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Abstract. Energy efficiency in analytical database systems is becoming
increasingly important because of the rapid growth in energy consumed
by data centers driven by the recent big data boom. Previous studies
showed that processor speed scaling has the potential to improve energy
efficiency of analytical queries. These results, however, were obtained
from measurement of specific queries. The power–performance character-
istics of processor speed scaling specific to analytical database systems
still remains unexplored despite their importance in energy efficient ana-
lytical query processing. We tackle this problem by modeling the energy
costs of analytical queries with processor speed scaling based on query
processing throughput. Our experimental evaluation shows that our en-
ergy model can be fitted within an error of 1.65 % and can be used to
identify power–performance characteristics of analytical queries.

1 Introduction

Energy management is a primary concern in current data centers. The consump-
tion of energy in data centers has been rapidly growing and is forecasted to reach
8 % of worldwide energy production by 2020 [1]. Because the rate of worldwide
data generation is increasing rapidly [2], an increasing amount of IT resources,
e.g., servers and storage systems, have been installed in data centers to develop
large-scale data analytics platforms. Therefore, energy efficiency in analytical
database systems—the key component of the platforms—is becoming a serious
concern.

Processor speed scaling, also referred to as Dynamic Voltage and Frequency
Scaling (DVFS), is a well-known power–performance tuning knob. Prior stud-
ies of processor speed scaling adopted a measurement-based approach for inves-
tigating its power–performance characteristics in analytical database systems.
Tsirogiannis et al. [3] analyzed power–performance profiles among various hard-
ware configurations and reported that the higher operating frequency resulted
in the better energy efficiency. In contrast, Götz et al. [4] demonstrated that the
most energy-efficient operating frequency was not always the highest one and
largely varied depending on workload characteristics. While these measurement-
based studies provided practical insights about the power–performance char-
acteristics of processor speed scaling in analytical database systems and the



guidelines on energy management specific to the measured queries, they cannot
be applied to a wide spectrum of analytical queries.

Herein, we tackle a model-based approach to investigating the power–performance
characteristics of processor speed scaling for analytical query processing. In this
paper, we focus on modeling an energy cost of analytical queries comprising
sequential scans as basic building blocks, which has not been studied in the lit-
erature as far as we know. The presented model enables us to quantitatively
analyze the effect of processor speed scaling on power–performance characteris-
tics of a wide range spectrum of analytical queries.

2 Analytical Database Systems with Processor Speed
Scaling

Processor Speed Scaling. For improving energy efficiency in analytical database
systems, processor speed scaling, also referred to as DVFS, is a well-known tun-
ing knob for runtime energy management adaptive to workload shifts. Usually, a
processor defines available frequency levels and preset voltage levels for each fre-
quency level like Intel SpeedStep Technology in Intel Xeon processors [5], thus an
operating system or an application program can manage the processor power con-
sumption of processor cores through this interface. Some studies have reported
that processor speed scaling can potentially improve the energy efficiency of an-
alytical query processing [3,4,6,7]; however the power–performance characteris-
tics of processor speed scaling in analytical databases are still largely unexplored
mainly because their measurement-based approaches on specific queries.

Energy Saving Opportunity for Analytical Database System. Because
energy efficiency is defined as query processing throughput per power consump-
tion, the key problem is correctly quantifying the balance between these two
metrics. When a query is compute intensive and query processing throughput is
restricted by processor performance, query processing throughput and processor
power consumption cased by query processing are approximately proportional
to the operating frequency of the processor. Because power is also consumed
by other components and peripherals, energy efficiency is considered higher for
higher operating frequencies. Conversely, when query processing throughput is
restricted by other factors, e.g., storage I/O, there are potential ways for re-
ducing power consumption with little impact on performance. As sequential I/O
patterns are known to account for the bulk of analytical query I/O workloads [8],
instruction execution in the processor can be easily overlapped with I/O oper-
ations using common I/O read-ahead techniques. In this scenario, as long as
processor computing throughput is higher than I/O throughput, lowering the
operating frequency should not result in performance penalty and may possibly
improve energy efficiency. To the best of our knowledge, these opportunities for
energy efficiency improvement in analytical database system have mentioned [9]
in previous studies but have not been quantitatively modeled.



3 Throughput-Based Energy Cost Formulation

We take a model-based approach to identify the power–performance character-
istics of processor speed scaling on analytical database server comprising pro-
cessors, storage devices, memory modules, and other peripherals, e.g., a mother-
board, cooling fans, and power supply unit. By modeling the power–performance
characteristics, we can identify the behavior of power consumption and per-
formance over operating frequencies and voltages of a processor. We focus on
single query execution and analytical queries comprising sequential scans as ba-
sic building blocks as a first step toward understanding the power–performance
characteristics of a vast variety of analytical workloads.

