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SUMMARY

Advances in the Internet and the computer industry have created many new application areas for network
routing such as Grid computing and also brings new challenges to traditional routing techniques. In this
paper we propose a mobile agent-based routing model in vulnerable networks for these applications.
To characterize the behaviors of mobile agents and their effects on the network performance, we analyze
the population distribution of mobile agents as a measurement of the computational resource consumption.
Our analysis reveals theoretical insights into the statistical behaviors of mobile agents and provides useful
tools for effectively managing mobile agents in large networks. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Routing is a key factor for network management. It is the process of moving a packet from the
source node to the destination node over the network, which can be broadly classified into two
activities, i.e. path determination and packet transmission. Although packet transmission is relatively
straightforward, optimal path determination can be very complex. In this paper, we address the problem
of path determination.

In a large, constantly changing network, routers communicate with each other and maintain
their routing tables through the transmission of a variety of routing messages. The existing routing
algorithms can be mainly categorized into two kinds, namely link state algorithms (also known as open
shortest path first algorithms) and distance vector algorithm (also know as Bellman–Ford algorithms).
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Both types of algorithm use flooding as the main method of message transmission [1]. Link state
algorithms flood routing information to all nodes in the network to build a picture of the entire
network in each node’s routing table, while distance vector algorithms call for each node to send
updating information to its neighborhood such that each node knows information about their neighbors.
The continuous updating of the routing tables on each node consumes a large portion of the scarce
network computational resource when exchanging large amounts of routing table data. This reduces
the available capacity of the network for actual data communication.

Based on different kinds of routing information available in the routing table, the desired path for
sending a packet is determined by either source routing or hop-to-hop routing [2]. In source routing,
all the routing information is first collected at the source node, which puts it into the packets that it
launches toward the destination node. The job of the intervening network is simply to read the routing
information from the packets and act on it faithfully. While in hop-by-hop routing, the source node
is not expected to have all the routing information; it is sufficient for the source node to know only
how to get to the ‘next hop’ and for that node to know how to get the ‘next hop’, and so on until the
destination is reached. The job of the intervening network in this case is more complicated; it has only
the address of the destination with which to figure out the best ‘next hop’ for each packet. Hop-by-hop
routing is used in OSI and TCP/IP networks. The performance of hop-by-hop routing depends greatly
on the convergence speed to a network event. When a network event causes routes to either go down
or become available, routers distribute routing update messages that permeate networks, stimulating
recalculation of optimal routes and eventually causing all routers to agree on these routes. A slow
convergence may cause routing loops or network outages.

With the explosive growth in popularity of the World Wide Web, locating Web content promptly
is becoming increasingly important [3,4]. Meanwhile, the amazing advances in the Internet and
the computer industry have created many new application areas for network routing such as Grid
computing and P2P computing [5,6]. Grid computing was proposed in the mid 1990s owing to the
increasing demand of large-scale scientific computation in the fields of life sciences, biology, physics,
and astronomy [6]. Since a Grid connects numerous geographically distributed computers, and tasks
are submitted to Grid nodes in a distributed fashion, important issues that have to be solved include
routing, task scheduling, and resource allocation. To adopt and take advantage of the changes of today’s
Internet, many new network routing technologies have been proposed in recent years that have created
exciting new opportunities for both business and science [7]. Mobile agents, decision-making programs
that are capable of migrating autonomously from node to node in a computer network, are features of
many of these new technologies [8,9]. The properties of this technology, such as autonomous, adaptive,
reactive, mobile, cooperative, interactive, and delegated [10], have drawn a great deal of attention
in both academia and industry. Mobile agents are continuously running processes with personalities
and emotional states that are formalized by knowledge. They can play an important role in the high-
level applications of the knowledge Grid [11]. In turn, the knowledge Grid technology can help the
organization of knowledge of the agent and sharing of knowledge among agents.

