data, they completely disregard the spatial
information of the items. On the contrary, the proposed study
investigates the problem of finding WFNIs in spatiotemporal
databases by taking into account the spatiotemporal charac-
teristics of the items within the data.

C. HIGH UTILITY ITEMSET MINING
Yao et al. [13] introduced HUIM by taking into account
the items’ internal utility (i.e., number of occurrences of an
item within a transaction) and external utility (i.e., weight
of an item in the database) values. Since then, the problem
of finding HUIs from the data has received a great deal of
attention [11], [12], [24], [25]. As HUIM generalizes WFIM
(respectively FIM), WFIs (respectively, FIs) can be generated
using a HUIM algorithm. This paper argues that such
an approach to finding WFIs using HUIM algorithms is
inefficient because of two main reasons:

1) To employ a HUIM algorithm, we need to transform
the binary transactional database into a non-binary
transactional database by adding one as the internal
utility for every item in a transaction. This process
of transforming a huge binary database into a non-
binary database is a costly operation concerning to both
memory and runtime.

2) The size of the resultant non-binary transactional
database is substantial larger (approximately 1.5 to
2 times) than the actual size of a binary database.
Consequently, HUIM algorithms have to find WFIs

from much larger databases consuming more memory
and runtime.

In practice, a WFIM algorithm (respectively, FIM algorithm)
is generally faster than a HUIM algorithm for mining WFIs
(respectively, FIs) in a binary transactional database. It is
because they are more optimized for that specific problem.

Uday et al. [26] discussed an algorithm, called Spatial
High Utility Itemset Miner (SHUIMiner), to find all spa-
tial high utility itemsets in a non-binary spatiotemporal
database. Unfortunately, finding the proposed WFNIs using
SHUIMiner turns out to be costly due to the above mentioned
reasons.

D. SPATIAL CO-OCCURRENCE ITEMSET MINING

The problem of finding spatiotemporal co-occurrence item-
sets (or association rules) in spatiotemporal databases has
received a great deal of attention [27]–[30]. These algorithms
can be broadly classified into distance-based approaches
[27], [28] and transaction-based approaches [29], [30]. A
distance-based approach typically uses a parameter, called
the prevalence, to determine how interesting the spatiotem-
poral co-occurrences are in the data. A transaction-based
approach initially cluster the data over space and time and
then apply traditional association rule mining algorithms
on each cluster to find useful information. Unfortunately,
all spatiotemporal co-occurrence itemset mining algorithms
determine the interestingness of an itemset by taking into
account only its support and disregard the internal and
external utility values of an item. Moreover, most of these
algorithms cannot handle numeric data. On the contrary, the
proposed model considers internal and external utility values
of an item and handles numeric data.

Overall, the proposed model of finding WFNIs in a spa-
tiotemporal database is novel and distinct from current stud-
ies.

III. PROPOSED MODEL
Without loss of generality, a spatiotemporal database can be
represented as a spatial database and a temporal database.
For brevity, we first describe the neighborhood itemset using
a spatial database. Next, we introduce weighted frequent
neighborhood itemset using a temporal database and items’
weight database.

A. NEIGHBORHOOD ITEMSET

Let I = {i1, i2, · · · , in}, n ≥ 1, be a set of geo-
metric (or spatial) items. Let Pij denote a set of coor-
dinates for an item ij ∈ I . The spatial database SD
is a collection of items and their coordinates. That is,
SD = {(i1, Pi1), (i2, Pi2), · · · , (in, Pin)}. The above no-
tion of spatial database facilitates us to capture items of
various geometric forms, such as point, line, or polygon. Two
items, ip, iq ∈ I , are said to be neighbors to each other if
Dist(ip, iq)(= Dist(iq, ip)) ≤ maxDist, where Dist(.) is

VOLUME 4, 2016 3

Uday et al. et al.: IEEE ACCESS

Items location
a (0, 0)
b (3, 4)
c (3,−4)
d (6, 0)
e (3, 0)
f (9, 0)
g (12, 0)

(a)

Item Neigh.
a bce
b ade
c ade
d bcef
e abcd
f dg
g f

(b)

ts Items
1 abgf
2 acfg
3 dfg
4 bcd
5 bcde
6 abceg

(c)

ts/Item a b c d e f g
1 20 15 0 0 0 20 20
2 5 0 30 0 0 20 10
3 0 0 0 30 0 20 15
4 0 60 80 10 0 0 0
5 0 60 40 20 5 0 0
6 10 20 10 0 45 0 20

(d)

Itemset WS
c 160
b 155
cd 150
bd 150

(e)

TABLE 1: Running example. (a) spatial database, (b) neighbors of an item, (c) temporal database, (d) items’ weight database,
and (e) weighted frequent neighborhood itemsets

a distance function and maxDist is a user-specified maxi-
mum distance.

Example 1. Let I = {a, b, c, d, e, f, g} be the set of items
(or air pollution monitoring station identifiers). A spatial
database of these items is shown in Table 1a. Given the
distance measure as Euclidean, the distance between the
items c and d, i.e., Dist(c, d) = 5. If the user-specified
maxDist = 5, then c and d are considered as neighbors
becauseDist(c, d) ≤ maxDist. Table 1b lists the neighbors
of every item in Table 1a.

Definition 1. (Neighborhood itemset.) Let X ⊆ I be an
itemset (or a pattern). IfX contains k items, then it is called a
k-itemset. An itemset X in SD is said to be a neighborhood
itemset if the maximum distance between any two of its
items is no more than the user-specified maxDist. That is,
X is a neighborhood itemset if max(Dist(ip, iq)|∀ip, iq ∈
X) ≤ maxDist.

Example 2. The set of items c and d, i.e., cd is an itemset.
This itemset contains two items. Therefore, it is a 2-itemset.
The itemset cd is also a neighborhood itemset because
max(Dist(a, b)) ≤ maxDist.

Several distance functions (e.g. Euclidean distance and
Geodesic distance) have been described in the literature to
compute the distance between the items. Selecting a right
distance function depends on the user and/or application
requirements. In our example, we have represented spatial
items with points and employed Euclidean as the distance
function for brevity. However, our model is generic and can
be employed with any distance function that satisfies the
commutative property (see Property 1) and anti-monotonic
property (see Property 2). We now define weighted frequent
neighborhood itemset using temporal database and items’
weight database.

Property 1. (Commutative property.) Dist(ia, ib) =
Dist(ib, ia).

Property 2. (Anti-monotonic property). If X ⊂ Y , then
the maximum distance between any two items in X will al-
ways be less than or equal to the maximum distance between
any two items in Y . That is, max(Dist(ip, iq)|∀ip, iq ∈
X) ≤ max(Dist(ir, is)|∀ir, is ∈ Y).

B. WEIGHTED FREQUENT NEIGHBORHOOD ITEMSET
A transaction, denoted as Tts = (ts, Y), where ts ∈
R+ represents the transactional identifier (or timestamp)
of the corresponding transaction and Y ⊆ I is an item-
set. A (binary) temporal database, denoted as TDB =
{T1, T2, · · · , Tn}, n ≥ 1. Let w(ij , Tts), 1 ≤ ts ≤ n,
denote the weight of an item ij in a transaction Tts. Let
W (ij) = {w(ij , T1), w(ij , T2), · · · , w(ij , Tn)} denote the
set of all weights of ij in a temporal database. The items’
weight database, WD, is the set of weights of all items in I .
That is, WD =

⋃
ij∈I

W (ij).