We adopt the pipeline model for energy cost modeling as it is the general
concept in database systems and used in the literature [9, 10]. For query ex-
ecution, database system generates a query execution plan comprising a tree
structure whose nodes are database operators. By grouping database operators
which can be concurrently executed as a single pipeline, one or more subtrees are
formed and we refer to these subtrees as basic execution blocks. The workload is
steady and the fluctuate of the system power consumption is relatively small in
a single basic execution block, thus we formulate an energy cost model at this
granularity.

For basic execution blocks comprising sequential scan and join operators, the
throughput θ (tuples per unit time) of a basic execution block can be limited
either by the computational throughput θCPU of the processor, which is gener-
ally proportional to the operating frequency f of the processor, or by the I/O
throughput θIO of the storage. Hence, θ can be expressed as follows:

θ = min
(
θCPU, θIO)

, θCPU = af

where a is a coefficient that depends on the characteristics of the given processor
and workload. Given that N is the number of tuples processed in a basic execu-
tion block, the execution time T of the basic execution block can be calculated
as follows:

T = N/θ = N/ min
(
af, θIO)

(1)

θ is limited by θCPU and T is inversely proportional to f when f < θIO/a,
whereas T is independent of f when f > θIO/a. f = θIO/a is the balance point
between processor and storage throughput and we refer to this frequency as the
boundary frequency.

Let us now consider power consumption of the system. We assume that power
consumption of the active processor cores and storage devices stays steady within
a single basic execution block and power consumption of other components of the
server stays constant regardless of the types of basic execution blocks 1. Fan et
al. [11] suggested a nonlinear model of processor power consumption of analytical
1 Although this assumption does not always hold on realistic environments, modeling

power consumption as a time-varying function and considering variation of power
consumption of other components are beyond the scope of this paper.



workload as function of CPU utilization, therefore, we adopt this model. In this
model, the difference in power consumption from the idle state ∆P CPU can be
expressed as ∆P CPU ∝ 2u − ur (1 ≤ r). On the assumption that u is solely
determined based on θ, then u can be expressed as u = θ/θCPU. It is known
that the higher the operating frequency f , the higher the operating voltage V
required for stable operation [12]. Although the actual relationship between f
and V depends on processor implementations, we assume that V (f) is a stepwise
function of f following common implementations. Consequently, P CPU can be
expressed as follows:

P CPU =
{

AfV 2 + Bf + C(V − Vidle)
}

(2u − ur) + P CPU
idle (2)

where A, B, C are coefficients and Vidle, P CPU
idle represent the voltage and power

dissipation during the idle state, respectively. In the curly brackets, each term
corresponds to transition power dissipation, short-circuit power dissipation and
leakage power dissipation.

Next, we assume that storage power consumption P IO is proportional to the
utilization of disk. P IO can be expressed as follows:

P IO = Dθ/θIO + P IO
idle

where D is the amount of increase in power under the maximum utilization of
disk and P IO

idle is power dissipation during the idle state.
Finally, we assume that power consumption of other components (P others)

is constant. Thus, the total power consumption of system P is calculated as
follows:

P = P CPU + P IO + P others

Because energy consumption E is the product of power consumption P and
execution time T , E can be expressed as follows:

E = PT =
(
P CPU + P IO + P others) T

= N

[
AfV 2 + Bf + C(V − Vidle)

θ
(2u − ur) + D

θIO + P CPU
idle + P IO

idle + P others

θ

]
Let us now consider the operating frequency fopt that minimizes energy con-

sumption. The value of fopt depends on where throughput-determining factor is.
We assume that the processor has n levels of operating frequencies ({f1, · · · , fn},
fi < fi+1) and there are m rising edges of V (f) ({fs1 , · · · , fsm}) such that
V (fsj

) > V (fsj−1). When throughput θ is limited by storage (f > θIO/a),
E monotonically increases with f . When throughput θ is limited by processor
(f < θIO/a), if there exists no rising edges in V (f), E monotonically decreases
with f . If not, E increases by the increase of V (f) at a rising edge fsj

and might
take a local minimum value at fsj−1. Therefore, fopt can be categorized into
three cases and determined through the proposed model:
(a) the minimum frequency f1, when fi > θIO/a (i = {1, · · · , n})
(b) the boundary frequency fb or fsj−1 (sj < b), when there exists fb that

satisfies fb > θIO/a (1 < b ≤ n) and fk < θIO/a (k = {1, · · · , b − 1})
(c) the maximum frequency fn or fsj−1, when fi < θIO/a (i = {1, · · · , n})