An agent’s actions is goal-orientated. It is capable of transporting itself from one execution
environment to another, learning and improving with experience, choosing actions that can bring it
closer to its goal, communicating with other agents or people, and acting together with other agents
for a common purpose. It can sense its environment, reflect upon it and respond in a timely fashion
to changes in its environment, acts accordingly, and take actions to achieve a goal. Based on these
properties, using mobile agents can bring the following benefits. They can reduce network load,
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overcome network latency, encapsulate protocols, execute asynchronously and autonomously, and
adapt changes dynamically. They are naturally heterogeneous, robust, and fault-tolerant [12]. Although
none of these strength are unique to mobile agents, no competing technique shares all of them. Mobile
agents provide a general framework in which distributed and information oriented applications can be
implemented effectively and easily, with the programming burden spreads evenly among information,
middleware, and client providers. Many mobile agent systems have become sufficiently well developed
in recent years. For example, Ajanta [13], Bee-gent [14], D’agents [15], Odyssey [16], and so on.
Successful examples using mobile agents can be found in [13–15]. In this paper, we propose an
extended routing model based on our previous work [20]. We analyze the population distribution of
mobile agents and compared our results with existing solutions.

In the following sections, we first introduce related works of our research, followed by the
extended mobile agent-based routing algorithm, theoretical analysis, experimental results, and
conclusion.

2. RELATED WORKS

Advanced research in mobile agents has brought in some new methods for network routing [21].
An ant-like agent-based routing algorithm is a recently proposed routing algorithm for use in large
dynamic networks [22,23]. The idea is similar to the shortest path searching process during ants’
foraging activities. In the classical ant routing algorithm [24], once a server receives a request for
sending a packet to a remote destination node, it generates a number of mobile agents. These agents
will then move out from the server and search for the destination in the network. They probabilistically
prefer nodes that are connected immediately. Once a mobile agent finds the destination, it returns
back to the server and submits a report of the searched path. After all agents have been back, the
server will calculate the cost of those collected paths and pick up the best one. The packet will be
sent to the destination along the optimal path and the routing table will be updated at the same time.
The efficiency of the ant-like agent-based routing technique has been shown in [25]. It can be seen that
mobile agents will be generated frequently and dispatched to the network. If there are too many mobile
agents running in the network, they will consume too much computational resource, which will affect
the network performance due to the limited network resource and ultimately block the entire network.
Therefore, analysis of the distribution of mobile agents is not only important but necessary for network
management. Unfortunately, little work has been done on this aspect. In [24], a death rate is assumed
for the purpose of limiting the number of agents to within the system’s limitations. In [26], the number
of agents is analyzed for the classical ant routing algorithm that characterizes the evolution behavior
of mobile agents and reflects the consumption of computational resources. In the previous version
of this paper [20], an improved mobile agent-based routing model is proposed for use in vulnerable
networks in which any component may fail during an agent’s searching process while in [24] systems
are assumed reliable. In this model, mobile agents are assumed to have a life-span limit instead of the
death rate as assumed in [24] and the population distribution of the agents is analyzed. The analytical
results show that this model has less population than that in [26]. In this paper, we extend the model
in [20] by allowing agents on a node that can know routing information of not only the host node but
also the neighboring nodes of the host node. This change makes agents’ searching process much more
efficient compared to that in [20,24]. We also analyze the population distribution of mobile agents.
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The analytical results show that the number of agents is decided by the connectivity degree of the
network, the possibility of a system failure at each step, the number of requests received per time unit,
the number of mobile agents generated per request, and the agents’ life-spans. Our model consumes
less network resources due to a less number of agents in the network.