Example 3. Continuing with the previous example, a tem-
poral database generated by all items in Table 1a is shown in
Table 1c. The items’ weight database is shown in Table 1d.
Each transaction in this database represents the measurement
of an air pollutant, say PM2.51, determined by a weather
station for a particular time period. The weight of an item c
in the second transaction, i.e., w(c, T2) = 30. In other words,
station d located at (3,−4) has recorded 30µg/m3 of PM2.5
at the timestamp of 2.

Definition 2. (The support of X in a temporal database.)
If X ⊆ Tk.Y , 1 ≤ k ≤ n, it is said that X occurs in
transaction Tk (or Tk contains X). Let TDBX ⊆ TDB
denote the set of all transactions containing X in TDB. The
support of X in TDB, denoted as S(X) = |TDBX |.

Example 4. The itemset cd ⊆ T4.bcd. Thus, the fourt
transaction contains the itemset cd. Similarly, the fifth trans-
action also contains the itemset cd. The set of all transactions
containing cd in Table 1c, i.e., TDBcd = {T4, T5}. The
support of cd in Table 1c, i.e., S(cd) = |TDBcd| = 2.

Definition 3. (Weighted sum of an itemset X in a trans-
action.) The weighted sum of an itemset X in Tk, denoted
as WS(X,Tk), is the sum of weights of all items of X in
Tk. That is, WS(X,Tk) =

∑
ij∈X w(ij , Tk). If X 6⊆ Tk.Y ,

then WS(X,Tk) = 0.

Example 5. The weighted sum of cd in T4, i.e.,
WS(cd, T4) = w(c, T4)+w(d, T4) = 80+10 = 90. It means

1PM2.5 refers to the particle matter of size less than 2.5 microns. The unit
of measurement for PM2.5 is µg/m3.

4 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

the stations c and d have cumulatively recorded 90µg/m3 of
PM2.5 at the timestamp 4.

Definition 4. (Weighted sum of an itemset X in a tempo-
ral database.) The weighted sum of X in TDB, denoted as
WS(X) =

∑
Tts∈TDBX WS(X,Tts).

Example 6. The weighted sum of cd in Table 1c, i.e.,
WS(cd) =

∑
Tts∈TDBcd WS(cd, Tts) = WS(cd, T4) +

WS(cd, T5) = (80 + 10) + (40 + 20) = 90 + 60 = 150. It
means the stations c and d have together recorded 150µg/m3

of PM2.5 in the entire data.

Definition 5. (Weighted frequent neighborhood itemset
X .) A neighborhood itemset X is said to be a weighted fre-
quent neighborhood itemset if WS(X) ≥ minWS, where
minWS represents the user-specified minimum weighted
sum.

Example 7. If the user-specified minWS = 150, then
the neighborhood cd is a weighted frequent neighborhood
itemset because WS(cd) ≥ minWS. The complete set of
WFNIs generated from the Tables 1a 1c and 1d are shown in
Table 1e.

Definition 6. (Problem Definition.) Given a temporal
database (TDB), items’ weight database (WD) and items’
spatial database (SD), the problem of Weighted Frequent
Neighborhood Itemsets mining involves discovering all item-
sets in TDB that have weighted sum no less than the user-
specified minimum weighted sum (minWS) and the dis-
tance between any two of its items is no more than the user-
specified maxDist. It is interesting to note that WFIM is a
special case of the problem WFNIM when maxDist = ∞
(or very large).

C. A SMALL DISCUSSION.
In our model, we have set a strict constraint that all items
in an WFNI must be close (or neighbors) to one another. If
we relax this constraint, then too many uninteresting itemsets
with items far away from the rest can be generated as WFNIs.
Example 8 illustrates the importance of employing a strict
spatial constraint on WFNIs.

Example 8. Let l = (0, 0), m = (2, 0), n = (4, 0) and
o = (6, 0) be four items located on a straight line. Let
maxDist = 2. If we relax the constraint that all items
in a WFNI need not be close to each other, then we may
find lmno as a WFNI. Unfortunately, this itemset may be
uninteresting to the user as the items n and o are located far
away from l.

To reduce the number of input parameters, the proposed
model does not determine the interestingness of an itemset
using minSup constraint. However, if an application de-
mands, the user can employ minSup as an additional con-
straint to find WFNIs. Please note that significant changes are
not needed for our SWFP-growth algorithm as it inherently
records the support information of an itemset.

Algorithm 1 SWFP-tree (TDB: temporal database, I: items
in a database, SD: spatial database, WD: weight database,
minWS: minimum weighted sum, minDist: minimum dis-
tance)

1: Scan the spatial database SD and identify neighbors for
each item ij in I . Let N(ij) denote the neighbors for
item ij in I .

2: Scan the database TDB and calculate EWS, WS and
minimumwieghts for each item ij in I . Prune all
items in I that have EWS less than the user-specified
minWS. Consider the remaining items in I as candidate
items and sort them in descending order of their EWS
values. Let L denote this sorted list of candidate items.

3: Create the root node of SWFP-tree T and label it as
“null”. Scan the temporal database TDB for the second
time and update SWFP-tree as follows. For each trans-
action Tts ∈ TDB do the following. Identify and sort
the candidate items in Tts in L order. Let T̂ts denote the
sorted transaction of Tts containing only candidate items.
Let the sorted candidate item list in T̂ts be [p|P], where
p is the first element and P is the remaining list. Call
insert_tree([p|P], T), which is performed as follows. If T
has a childN such thatN.item-name = p.item-name,
then increment the N.support value by 1, calculate the
OEWS value of p in T̂ts and add this value to the
existing N.oews value. If T has a child N such that
N.item-name 6= p.item-name, then create a new node
N , set its support count to 1, calculate theOEWS value
of p in T̂ts and set this value as N.oews. Next, its parent
link is linked to T , and its node-link to the nodes with
the same item-name via the node-link structure. If P is
non-empty, call insert_tree(P , N) recursively.

Algorithm 2 SWFP-growth

1: input : TX : SWFP-tree, HX : header table for TX , X: an
itemset

2: output: all candidate weighted frequent itemsets in TX
3: for each item ai ∈ HX do
4: generate an itemset Y = X ∪ ai. The EWS(Y) is set

as ai.oews in HX .
5: if WeightedSum(Y) + CNWS(ai) is no less than

minWS then construct Y ’s conditional pattern base
constituting of only neighbors of ai. Next, recalcu-
late each node’s oews value. Consider items hav-
ing oews value greater than minWS as candidate
items in Y -CPB and put them in HY . Readjust the
oews values for the items by removing non-candidate
items in Y -CPB. Create a new tree TY by calling
insert_tree([p|P], TY). If Ty 6= null, call SWFP −
growth(TY , HY , Y).

6: end for

VOLUME 4, 2016 5

Uday et al. et al.: IEEE ACCESS

{}
null

a b c

ab ac bc

abc

FIGURE 1: Itemset lattice of a, b and c

IV. PROPOSED ALGORITHM
The space of items in a database gives rise to a subset lattice.
The itemset lattice is a conceptualization of the search space
when mining WFNIs. The itemset lattice of the items a, b
and c is shown in Figure 1. The proposed SWFP-growth
performs a depth-first search on this itemset lattice to find all
WFNIs in the data. The main reason for choosing pattern-
growth technique is due to the fact that algorithms based
on this technique can be easily extended to develop disk-
based algorithms and parallel algorithms [31]. In this paper,
we confine to the sequential memory-based pattern-growth
algorithm.