4 Experimental Evaluation

Experimental Environment. We used HP Z440 Workstation as the server,
equipped with Intel Xeon E5-1603 v4, 8GB memory, Seagate BarraCuda (3.5 inch,
2TB, 7200rpm). The operating frequency ranged from 1.2 to 1.9 GHz and from
2.1 to 2.8 GHz in 0.1 GHz steps (f = {f1, · · · , f16}). Power consumed by the
whole server system was recorded at 20 Hz sampling using Yokogawa WT1800.
We used Linux 3.10.0 as kernel, PostgreSQL 9.6.3 as DBMS and the TPC-H
dataset with a scale factor of 100. We observed the system had a jump in power
consumption at 2.8 GHz in micro-benchmark as preliminary experiment, thus the
CPU operating voltage in our system was assumed to be V1 when f ≤ 2.7 GHz
and V2 when f = 2.8 GHz.

Query. Using the TPC-H dataset, we defined evaluation queries based on full
table scan. These queries are named as queries A, B and C.

– Query A: σ(LINEITEM) with five aggregate expressions and two grouping
variables.

– Query B: σ(LINEITEM) with an aggregate expression.
– Query C: σ(σ(ORDERS) \ LINEITEM)

We confirmed that full table scan was used for the execution plan of queries A
and B. Additionally, full table scan and hash join were used for query C. The
execution plans of both query A and B consisted of one basic execution block.
The execution plan of query C consisted of two basic execution blocks because
it performed hash join and we refer to them as C(1) and C(2).

Parameter Calibration. We measured the execution time and power con-
sumption of queries A, B, and C for each operating frequency and then calibrated
the parameters of each basic execution block in following steps: (i) obtained val-
ues of N for each basic execution block from the estimation of PostgreSQL query
planner, (ii) calibrated the parameters which are not specific to basic execution
blocks, and (iii) calibrated basic-execution-block-specific parameters.

Result. Fig. 1 shows power-performance curves of each basic execution block
(the result of query C(2) has omitted by the limitation of space). We can find the
slope of the power consumption graph differed among the range of frequencies.
In particular, the slope was smaller in the IO-bound condition in comparison
with the CPU-bound condition. CPU utilization (u) was inversely proportional
to operating frequency (f) when operation was IO-bound; hence, the effect of the
increase in power consumption because of the increase in the operating frequency
in Eq. (2) was nullified.

With regard to the frequency fopt that minimized energy consumption, it was
estimated to be 2.7 GHz for query A, while the actual minimum energy point was
2.8 GHz. The minimum energy point of queries B were 2.1 GHz by the model,
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Fig. 1: Power–performance characteristics of processor speed scaling: measured
(with blue circle) and modeled (with red line)

whereas they were 2.2 GHz in the actual measurement. One possible cause of
these discrepancies was a factor influencing execution time which the proposed
model was unable to capture; however this requires further investigation. The
increase in energy consumption because of these misestimation was 0.1 % for
query A, 0.4 % for query B; however that for query C was 1.2 %.

Overall, the measured results and the graph described by the fitted model
almost agreed with each other in terms of execution time, power consumption,
and energy consumption. The error in energy consumption between the measured
value and the model-fitted value was within 1.65 %. These results confirmed the
effectiveness of the presented model.

5 Related Work

Processor speed scaling, also referred to as DVFS, is a common method for ad-
justing power and performance by switching the operating frequency and voltage
of the processor. The basic approach of DVFS energy-saving policies is lowering
the operating frequency at low CPU utilization to reduce power consumption
with small performance penalty, as the general method taken by OS. In the
context of transaction processing workload, there are studies about application-
aware control of processor speed scaling by constructing power model [13,14] or
SLA-based control mechanism [14,15].

For analytical query processing, the energy efficiency of hardware configura-
tions have been comprehensively investigated in the late 2000s [16,17]. Recently,



there have been several studies on energy-aware query optimization techniques
and frameworks [18–20]. With regard to energy management with processor
speed scaling, conventional approaches were measurement-based. Tsirogiannis
et al. [3] extensively measured the energy efficiency of processor configurations
with various types of analytical queries, analyzed the power–performance pro-
files, and concluded that the highest frequency tended to be the most energy
efficient. Contrary to their study, Götz et al. [4] reported that the best frequency
varied based on query workloads and proposed a technique for calibrating fre-
quency with workload recording and query benchmarking. Manousakis et al. [7]
proposed a feedback DVFS controller using real-time power sensor measure-
ment values. In contrast to these studies, we adopted a model-based approach
to formulate the power–performance characteristics of analytical query process-
ing with processor speed scaling.