3. MOBILE AGENT-BASED ROUTING MODEL

Our model is built on a vulnerable distributed network whose topology may change dynamically due
to failures of network components or terminals joining or leaving the network at any time as they like.
In this paper, we assume that the topology of the network is a connected graph, i.e. each node in the
network has at least one neighboring node. If there is a direct link between two nodes, these two nodes
are called neighboring nodes. When a node cannot link to any other nodes in the network, we say this
node is down. Nodes in the network periodically broadcasts their routing information to neighboring
nodes. Suppose that each node provides mobile agents with an execution environment and can generate
mobile agents to complete some tasks when necessary. A node that generates mobile agents is called the
server of these agents. Once a request is received by a server, the server generates a number of mobile
agents. These agents will then move out from the server to search for the destination. Once an agent
reaches a node, it will check whether its destination is among the node and its neighboring nodes. If the
agent cannot find its destination node locally, it will select a neighboring node to continue its searching
activity. To avoid the explorer agents getting stuck in any terminal node, agents in this case can return
back to the previous node from which it just left. After an agent finds its destination, it will turn back
to the server and submit a routing report about the searched path. During an agent’s searching process,
it may be subject to a system failure as any component in the network may fail at any time. Note that
routing applications dispatch multiple agents simultaneously for one single task to tolerate the loss of
some dispatched agents compared with applications such as e-shopping in which only one agent is
generated per request so that the agent should return a failure message to the user if it cannot complete
its task. Therefore, if an agent is subject to a system, it will die. In an asynchronous distributed system
(e.g., the Internet) there are no bounds on migration delays of messages and no relative process speeds.
Thus, when a mobile agent is blocked because of a failure in an asynchronous distributed system, the
agent’s owner cannot correctly determine whether the agent has failed or is merely running slowly [27].
To release users from waiting for an excessive time period for his request, we set a bound of searching
time, namely life-span limit, to mobile agents in our model by using timer technique. If an agent cannot
find its destination within its life-span limit, it will die. When a certain number of agents have gone
back, the server will compare all the collected paths and pick up the optimal path. Then, the packet is
sent out to the destination along the optimal path. At the same time, the server updates its routing table.

To estimate the situation of resource consumption during mobile agent routing process, we analyze
the population of mobile agents in the following section for both one single node and the network as a
whole.

4. MATHEMATICAL ANALYSIS

First, we consider the case in which the agents run in the network with an infinite life-span.
Mobile agents on a node can be divided into two parts: some are generated on this node, and others
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Figure 1. Mobile agents in one node can be divided into two parts. Some mobile agents are generated by
requests received on the node, others come from the neighboring nodes of the current node. Here, pj (t)
denotes the total number of mobile agents running on the j th node at time t , rj (t) denotes the number of
requests received by the j th node at time t ,�j (t) denotes the number of agents newly generated on the j th
node at time t , and �j (t) denotes the number of agents on the j th node came from neighboring nodes at

time t . NB(j) is the set of neighboring nodes of the j th node.

come from the neighboring nodes of the current node. If we denote the number of agents on the j th
node at time t by pj (t), the number of agents newly generated by the received requests at time t by
�j(t), and the number of agents coming from neighboring nodes at time t by�j(t), then the dynamical
change of the agents in the network can be given by the following equation (as shown in Figure 1):

pj (t)=�j(t)+ �j(t) (1)

Let NB(j) be the neighboring set of the j th node that is constructed by the neighboring nodes of the
j th node and ψij(t) be the number of agents on the j th node at time t that move from the ith node.
Equation (1) can be further expressed as follows:

pj (t)=�j(t)+�j(t)=�j(t)+
∑

i∈NB(j)

ψij(t) (2)

Assume that there are rj (t − 1) requests received by the j th node at time t − 1 and kj (t) agents will
be generated at time t for each request, then �j(t) satisfies

�j(t)= kj (t) · rj (t − 1) (3)

For estimating ψij(t), we define a binary valued variable λijl(t) to indicate the selection of the lth
agent on the ith node for the next jump as follows:

λijl(t)=
{

1 if the lth agent selects the j th node to go

0 otherwise
(4)

Obviously, λijl(t) satisfies ∑
j∈NB(i)