In this section, we first introduce the basic idea of SWFP-
growth algorithm. Next, we describe the working of SWFP-
growth using the database shown in Table 1c.

A. BASIC IDEA
The weighted sum of an ordered itemset can be more, less, or
equal to the weighted sum of its ordered superset (see Prop-
erty 3). Consequently, the WFNIs generated from the data do
not satisfy the convertible anti-monotonic, convertible mono-
tonic, or convertible succinct properties [32]. This increases
the search space, which in turn increases the computational
cost of finding the WFNIs. Two upper bound measures,
called optimized estimated weighted sum (OEWS) and cu-
mulative neighborhood weighted sum (CNWS), have been
presented to reduce the search space and the computational
cost. These two measures aim to identify itemsets (or items)
whose supersets may yield WFNIs. We now describe each of
these measures.

Property 3. If X ⊂ Y , then WS(X) ≥ WS(Y) or
WS(X) ≤WS(Y).

1) Optimized estimated weighted sum
The key objective of OEWS measure is to identify items
whose supersets may yield WFNIs. The items whose
OEWS value is no less than the user-specified minWS
are called as candidate items. Definitions 7 and 8 define the
estimated weighted sum (EWS) of an itemset in a transac-
tion and temporal database, respectively. Definitions 9 and 10
respectively define the candidate item and candidate itemsets.
Pruning technique to remove itemsets whose supersets may

TABLE 2: Neighborhoods of each item at maxDist = 5

Item Neighbours
a bce
b ade
c ade
d bcef
e abcd
f dg
g f

not yield any WFNI is given in Property 4. Definition 11
defines the calculation of optimized EWS value of an item
based on the prior knowledge regarding the pattern-growth
technique.

Definition 7. (Estimated Weighted Sum of an item ij in
a transaction.) Let Nij denote the set of all neighbors of an
item ij ∈ I . That is, ∀ik ∈ Nij , dist(ij , ik) ≤ maxDist.
The estimated weighted sum (EWS) of an item ij in a
transaction Tts, denoted as EWS(ij , Tts), represents the
sum of weights of ij and its neighboring items in Tts. That is,
EWS(ij , Tts) = w(ij , Tts)+

∑
ik∈Tts.Y ∩ik∈Nij

w(ik, Tts).

Example 9. Consider the item a in Table 1c. The neighbors
of a, i.e.,Na = {bce} (see Table 1b). The estimated weighted
sum of a in T1 is the sum of weights of a and its neighboring
items in T1. That is, EWS(a, T1) = w(a, T1) + w(b, T1) =
20 + 15 = 35. Please note that the weights of remaining
items (i.e., g and f) in T1 are not used in the calculation of
EWS(a, T1). It is because these two items are not neighbors
of a. The above definition of EWS captures the maximum

weighted sum of a and its neighboring items in a transaction.
We now extend this definition by taking into account a set of
transactions (or a temporal database).

Definition 8. (EWS of an item in a temporal database).
Let TDBij denote the set of all transactions containing ij
in TDB. The EWS of an item ij in TDB, denoted as
EWS(ij), represents the sum of estimated weighted sum
of ij in all transactions of TDBij . That is, EWS(ij) =∑
Tk∈TDBij EWS(ij , Tk).

Example 10. The transactions containing a in Table 1c
are: T1, T2 and T6. Therefore, TBDa = {T1, T2, T6}.
The EWS of a in T1, i.e., EWS(a, T1) = 35. Similarly,
EWS(a, T2) = 35 and EWS(a, T6) = 85. The EWS of
a in the entire database, i.e., EWS(a) = EWS(a, T1) +
EWS(a, T2)+EWS(a, T6) = 35+35+85 = 155. In other
words, EWS(a) provide the information that an item a with
all its neighboring items has resulted in a maximum weighted
sum of 155 µg/m3 in the entire database. Henceforth, this
value can be used as a upper-bound constraint to identify
candidate items whose supersets may yield WFNIs. The

above definition captures the maximum weighted support an
item and its supersets (constituting of its neighboring items)
can have in the entire spatiotemporal database with respect

6 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

to its neighboring items. Thus, EWS acts as a weighted
sum upper bound on the items. For an item ij ∈ I , if
EWS(ij) < minWS, then neither ij nor its supersets will
result in WFNIs. So only those items whose EWS is no less
than minWS will generate WFNIs at higher order. We call
these items as candidate items and defined in Definition 9.

Definition 9. (Candidate item.) An item ij in TDB is said
to be a candidate item if EWS(ij) ≥ minWS.

Example 11. Continuing with the previous example, the
item a in Table 1c is a candidate item because EWS(a) ≥
minWS. We now generalize the above definition by taking

into account the notion of itemset. This generalization facil-
itates uses to push the above pruning technique to the lower
levels of itemset lattice.

Definition 10. (Candidate itemset.) Let α be a suffix item-
set. Let TDBα ⊆ TDB be the conditional pattern base (or
projected database) of α. (If α = ∅, then TDBα = TDB.)
Let WS(α) be the weighted sum of α in TDB. Let ij be an
item in TDBα. Let ̂EWS(ij) denote the EWS value of an
item ij in TDBα∪ij . If ̂EWS(ij) + WS(α) ≥ minWS,
then α ∪ ij is a candidate itemset (or ij is a candidate item
in TDBα). Otherwise, ij is an uninteresting item that can be
pruned from TDBα. The proposed SWFP-growth employs

the above definition to identify candidate itemsets whose
supersets may yield WFNIs.

Property 4. (Pruning technique). For an itemset X , if
EWS(X) ≤ minWS, then neither X nor its supersets can
be WFNIs.

Definition 11. (Calculating the optimized EWS value of
an item using the prior knowledge regarding the pattern-
growth technique). In the pattern-growth technique, the
conditional pattern base (or CPB) of a suffix item does not
include any previous suffix items. For example, let a, b, c
and d be the sorted list of items in a lexicographical or-
der. In the pattern-growth technique, the search space of
finding WFNIs from these four items can be divided into
four smaller search spaces: (i) d’s conditional pattern base
(or d-CPB), (ii) c-CPB excluding d (which is after c in
the sorted list), (iii) b-CPB excluding c and d and (iv)
a-CPB excluding b, c and d. Thus, given a sorted trans-
action, T̂k = (ts, {i1, i2, · · · , ik}), the optimized EWS

value of an item ip in T̂k, denoted as OEWS(ip, T̂k), is
the summation of weighted sum of ij and neighboring items
before ip in T̂k. That is, OEWS(ip, T̂k) = w(ip, T̂k) +∑
ia∈{ip-CPB∩Nip}

w(ia, T̂k), where ip-CPB denote the set
of items that include in the conditional pattern base of ip and
Nip represent the neighboring items of ip.