6 Conclusion

In this paper, we took a model-based approach to identifying power–performance
characteristics of processor speed scaling for analytical query processing. We
presented throughput-based formulation of an energy cost model. The presented
model enabled us to quantitatively analyze the effectiveness of processor speed
scaling for analytical queries comprising sequential scans as basic building blocks.
The experimental evaluation showed that the energy model agreed with obser-
vations within an error of 1.65 %.

As part of our future research, we plan to expand our model to workloads
with index table scan or sorting and to examine the effectiveness of the proposed
model on various hardware configurations.

References

1. Chalise, S., Golshani, A., Awasthi, S.R., Ma, S., Shrestha, B.R., Bajracharya, L.,
Tonkoski, R.: Data Center Energy Systems: Current Technology and Future Di-
rection . In: PES GM ’15. (July 2015)

2. Reinsel, D., Gantz, J., Rydning, J.: Data Age 2025: The Evolution of Data to
Life-Critical. Issue paper (April 2017)

3. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the Energy Efficiency
of a Database Server. In: SIGMOD ’10. (June 2010) 231–242

4. Götz, S., Ilsche, T., Cardoso, J., Spillner, J., Kissinger, T., Aßmann, U., Lehner,
W., Nagel, W.E., Schill, A.: Energy-Efficient Databases Using Sweet Spot Fre-
quencies. In: UCC ’14. (February 2014) 871–876

5. Intel: Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor.
White paper (March 2004)

6. Lang, W., Patel, J.: Towards Eco-friendly Database Management Systems. In:
CIDR ’09. Volume cs.DB. (2009)

7. Manousakis, I., Marazakis, M., Bilas, A.: FDIO: A Feedback Driven Controller for
Minimizing Energy in I/O-Intensive Applications. HotStorage ’13 (June 2013)



8. Yu, P.S., Chen, M.S., Heiss, H.U., Lee, S.: On Workload Characterization of Rela-
tional Database Environments. IEEE Transactions on Software Engineering 18(4)
(April 1992) 347–355

9. Roukh, A., Bellatreche, L.: Eco-Processing of OLAP Complex Queries. In: Big
Data Analytics and Knowledge Discovery. Springer, Cham, Cham (2015) 229–242

10. Kunjir, M., Birwa, P.K., Haritsa, J.R.: Peak Power Plays in Database Engines. In:
EDBT ’12. (March 2012) 444–455

11. Fan, X., Weber, W.D., Barroso, L.A.: Power Provisioning for a Warehouse-sized
Computer. In: ISCA ’07. (June 2007)

12. Flynn, M.J., Hung, P.: Microprocessor Design Issues: Thoughts on the Road Ahead.
IEEE Micro 25(3) (July 2005) 16–31

13. Korkmaz, M., Karsten, M., Salem, K.: Towards dynamic green-sizing for database
servers

14. Xu, Z., Wang, X., Tu, Y.C.: Power-aware throughput control for database man-
agement systems. 315–324

15. Hayamizu, Y., Goda, K., Nakano, M., Kitsuregawa, M.: Application-Aware Power
Saving for Online Transaction Processing Using Dynamic Voltage and Frequency
Scaling in a Multicore Environment. In: ARCS ’11. (February 2011) 50–61

16. Meza, J., Shah, M.A., Ranganathan, P., Fitzner, M., Veazey, J.: Tracking the
Power in an Enterprise Decision Support System. In: ISLPED ’09. (August 2009)
261–266

17. Poess, M., Nambiar, R.O.: Tuning Servers, Storage and Database for Energy
Efficient Data Warehouses. In: ICDE ’10. (March 2010) 1006–1017

18. Xu, Z., Tu, Y.C., Wang, X.: PET: Reducing Database Energy Cost via Query
Optimization. VLDB 5(12) (August 2012) 1954–1957

19. Roukh, A., Bellatreche, L., Ordonez, C.: EnerQuery: Energy-Aware Query Pro-
cessing. In: CIKM ’16. (October 2016) 2465–2468

20. Tu, Y.C., Wang, X., Zeng, B., Xu, Z.: A System for Energy-Efficient Data Man-
agement. ACM SIGMOD Record 43(1) (May 2014) 21–26


	Modeling Query Energy Costs in Analytical Database Systems with Processor Speed Scaling