λijl(t)= 1 (5)

since each agent selects only one neighboring node once to go. Thus, we have

ψij(t)=
pi (t−1)∑
l=1

λijl(t − 1) (6)
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Therefore, we have

pj (t)=�j(t)+ �j(t)= kj (t) · rj (t − 1)+
∑

i∈NB(j)

pi(t−1)∑
l=1

λijl(t − 1) (7)

Also, as shown in Figure 1, mobile agents on the ith node at time t − 1 can be divided into two
parts: those newly generated on the ith node by received requests, denoted by �i(t − 1); and others
coming from the neighboring nodes of the ith node, denoted by �i(t − 1). That is, pi(t − 1)=
�i(t − 1)+�i(t − 1). Agents in each part have a different probability to select the j th node to go
compared with those belonging to the other part, which are denoted by �Pro{j |i} and �Pro{j |i},
respectively. When j /∈ NB(i), the probability that an agent on the ith node will go to the j th node at
the next jump is defined to be 0. The average number of agents on the j th node at time t that move
from the ith node, denoted by E[ψij(t)], can be calculated as

E[ψij(t)] = E

[pi(t−1)∑
l=1

λijl(t − 1)

]

=�Pro{j |i}E[�i(t − 1)] +�Pro{j |i}E[�i(t − 1)]
=�Pro{j |i}E[�i(t − 1)] +�Pro{j |i}E[pi(t − 1)−�i(t − 1)]
= (�Pro{j |i} −�Pro{j |i})E[�i(t − 1)] +�Pro{j |i}E[pi(t − 1)] (8)

Taking expectation on both side of (7), the evolution behavior of the agents satisfies

E[pj (t)] = E[�j(t)] + E[�j(t)]
= E[kj (t)] · E[rj (t)] +

∑
i∈NB(j)

�Pro{j |i}E[pi(t − 1)]

+
∑

i∈NB(j)

(�Pro{j |i} −�Pro{j |i})E[ki(t − 1)] ·E[ri (t − 2)] (9)

based on the fact that variables kj (t) and rj (t) are independent with each other. Let ·̂ be the expectancy
E[·] and k be the average number of agents generated per request, Equation (9) can be rewritten as

p̂j (t)= kr̂j (t)+
∑

i∈NB(j)

�Pro{j |i}p̂i(t − 1)

+
∑

i∈NB(j)

(�Pro{j |i} −�Pro{j |i})kr̂i(t − 2) (10)

In compact form, it can be expressed as

p(t)= kr(t − 1)+ kAr(t − 2)+ Bp(t − 1) (11)

where A= (aji)n×n is an n by n matrix with the elements defined as

aji =
{
�Pro{j |i} −�Pro{j |i} if j ∈ NB(i)

0 otherwise
(12)
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and B = (bji)n×n is an n by n matrix with the elements defined as

bji =
{
�Pro{j |i} if j ∈ NB(i)

0 otherwise
(13)

p(t) and r(t) are column vectors defined as

p(t)=



p̂1(t)

p̂2(t)

· · ·
p̂n(t)


 and r(t)=



r̂1(t)

r̂2(t)

· · ·
r̂n(t)


 (14)

In particular, the j th node receives rj (0) requests at time t = 0 and generates krj (0) agents at time
t = 1. Therefore, from the previous discussion and by the assumption that there are no agents running
in the network at time t , we have p(0)= 0, p(1)= kr(0), and p(2)= kr(1)+ kAr(0)+ Bkr(0)=
kr(1)+ k(A+ B)r(0). Without loss of generality, we assume that requests keyed in a network follow
a unique probability distribution at any time unit and the average number of requests received by a
node per time unit is r . Thus, the evolution behavior of mobile agents can be expressed as

p(t)=




0 t = 0

kre t = 1

kre + kr(A+ B)e t = 2

kr(I + A)e + Bp(t − 1) t ≥ 2

(15)

which comes down to a Markov process as it depends on only the state of the previous step. Here, e is
a unit column vector defined as e = (1, 1, . . . , 1)T.