Example 12. Let us consider the first transaction T1 in
Table 1c. The lexicographical sorted order of items in this
transaction is abfg. Let us consider the item g, which is the

last item in the sorted transaction. The conditional pattern
base of g, i.e., g-CPB = {abf}∩Ng = {abf}∩{f} = {f}.
Therefore, the EWS of g in T1, i.e., OEWS(g, T1) =
w(g, T1) + w(f, T1) = 20 + 20 = 40. Similarly, for
the item f , f -CPB = {ab} and Nf = {dg}. The
OEWS of f in T1, i.e., OEWS(f, T1) = w(f, T1) +∑
ik∈{f-CPB∩Nf} w(ik, T1) = w(f, T1) = 20.

Property 5. For an itemset X , EWS(X, T̂k) ≥
OEWS(X, T̂k). In other words, OEWS is the more tighter
constraint than EWS.

The SWFP-growth employsEWS measure to find candidate
items. After finding candidate items and sorting them with
respect to EWS descending order, items’ OEWS values in
every transaction are used to find candidate itemsets effec-
tively.

2) Cumulative neighborhood weighted sum
The candidate items constitute of both weighted frequent
items and uninteresting items whose supersets may gener-
ate WFNIs. We have observed that constructing projected
databases (or conditional pattern bases) for all uninteresting
items is a costly operation. In this context, we exploit another
weight upper bound measure, called cumulative neighbor-
hood weighted sum (CNWS), to identify those candidate
items whose projections will only WFNIs.

Definition 12. (Cumulative neighborhood weighted sum)
Let S = {i1, i2, · · · , ik} ⊆ I be an ordered list of candidate
items such that EWS(i1) ≤ EWS(i2) ≤ · · · ≤ EWS(ik).
The cumulative neighborhood weighted sum of an item
ij ∈ S, denoted as EWS(ij), is the sum of weighted sum
of remaining items in the list which are neighbors of ij . That
is, CNWS(ij) =

∑|S|
p=j+1WS(ip) if ip ∈ N(ip). For the

last item in S, cnws(ik) = 0.

Example 13. Let us order the candidate items in increasing
order of their EWS values. Let � denote this order of items.
The candidate items in � order are a, e, c, b and d. Let us
consider item a, which is the first item in � order. The
neighbors of this item are b, c and e (see Table 1b). Thus, the
item a will generate WFNIs by combining with the items b, c
and e. Thus, the cumulative neighborhood weighted sum of
a, i.e.,CNWS(a) =WS(b)+WS(c)+WS(e) = 365. The
CNWS of a provides the crucial information that the item
a and its supersets containing only a’s neighborhood items
can at most have the maximum weighted sum of 365 in the
entire database. This information can be used to determine
whether a suffix item in the tree needs to be projected or not.
If sum of weighted support of suffixitemset and CNWS
of a suffix itemset is less than the user-specified minWS,
then we can prevent the depth-first search (or construction of
conditional pattern bases) to find WFNIs. Thus, significantly
reducing the search space.

Property 6. (Additive property.) For an itemset X ,
WS(X) ≤∑

ij∈XWS(ij).

VOLUME 4, 2016 7

Uday et al. et al.: IEEE ACCESS

B. SWFP-GROWTH
The proposed SWFP-growth algorithm is presented in Algo-
rithms 1 and 2. Briefly, SWFP-growth algorithm involves the
following steps: (i) finding candidate items (ii) constructing
Spatial Weighted Frequent Pattern-tree (SWFP-tree) by com-
pressing the spatiotemporal database using candidate items
(iii) Recursively mining SWFP-tree to find all candidate
itemsets and (iv) finding all WFNIs from candidate itemsets
by performing another scan on the spatiotemporal database.
Before we explain each of these steps, we describe the
structure of SWFP-tree.

1) Structure of SWFP-tree
In SWFP-tree, each node N includes N.name, N.support,
N.oews, N.parent, N.hlink and a set of child nodes. The
details are as follows. N.name is the item name of the node.
N.support represents the support of an item in node N .
N.oews represents the OEWS value of an item in node N .
N.parent records the parent node of the node. N.hlink is
a node link which points to a node whose item name is the
same as N.name.

Header table is employed to facilitate the travel of SWFP-
tree. In this table, each entry is composed of an item name,
OEWS value, and a link. The link points to the last occur-
rence of the node which has the same item as the entry in
the SWFP-tree. By following the link in the header table and
the nodes in SWFP-tree, the nodes whose item names are the
same can be traversed efficiently.

2) Finding candidate items
In the first database scan, we calculate the EWS, minimum
weight sum and weightedsum of each item in database
TDB. The calculated EWS values for all items in Table
1c are shown in Fig. 2(a). From these items, the candidate
items are generated by pruning all items that have EWS
value less than the user-specified minWS. The candidate
items are later sorted in descending order of their EWS
value. Let this sorted list of candidate items be denoted as
L. The sorted list of candidate items generated from Table
1c for the user-specified minWS = 150 is shown in Fig.
2(b). (The above process can be repeated until no more
items get pruned from the temporal database. However, for
computational reasons we recommend limiting this step to
single scan on the database.)

3) Construction of SWFP-tree
Using the generated candidate items, we scan the temporal
database for the second time and generate SWFP-tree by
following the procedure similar to that Frequent Pattern-tree
(or FP-tree). It has to be noted that we will maintaining both
support and OEWS value of an item at each node.

The sorted transactional database constituting of only can-
didate items is shown in Fig. 2(c). The scan on the first sorted
transaction, “1: ba,” generates a branch 〈b : 1 : 15〉, 〈a :
1 : 35〉 (format is 〈item : support : OEWS〉). Fig. 3(a)
shows the branch generated after scanning first transaction.

The scan on the second sorted transaction, “2:ca,” generates
another branch 〈c : 1 : 30〉, 〈a : 1 : 35〉 (see Fig.
3(b)). Similar process is repeated for remaining transactions
and SWFP-tree is updated accordingly. The tree constructed
after scanning the last transaction is shown in Fig. 3(c). To
facilitate tree traversal, an item header table is built so that
each item points to its occurrences in the tree via a chain
of node-links. The final SWFP-tree generated after scanning
entire temporal database is shown in Fig. 3(d).

Item

EWS

a

155

b

265

c

255

d

325

e

210

f

105

g

125

(a) EWS values for all items

Item

EWS

d

325

b

265

c

255

e

210

a

155

(b) Sorted list of candidate items

ts Items

1 ba

2 ca

3 d

4 dbc

5 dbce

6 bcea

(c) temporal database

FIGURE 2: Generating temporal database containing only
candidate items

{}
null

b:1:15

a:1:35

b:1:15

a:1:35

c:1:30

a:1:35

b:2:35

a:1:35

c:1:30

a:1:35

d:3:60

b:2:150

c:2:150

e:1:125

c:1:100

e:1:75

a:1:85

{}
null

{}
null

(a) (b) (c)

b:2:35

a:1:35

c:1:30

a:1:35

d:3:60

b:2:150

c:2:150

e:1:125

c:1:100

e:1:75

a:1:85

{}
null

(d)

Item EWS NL

d 325

b 265

c 255

e 210

a 155

FIGURE 3: Construction of SWFP-tree. (a) After scanning
first transaction (b) after scanning second transaction (c) after
scanning the entire database and (d) final SWFP-tree

4) Recursive mining of SWFP-tree
After constructing SWFP-tree, we start with the last item in
the header table. Choosing this item as a suffix itemset, we
determine its CNWS. If the sum of weighted support of
the suffix item and its CNWS value is more than the user-
specified minWS, then we construct its conditional pattern
base constituting of neighboring items of suffix itemset, con-
struct its conditional SWFP-tree, and generate all candidate

8 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

TABLE 3: Mining SWFP-tree

suffix item conditional pattern base conditional SWFP-tree candidate itemsets
a 〈b, c, e : 1 : 85〉, 〈b : 1 : 35〉, 〈c : 1 : 35〉 − a
e 〈d, b, c : 1 : 125〉, 〈b, c : 1 : 75〉 〈b, c : 2 : 200〉 eb, ec, e
c 〈d : 2 : 150〉 〈d : 2 : 150〉 c, cd
b 〈d : 2 : 150〉 〈d : 2 : 150〉 b, bd

itemsets. If CNWS value of a suffix item is less than the
user-specified minWS, then we skip the construction of
conditional pattern bases and move to the next item in the
header table. Similar process is repeated for the other items
in the header table.

Mining of the SWFP-tree is summarized in Table 3 and
defined as follows. We first consider a, which is the last item
in the SWFP-list. Item a occurs in three branches of the
SWFP-tree of Figure 3. (The occurrences of a an easily be
found by following its chain of node-links.) The paths formed
by these branches are 〈b, c, e, a : 1 : 85〉, 〈b, a : 1 : 35〉 and
〈c, a : 1 : 35〉. Therefore, considering a as a suffix item, its
corresponding three prefix are 〈b, c, e : 1 : 85〉, 〈b : 1 : 35
and 〈c : 1 : 35〉 (format is 〈item_1, item_2, · · · , item_k :
support : oews), which form its conditional pattern base.
The ÔEWS value of the items b, c and e in the conditional
pattern base of a (i.e., T a) is less than the minWS. So forth,
we prune all items in the conditional pattern base of a, and
generate only a as the candidate item. Next, we consider
the next item e in the SWFP-list. This item occurs in two
branches of the SWFP-tree of Figure 3. The paths formed by
these branches are 〈d, b, c, e : 1 : 125〉 and 〈b, c, e : 1 : 75〉.
Therefore, considering e as a suffix item, its corresponding
two prefix are 〈b, d, c : 1 : 125 and 〈b, c : 1 : 75〉, which
form its conditional pattern base. The ÔEWS value of the
items b and c are no less than the minUtil value. So forth,
conditional SWFP-tree is constructed with the items b and c.
From this conditional SWFP-tree, we generate eb, ec and e
as candidate itemsets. Similar process is performed for the
remaining items in the SWFP-list of Figure 3(d) to find all
candidate itemsets. The complete set of candidate itemsets
generated from Figure 3(d) are a, eb, ec, e, c, cd, b, bd . The
correctness of finding all candidate itemsets is shown in
Theorem 13.

Theorem 13. Let α be an itemset in SWFP-tree. Let B be
the α’s conditional pattern base, and β be an item in B. If α
is a suffix itemset and ̂OEWS(α, β) +WS(α) ≥ minWS,
then 〈α, β〉 is a candidate itemset.

Proof 14. According to the definition of conditional pattern
base and compact SWFP-tree, each subset in B occurs under
the condition of the occurrence of α in the transactional
database. If an item β appears in B, then β appears with
α. Thus, 〈α, β〉 is a candidate itemset if ̂OEWS(α, β) +
WS(α) ≥ minWS. Hence proved.

5) Generating all WFNIs from candidate itemsets
After finding all candidate itemsets from SWFP-tree, we per-
form third scan on the database and calculate actual weighted
support for each candidate itemset. The candidate itemset that
has weighted support no less than the user-specifiedminWS
will be generated as WFNI. The complete set of WFNIs
generated from Table 1c for the user-specified minWS of
150 is shown in Table 1e.

V. EXPERIMENTAL RESULTS
Since there exists no algorithm to mine WFNIs in a binary
spatiotemporal database, we only evaluate the proposed al-
gorithm using various databases. We show that our algorithm
is not only memory and runtime efficient, but also scalable as
well.

A. EXPERIMENTAL SETUP
The SWFP-growth algorithm has been written in java and
executed on i7 1.5 GHz processor having 8GB of mem-
ory. The experiments have been conducted using synthetic
(T10I4D100K) and real-world (Retail, Chess and PM2.5)
databases.

The T10I4D100K [2] is a sparse synthetic database, which
is widely used for evaluating various pattern mining al-
gorithms. This transactional database is converted into a
temporal database by considering tids as timestamps. A
spatial database for all the items in T10I4D100K has been
generated by assigning random coordinates between (0, 0)
to (100, 100). The coordinates of these items in a Cartesian
coordinate system is shown in Fig. 4a. It can be observed that
items have non-uniformly spread throughout the region. The
statistical details of this database were provided in Table 4.

The Retail is a sparse real-world transactional database,
which is widely used for evaluating various pattern mining al-
gorithms. This database is converted into a temporal database
by considering tids as timestamps. A spatial database for
all the items has been generated by assigning random co-
ordinates between (0, 0) to (200, 200). The coordinates of
these items in a Cartesian coordinate system is shown in Fig.
4b. It can be observed that items have non-uniformly spread
throughout the region. The statistical details of this database
were provided in the third row of Table 4.

AEROS consists of several air pollution measuring stations
located throughout Japan. Each station measures several air
pollution concentrates (e.g., NO, NO2, PM2.5 and SO2)
over hourly intervals. In this paper, we only consider PM2.5
pollution concentrate. The pollution data is generated at 1
hour time interval for 24 hours of a day. For our experiments,
we are using air pollution data of 6 months (i.e., from

VOLUME 4, 2016 9

Uday et al. et al.: IEEE ACCESS

01-12-2018 to 04-06-2019). The PM2.5 database contained
5366157 data points and 1065 items (or station ids). UTC
time is used to record the transactions. Without loss of
generality, the pollution database was split into a temporal
database, spatial database and items weight database. PM2.5
is a dense high dimensional database. The statistical details
of this database are shown in Table 4.

The Chess is a dense real-world transactional database,
which is widely used for evaluating various pattern mining al-
gorithms. This database is converted into a temporal database
by considering tids as timestamps. A spatial database for all
the items has been generated by assigning random coordi-
nates between (0, 0) to (20, 20). The coordinates of these
items in a Cartesian coordinate system is shown in Fig. 4d.
It can be observed that items have non-uniformly spread
throughout the region. The statistical details of this database
were provided in the fourth row of Table 4.

TABLE 4: Statistics of the datasets

Databbase Type Items Size Transaction length
min. avg. max.

T10I4D100K sparse 870 4.5 MB 1 10 29
Retail sparse 16470 4.6 MB 1 10 76
PM2.5 dense 1065 30.1 MB 50 950 1055
Chess dense 75 354 KB 37 37 37

B. EVALUATION OF SWFP-GROWTH AT VARIOUS
MINWS VALUES
Figs. 5a, 5b, 5c and 5d show the number of WFNIs gen-
erated in T10I4D100K, Retail, PM2.5 and Chess databases
at different minWS and maxDist values, respectively. The
following observations can be drawn from these two figures :
(i) increase in minWS causes a decrease in WFNIs as many
itemsets fail to satisfy the increased minWS value and (ii)
increase in maxDist causes increase in WFNIs as higher
maxDist facilitates the items to increase their neighborhood
sizes. It can be observed that at higher maxDist values,
too many WFNIs are getting generated. It is because of the
increase in neighborhood size facilitates items to combine
with far away items and generate WFNIs. Many WFNIs
generated at high maxDist may found to be uninteresting
to the users.