Now, we consider the case in which the agents run in the network with life-span limit. For this case,
we have the following theorem.

Theorem 1. The population distribution of mobile agents in the network can be rewritten as follows:

p(t)=




0 t = 0

kre t = 1

kre + kr(A+ B)e t = 2
t−2∑
i=0

Bikr(I + A)e + krBt−1e 2 ≤ t ≤ L

L−2∑
i=0

Bikr(I + A)e + krBL−1e t > L

(16)

where p(t), defined in (14), denotes the distribution of mobile agents in the network, A and B are
matrices defined by (12) and (13), e = (1, 1, . . . , 1)T is a unit column vector, k is the average number
of agents generated per request, r is the average number of requests received by a node per time unit,
and L is the life-span limit of a mobile agent.
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Proof. For mobile agents with life-span limit, if the searching time of mobile agents is less than the life-
span limit, they will follow the same distribution as (15). However, as the searching process continues,
those agents with searching times greater than the life-span limit will expire, which results in a different
distribution. Let L be the life-span limit of a mobile agent. We first analyze the distribution of agents
after they made L jumps by using the j th node as a spot. Since the number of received requests
on the j th node at time t − 1 is rj (t − 1) and the number of agents generated per request at time t
is kj (t), the number of newly generated mobile agents on the j th node at time t is kj (t)rj (t − 1).
These agents will then roam in the network and search for their destinations node by node. At time
t + 1, these generated agents will either find their destinations inside the neighboring set of the j th
node or move to a neighboring node of the j th node. Since we only consider the distribution of mobile
agents generated at time t in the network and assume that there are no newly generated agents in the
network from time t , at time t + 1, all the agents on the j th node are from the neighboring nodes of
the j th node. Denoting the number of these agents on the j th node by p∗

j (·) and the number of agents
among these agents come from the neighboring nodes of the j th node by �∗

j (·), we have

p∗
j (t + 1)= �∗

j (t + 1)=
∑

i∈NB(j)

p∗
i (t )∑
l=1

λijl(t) (17)

where p∗
i (t)= ki(t) · ri (t − 1). Taking expectation on both side of (16), we have

p̂∗
j (t + 1)=

∑
i∈NB(j)

�Pro{j |i}kr (18)

In compact form, it is expressed as

p∗(t + 1)= kr(A+ B)e (19)

From (11), it is easy to get the following results:

p∗(t + 2)= Bp∗(t + 1)

p∗(t + 3)= Bp∗(t + 2)= B2p∗(t + 1)

...

p∗(t + L)= BL−1p∗(t + 1)= krBL−1(A+ B)e

(20)

Combining the results of (15) and (20), the population distribution of mobile agents with life-span limit
follows a Markov process as:

p(t)=




0 t = 0

kre t = 1

kre + kr(A+ B)e t = 2

kr(I + A)e + Bp(t − 1) 2 ≤ t ≤ L

kr(I + A)e + Bp(t − 1)− krBL−1(A+ B)e t > L

(21)
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Furthermore, with the fact that when 2 ≤ t ≤ L

p(t)= kr(I + A)e + Bp(t − 1)

= kr(I + A)e + B[kr(I + A)e + Bp(t − 2)]
= kr(I + B)(I + A)e + B2p(t − 2)

= kr(I + B)(I + A)e + B2[kr(I + A)e + Bp(t − 3)]
= kr(I + B + B2)(I + A)e + B3p(t − 3)

= · · ·

=
t−3∑
i=0

Bikr(I + A)e + Bt−2p(2)

=
t−3∑
i=0

Bikr(I + A)e + Bt−2[kre + kr(A+ B)e]

=
t−2∑
i=0

Bikr(I + A)e + krBt−1e (22)

and when t > L

p(t)= kr(I + A)e − krBL−1(A+ B)e + Bp(t − 1)