S.No. Pattern WS Location
1 {5587,5605,5611,5617,5624} 154,583 Sapporo

2 {4249,4255,4275,4282,4331,4348,- 381,348 Tokyo4354,4391,4396}
3 {2079,2091,2102,2106} 164,538 Osaka
4 {1197,1229,1265,1270} 198,402 Okayama

TABLE 5: Some of the interesting WFNIs generated in
pollution database

Figs. 6a, 6b, 6c and 6d show the memory require-
ments of SWFP-growth (in megabytes) on T10I4D100K,
Retail, PM2.5 and Chess databases at different minWS and
maxDist values, respectively. The following observations
can be drawn from these two figures : (i) increase inminWS

results in the decrease of memory as relatively less number
of WFNIs get generated and (ii) increase inmaxDist results
in increase of memory required to find WFNIs. It is because
a large number of WFNIs get generated at higher maxDist
values.

Figs. 7a, 7b, 7c and 7d show the runtime requirements of
SWFP-growth algorithm on T10I4D100K, Retail, PM2.5 and
Chess databases at different minWS and maxDist values,
respectively. The following observations can be drawn from
these two figures : (i) increase in minWS results in a de-
crease of runtime as fewer WFNIs are getting generated and
(ii) increase in maxDist results in the increase of runtime.

C. SCALABILITY TEST OF SWFP-GROWTH

We study the scalability of proposed algorithm on exe-
cution time and required memory by varying the size of
T10I4D100K database. We concatenated the T10I4D100K
database ten times to produce a very large database, which
we call as T10I4D1000K database. Next, we divided this
database into five portions of 0.2 million transactions in each
part. Then we investigated the performance of our algorithm
after accumulating each portion with previous parts while
finding SWFIs each time. To find same itemsets as SWFIs
with the increase in database sizes, theminWS was doubled
to reflect the database size. TheminWS for the first database
was set at 40,000.

Fig. 8a and 8b respectively show the memory and runtime
requirements of SWFP-growth algorithm on T10I4D100K
database. It is clear from the graphs that as the database
size increases, the memory and runtime requirements of
our algorithm increase. However, SWFP-growth has stable
performance of about linear increase of runtime and memory
consumption with respect to the data size. Thus, SWFP-
growth can mine SWFIs over large databases and distinct
items with considerable amount of runtime and memory.
(We can conduct the above experiment by directly generating
T10I4D1000K database using the synthetic database genera-
tor. However, such generated results may be misleading as
the number of generated itemsets can vary with the database
size. In our scaled database, the number of patterns remain
the same irrespective of the database size.)

D. A CASE STUDY: IDENTIFYING HIGHLY POLLUTED
PM2.5 REGIONS IN JAPAN

Table 5 shows the WFNIs generated in the PM2.5 database
at maxDist = 5 kilometers and minWS = 10, 000µg/m3.
The spatial location of all these stations in the entire Japan are
shown in Fig. 9. The spatial location of the sensors present in
each Weighted Frequent Neighborhood Itemsets are shown in
Fig. 10 11 12 and 13. These itemsets in these figures indicate
the geographical areas where people have been exposed to
high levels of PM2.5 pollutant. It can be observed that high
levels of PM2.5 have been observed at the places close to the
bay areas (or harbors). This information can be found very
useful in devising policies to control pollution at bay areas.

10 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

0 20 40 60 80 100
0

20

40

60

80

100

X-axis

Y
-a

xi
s

(a) T10I4D100K (b) Retail (c) PM2.5

0 5 10 15 20
0

5

10

15

20

X-axis

Y
-a

xi
s

(d) Chess

FIGURE 4: Spatial visualization of items in various databases

3,000 4,000 5,000 6,000 7,000

1,000

1,500

2,000

minWS

SW
FI

s

maxDist = 3
maxDist = 5
maxDist = 7

(a) T10I4D100K

1,000 2,000 3,000 4,000 5,000

4,000

6,000

8,000

10,000

minWS

SW
FI

s

maxDist = 1
maxDist = 5
maxDist = 11

(b) Retail

10,000 20,000 30,000 40,000 50,000

500

1,000

1,500

2,000

2,500

3,000

minWS

SW
FI

s

maxDist = 3
maxDist = 4
maxDist = 5

(c) PM2.5

3,000 4,000 5,000 6,000 7,000

0

2,000

4,000

6,000

minWS

SW
FI

s

maxDist = 1
maxDist = 3
maxDist = 5

(d) Chess

FIGURE 5: WFNIs generated by SWFP-growth algorithm at different minWS and maxDist values in various databases

3,000 4,000 5,000 6,000 7,000

400

450

500

550

minWS

M
em

or
y

maxDist = 3
maxDist = 5
maxDist = 7

(a) T10I4D100K

1,000 2,000 3,000 4,000 5,000

500

600

700

minWS

M
em

or
y

maxDist = 1
maxDist = 5
maxDist = 11

(b) Retail

10,000 20,000 30,000 40,000 50,000

600

650

700

750

800

minWS

M
em

or
y

maxDist = 3
maxDist = 4
maxDist = 5

(c) PM2.5

3,000 4,000 5,000 6,000 7,000

220

230

240

minWS

M
em

or
y

maxDist = 3
maxDist = 5
maxDist = 7

(d) Chess

FIGURE 6: Memory requirements of SWFP-growth in various databases at different minWS and MaxDist values

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a flexible model of spa-
tial weighted frequent itemset that exist in a spatiotemporal
database. Two novel measures have been introduced to re-
duce the search space effectively. A pattern-growth algorithm
has also been presented to find all desired itemsets in a
spatiotemporal database. Experimental results demonstrate
that the proposed algorithm is efficient. Finally, we have also
demonstrated the usefulness of the proposed model with a
real-world case study on air pollution data.

In this paper, we have studied the problem of finding
SWFIs by taking into account positive weights for the items
in a spatiotemporal database. As a part of future work, we
would like to investigate finding SWFIs in a spatiotemporal
database using both positive and negative weights for the
items. Additionally, we would like to investigate disk-based
and parallel algorithms to find SWFIs.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
pp. 207–216, 1993.

[2] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
pp. 487–499, 1994.

[3] H. Cheng and J. Han, “Pattern-growth methods,” in Encyclopedia of
Database Systems, Second Edition, 2018.

[4] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer Publishing
Company, Incorporated, 2014.

[5] G. M. Weiss, “Mining with rarity: a unifying framework.,” SIGKDD
Explorations, vol. 6, no. 1, pp. 7–19, 2004.

[6] B. Liu, W. Hsu, and Y. Ma, “Mining association rules with multiple min-
imum supports,” in Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 337–341, ACM,
1999.

[7] R. U. Kiran and P. K. Reddy, “Novel techniques to reduce search space in
multiple minimum supports-based frequent pattern mining algorithms,” in
Proceedings of the 14th International Conference on Extending Database
Technology, EDBT/ICDT ’11, pp. 11–20, 2011.

[8] C. H. Cai, A. W.-C. Fu, C. Cheng, and W. Kwong, “Mining association
rules with weighted items,” in Database Engineering and Applications

VOLUME 4, 2016 11

Uday et al. et al.: IEEE ACCESS

3,000 4,000 5,000 6,000 7,000

6

8

10

12

14

minWS

R
un

tim
e(

se
co

nd
s)

maxDist = 3
maxDist = 5
maxDist = 7

(a) T10I4D100K

1,000 2,000 3,000 4,000 5,000

20

40

60

80

minWS
R

un
tim

e(
se

co
nd

s)

maxDist = 1
maxDist = 5
maxDist = 11

(b) Retail

10,000 20,000 30,000 40,000 50,000

10

20

30

40

50

minWS

R
un

tim
e(

se
co

nd
s)

maxDist = 3
maxDist = 4
maxDist = 5

(c) PM2.5

3,000 4,000 5,000 6,000 7,000

0

5

10

15

20

minWS

R
un

tim
e(

se
co

nd
s)

maxDist = 3
maxDist = 5
maxDist = 7

(d) Chess

FIGURE 7: Runtime requirements of SWFP-growth in various databases at different minWS and MaxDist values

2 4 6 8

300

400

500

600

700

800

size (in 100K)

M
em

or
y(

M
B

)

SWFP − growth

(a) Memory

2 4 6 8

10

20

30

40

size (in 100K)

R
un

tim
e(

se
c)

SWFP − growth

(b) Runtime

FIGURE 8: Scalability of SWFP-growth

FIGURE 9: Spatial location of sensors that have recorded
high levels of PM2.5 values in Japan

Symposium, 1998. Proceedings. IDEAS’98. International, pp. 68–77,
IEEE, 1998.

[9] J.-H. Cai, X.-J. Zhao, S.-W. Sun, J.-F. Zhang, and H.-F. Yang, “Stellar
spectra association rule mining method based on the weighted frequent
pattern tree,” Research in Astronomy and Astrophysics, vol. 13, no. 3,
p. 334, 2013.

[10] R. U. Kiran, A. Kotni, P. K. Reddy, M. Toyoda, S. Bhalla, and M. Kit-
suregawa, “Efficient discovery of weighted frequent itemsets in very large
transactional databases: A re-visit,” in IEEE BigData, pp. 723–732, 2018.

[11] Q. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørvåg, and T. Dam,
“Efficient high utility itemset mining using buffered utility-lists,” Appl.
Intell., vol. 48, no. 7, pp. 1859–1877, 2018.

[12] R. U. Kiran, T. Y. Reddy, P. Fournier-Viger, M. Toyoda, P. K. Reddy, and
M. Kitsuregawa, “Efficiently finding high utility-frequent itemsets using
cutoff and suffix utility,” in Advances in Knowledge Discovery and Data
Mining - 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China,
April 14-17, 2019, Proceedings, Part II, pp. 191–203, 2019.

[13] H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach to mining

FIGURE 10: Spatial location of sensors that have recorded
high levels of PM2.5 values in Sapporo

FIGURE 11: Spatial location of sensors that have recorded
high levels of PM2.5 values in Tokyo

itemset utilities from databases,” in SIAM, pp. 482–486, 2004.
[14] K. Z. M. T. M. K. P. K. R. P. P. C. Reddy, R. Uday Kiran, “Wfim: weighted

frequent itemset mining with a weight range and a minimum weight,” in
To be appeared in ICDM 2019 UDML workshop, 2019.

[15] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 12, no. 3, pp. 372–390,
2000.

[16] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data mining and
knowledge discovery, vol. 8, no. 1, pp. 53–87, 2004.

FIGURE 12: Spatial location of sensors that have recorded
high levels of PM2.5 values in Osaka

12 VOLUME 4, 2016

Uday et al. et al.: IEEE ACCESS

FIGURE 13: Spatial location of sensors that have located
high levels of PM2.5 values in Okayama

[17] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data Mining and Knowledge Discovery,
vol. 15, pp. 55–86, Aug 2007.

[18] U. Yun and J. J. Leggett, “Wfim: weighted frequent itemset mining with a
weight range and a minimum weight,” in Proceedings of the 2005 SIAM
International Conference on Data Mining, pp. 636–640, SIAM, 2005.

[19] F. Tao, F. Murtagh, and M. Farid, “Weighted association rule mining using
weighted support and significance framework,” in Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 661–666, ACM, 2003.

[20] B. Vo, F. Coenen, and B. Le, “A new method for mining frequent weighted
itemsets based on wit-trees,” Expert Systems with Applications, vol. 40,
no. 4, pp. 1256–1264, 2013.

[21] J. C.-W. Lin, W. Gan, P. Fournier-Viger, H.-C. Chao, and T.-P. Hong, “Ef-
ficiently mining frequent itemsets with weight and recency constraints,”
Applied Intelligence, pp. 1–24, 2017.

[22] J. C.-W. Lin, W. Gan, P. Fournier-Viger, T.-P. Hong, and V. S. Tseng,
“Weighted frequent itemset mining over uncertain databases,” Applied
Intelligence, vol. 44, no. 1, pp. 232–250, 2016.

[23] C. Ahmed, S. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Mining weighted
frequent patterns using adaptive weights,” Intelligent Data Engineering
and Automated Learning–IDEAL 2008, pp. 258–265, 2008.

[24] W. Gan, J. C. Lin, P. Fournier-Viger, H. Chao, T. Hong, and H. Fujita, “A
survey of incremental high-utility itemset mining,” Wiley Interdiscip. Rev.
Data Min. Knowl. Discov., vol. 8, no. 2, 2018.

[25] C. Zhang, G. Almpanidis, W. Wang, and C. Liu, “An empirical evaluation
of high utility itemset mining algorithms,” Expert Syst. Appl., vol. 101,
pp. 91–115, 2018.

[26] R. U. Kiran, K. Zettsu, M. Toyoda, P. Fournier-Viger, P. K. Reddy, and
M. Kitsuregawa, “Discovering spatial high utility itemsets in spatiotem-
poral databases,” in Proceedings of the 31st International Conference on
Scientific and Statistical Database Management, SSDBM ’19, pp. 49–60,
2019.

[27] W. Ding, C. F. Eick, J. Wang, and X. Yuan, “A framework for regional
association rule mining in spatial datasets,” in Proceedings of the Sixth
International Conference on Data Mining, ICDM ’06, pp. 851–856, 2006.

[28] C. F. Eick, R. Parmar, W. Ding, T. F. Stepinski, and J.-P. Nicot, “Finding
regional co-location patterns for sets of continuous variables in spatial
datasets,” in Proceedings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, GIS ’08,
pp. 30:1–30:10, 2008.

[29] P. Mohan, S. Shekhar, J. A. Shine, J. P. Rogers, Z. Jiang, and N. Wayant,
“A neighborhood graph based approach to regional co-location pattern
discovery: A summary of results,” in Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems, GIS ’11, pp. 122–132, 2011.

[30] H. Tran-The and K. Zettsu, “Discovering co-occurrence patterns of hetero-
geneous events from unevenly-distributed spatiotemporal data,” in 2017
IEEE International Conference on Big Data, BigData 2017, Boston, MA,
USA, December 11-14, 2017, pp. 1006–1011, 2017.

[31] R. U. Kiran, A. Kotni, P. K. Reddy, M. Toyoda, S. Bhalla, and M. Kit-
suregawa, “Efficient discovery of weighted frequent itemsets in very large
transactional databases: A re-visit,” in IEEE Big Data, pp. 723–732, 2018.