= X + Bp(t − 1) (where X = kr(I + A)e − krBL−1(A+ B)e)

= · · ·

=
t−L−1∑
i=0

BiX + Bt−Lp(L)

=
t−L−1∑
i=0

Bi[kr(I + A)e − krBL−1(A+ B)e] + Bt−L
[L−2∑
i=0

Bikr(I + A)e + krBL−1e
]

=
t−L−1∑
i=0

Bikr(I + A)e −
t−2∑

i=L−1

Bikr(A+ B)e +
t−2∑
i=t−L

Bikr(I + A)e + krBt−1e

=
t−2∑
i=0

Bikr(I + A)e −
t−2∑

i=L−1

Bikr(A+ B)e + krBt−1e

=
t−2∑
i=0

Bikre +
t−2∑
i=0

BikrAe −
t−2∑

i=L−1

BikrAe −
t−2∑

i=L−1

BikrBe + krBt−1e

=
L−1∑
i=0

Bikre +
L−2∑
i=0

BikrAe

=
L−2∑
i=0

Bikr(I + A)e + BL−1kre (23)
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the population distribution of mobile agents in the network can be rewritten as

p(t)=




0 t = 0

kre t = 1

kre + kr(A+ B)e t = 2
t−2∑
i=0

Bikr(I + A)e + krBt−1e 2 ≤ t ≤ L

L−2∑
i=0

Bikr(I + A)e + krBL−1e t > L

(24)

Therefore, the theorem is proven. �

It is easy to see that the number of agents in our model will not increase infinitely with the searching
time. Thus, by tuning the number of agents generated per request and the agent life-span limit, the
population of mobile agents can be controlled within the system limitations.

Since mobile agents are generated frequently and dispatched to the network, it is important to
estimate the number of mobile agents running in the network and on each node. When there are too
many agents in the network, they will introduce too much computational overhead to node machines,
which will eventually become very busy and indirectly block the network traffic. Based on the
population distribution, we further analyze the total number of agents in the network and the number
of agents on a node to estimate the consumption of computational resource of our model.

First, we introduce some notations used in our analysis. As assumed at the beginning of this section,
the network topology is a connected graph so that there is at least one path (directly or indirectly)
between any two nodes. Matrix C = (cij)n×n is the connectivity matrix that describes the connectivity
of the graph, i.e. if there is a direct link between node i and node j , then cij = cji = 1; otherwise,
cij = 0. In particular, cii = 0 for any i. Let cj be the j th column vector of matrix C. That is, C =
(c1, c2, . . . , cn). Furthermore, dj = ‖cj‖1 = ∑n

i=1 |cij|, σ1 = max1≤j≤n dj , and σn = min1≤j≤n dj .
Obviously, D = diag (d1, d2, . . . , dn) is a diagonal matrix that indicates the connectivity degree of
the network topology. It is easy to see that dj is the number of neighboring nodes of the j th node
including itself, and ‖C‖1 = max1≤j≤n ‖cj‖1 = σ1. For example, suppose that the graphical structure
of a small network is shown in Figure 2.

Accordingly, we have n= 5, σ1 = 4, σ5 = 1. Matrices C and D can be given as follows:

C =




0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0


 , D =




2 0 0 0 0
0 2 0 0 0
0 0 4 0 0
0 0 0 1 0
0 0 0 0 1




Note that once an agent reaches a node, it has a chance to find its destination in the neighboring set
of the host node and also a risk of dying due to a system failure on the node. As our model considers
the problem of routing for a remote destination, that is, the server has no routing information about the
destination, agents will search node by node in the network and each node in the network has the same
possibility to be the destination of an agent. For an intermediate node, each unsearched neighboring
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Figure 2. An example of a small network.