[32] J. Pei and J. Han, “Can we push more constraints into frequent pattern
mining?,” in KDD, pp. 350–354, ACM, 2000.

R. UDAY KIRAN holds the position of Project
Assistant Professor at the Kitsuregawa lab, In-
stitute of Industrial Science, The University of
Tokyo, Tokyo, Japan. Additionally, he holds the
position of Researcher at the Social Big Data
Research Collaboration Center, National Institute
of Information and Communications Technology,
Tokyo, Japan. He received his PhD degree in com-
puter science from International Institute of Infor-
mation Technology, Hyderabad, Telangana, India.

His current research interests include data mining, parallel computation,
air pollution data analytics, traffic congestion data analytics, recommender
systems and ICTs for Agriculture. He has published over 50 papers in refer-
eed journals and international conferences, such as International Conference
on Extending Database Technology (EDBT), International Conference on
Scientific and Statistical Database Management (SSDBM), The Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), Database
Systems for Advanced Applications (DASFAA), International Conference
on Database and Expert Systems Applications (DEXA), International Jour-
nal of Computational Science and Engineering (IJCSE), Journal of Intelli-
gent Information Systems (JIIS), and Journal of Systems and Software (JSS).

P. P. C. REDDY is pursuing his dual degree
(B.Tech. and M.S.) in Computer science from
International Institute of Information Technology,
Hyderabad.

KOJI ZETTSU is a Director General of Big Data
Integration Research Center of National Institute
of Information and Communications Technology
(NICT). He has been doing research and develop-
ment of data analytics technology in NICT, and
now leading Real Space Information Analytics
Project since 2016 to implement smart data plat-
form based on data mining and AI. For promot-
ing industry-academia-government collaboration
on the platform, he is also a leader of Cross-

Data Collaboration Project of Smart IoT Acceleration Forum in Japan.
He received Ph.D. in Informatics from Kyoto University in 2005. His
research interests are database systems, data mining, information retrieval
and software engineering. He has serviced on numerous academic societies,
conference committees and working groups.

MASASHI TOYODA is a professor of Institute of
Industrial Science jointly affiliated with the Grad-
uate School of Information Science and Technol-
ogy at the University of Tokyo, Japan. He received
the BS, the MS, and the PhD degrees in computer
science from the Tokyo Institute of Technology,
Japan, in 1994, 1996, and 1999, respectively. In
1999, he joined the Institute of Industrial Science,
the University of Tokyo as a research fellow, and
worked as a specially appointed associate profes-

sor from 2004 to 2006, and as an associate professor from 2006 to 2018. His
research interests include archiving and analysis of Web, social media, and
IoT data, information visualization, visual analytics, and user interface.

VOLUME 4, 2016 13

Uday et al. et al.: IEEE ACCESS

P. KRISHNA REDDY is a faculty member at
IIIT Hyderabad. He is the head of Agricultural
Research Center and the member of Data Sciences
and Analytics Center research team at IIIT Hyder-
abad, India. During 2013 to 2015, he has served
as a Program Director, ITRA-Agriculture and
Food, Information Technology Research Academy
(ITRA), Government of India. From 1997 to 2002,
he was a research associate at the Center for Con-
ceptual Information Processing Research, Institute

of Industrial Science, University of Tokyo. From 1994 to 1996, he was a
faculty member at the Division of Computer Engineering, Netaji Subhas
Institute of Technology, Delhi. During the summer of 2003, he was a
visiting researcher at Institute for Software Research International, School
of Computer Science, Carnegie Mellon University, Pittsburg, USA. He
has received both M.Tech and Ph.D degrees in computer science from
Jawaharlal Nehru University, New Delhi in 1991 and 1994, respectively. His
research areas include data mining, database systems and IT for agriculture.
He has published about 157 refereed research papers which include 22
journal papers, three book chapters, and six edited books. He is a steer-
ing committee member of the pacific-asia knowledge discovery and data
mining (PAKDD) conference series and Database Systems for Advanced
Applications (DASFAA) conference series. He is a steering committee
chair of Big Data Analytics (BDA) conference series since 2017. He was
a proceedings chair of COMAD 2008, a workshop chair of KDRS 2010,
media and publicity chair of KDD 2015, and general chair of BDA2017. He
has organized the 14th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD2010), the Third National Conference on Agro-
Informatics and Precision Agriculture 2012 (AIPA 2012) and the Fifth Inter-
national Conference on Big Data Analytics (BDA 2017). He has delivered
several invited/panel talks at the reputed conferences and workshops in India
and abroad. He has got several awards and recognitions. He has executed
research projects by raising the research funding of about 80 million Indian
rupees. Since 2004, he has been investigating the building efficient knowl-
edge agricultural knowledge transfer systems by extending developments in
IT. He has developed eSagu system, which is an IT-based farm-specific agro-
advisory system, which has been field-tested in hundreds of villages on about
50 field and horticultural crops. He has also built eAgromet system, which is
an IT-based agro-meteorological advisory system to provide risk mitigation
information to farmers. He has conceptualized the notion of Virtual Crop
Labs to improve applied skills for extension professionals. Currently, he is
investigating the building of Crop Darpan system, which is a crop diagnostic
tool for farmers, with the funding support from India-Japan Joint Research
Laboratory Program. He has received two best paper awards. The eSagu
system, which is an IT based farm-specific agro-advisory system, has got
several recognitions including CSI-Nihilent e-Governance Project Award
in 2006, Manthan Award in 2008 and finalist in the Stockholm Challenge
Award 2008.

MASARU KITSUREGAWA is Director General
of National Institute of Informatics and Professor
at Institute of Industrial Science, the University of
Tokyo. Received Ph.D. degree from the University
of Tokyo in 1983. Served in various positions such
as President of Information Processing Society of
Japan (2013–2015) and Chairman of Committee
for Informatics, Science Council of Japan (2014-
2016). He has wide research interests, especially
in database engineering. He has received many

awards including ACM SIGMOD E. F. Codd Innovations Award, IEICE
Achievement Award, IPSJ Contribution Award, 21st Century Invention
Award of National Commendation for Invention, Japan and C and C Prize.
In 2013, he awarded Medal with Purple Ribbon and in 2016, the Chevalier
de la Legion D’Honneur. He is a fellow of ACM, IEEE, IEICE and IPSJ.

14 VOLUME 4, 2016

	Introduction
	Related Work
	Frequent itemset mining
	Weighted itemset mining
	High utility itemset mining
	Spatial co-occurrence itemset mining

	Proposed Model
	Neighborhood itemset
	Weighted frequent neighborhood itemset
	A small discussion.

	Proposed Algorithm
	Basic idea
	Optimized estimated weighted sum
	Cumulative neighborhood weighted sum

	SWFP-growth
	Structure of SWFP-tree
	Finding candidate items
	Construction of SWFP-tree
	Recursive mining of SWFP-tree
	Generating all WFNIs from candidate itemsets

	Experimental Results
	Experimental setup
	Evaluation of SWFP-growth at various minWS values
	Scalability test of SWFP-growth
	A case study: identifying highly polluted PM2.5 regions in Japan

	Conclusions and Future Work
	REFERENCES
	R. Uday Kiran
	P. P. C. Reddy
	Koji Zettsu
	Masashi Toyoda
	P. Krishna Reddy
	Masaru Kitsuregawa