node has same possibility of being selected by an agent to go at the next hop. Thus, the probability
that a newly generated agent on the ith node can find its destination on the server is (di + 1)/n since
the agent can check addresses of both the server and its di neighboring nodes. If the agent cannot find
its destination locally, the probability that it can move out of the ith node is (1 − p)[1 − (di + 1)/n]
where p is the probability that the host will turn down when an agent stays on it. Then the probability
that the agent will select the j th node to go is

�Pro{j |i} = 1 − p

di

(
1 − di + 1

n

)
where j ∈ NB(i) (25)

For an agent on the ith node that is not newly generated locally, since the ith node and the previous
node from which the agent came has been checked when the agent was on the previous node, the
probability that the agent can find its destination is equal to (di − 1)/n and the probability that it will
move to the j th node is given by

�Pro{j |i} = 1 − p

di

(
1 − di − 1

n

)
where j ∈ NB(i) (26)

From the definitions in (12) and (13), we have

A= −2(1 − p)

n
CD−1 (27)

and

B = (1 − p)CD−1
(
I − D − I

n

)
(28)

From these results, we can estimate the number of agents as follows.

Theorem 2. The total number of agents in the network is no more than

krθ

/[
1 − (1 − p)

(
1 − σn − 1

n

)]
where

θ = n− 2(1 − p)− (1 − p)L
(

1 − σn − 1

n

)L−1

(n− σn − 1)
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Proof. The total number of agents in the network can be calculated as
n∑
i=1

pj (t)= ‖p(t)‖1 (29)

Thus, from Theorem (4), the total number of agents can be estimated as follows:

‖p(t)‖1 ≤
∥∥∥∥
L−2∑
i=0

Bikr(I + A)e + krBL−1e

∥∥∥∥
1

≤ kr ·
(L−2∑
i=0

‖B‖i1 · ‖I + A‖1 + ‖B‖L−1
i

)
‖e‖1 (30)

Due to the fact that

‖I + A‖1 =
∥∥∥∥I − 2(1 − p)

n
CD−1

∥∥∥∥
1
= 1 − 2(1 − p)

n

‖B‖1 =
∥∥∥∥(1 − p)CD−1

(
I − D − I

n

)∥∥∥∥
1
= (1 − p)

(
1 − σn − 1

n

) (31)

and ‖e‖1 = n, the total number of agents satisfies

‖p(t)‖1 ≤ nkr

(L−1∑
i=0

‖B‖i1 − 2(1 − p)

n

L−2∑
i=0

‖B‖i1
)

= krθ

1 − (1 − p)(1 − (σn − 1)/n)
(32)

where θ is defined as

θ = n− n

[
(1 − p)

(
1 − σn − 1

n

)]L
− 2(1 − p)+ 2(1 − p)

[
(1 − p)

(
1 − σn − 1

n

)]L−1

= n− 2(1 − p)− (1 − p)L
(

1 − σn − 1

n

)L−1[
n

(
1 − σn − 1

n

)
− 2

]

= n− 2(1 − p)− (1 − p)L
(

1 − σn − 1

n

)L−1

(n− σn − 1)

≤ n− 2(1 − p) (33)

Thus, the theorem is proven. �

Similarly, the number of agents running on a node can be estimated as follows.

Theorem 3. The number of agents running on a node is no more than

krδ/nσ1

1 − ((1 − p)/σn)(1 − (σn − 1)/n)

where

δ = nσ1 − 2(1 − p)−
(

1 − p

σn

)L(
1 − σn − 1

n

)L−1

[nσ1 − σ1(σn − 1)− 2σn]
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Case C Case D

Figure 3. Simple examples for each case.

Proof. From Theorem 4, the number of agents running on a node can be estimated as

max
1≤i≤n

pj (t)= ‖p(t)‖∞ ≤
∥∥∥∥
L−2∑
i=0

Bikr(I + A)e + krBL−1e

∥∥∥∥∞

= kr

∥∥∥∥
L−2∑
i=0

Bi(I + A)+ BL−1
∥∥∥∥∞

≤ kr

(L−2∑
i=0

‖B‖i∞ · ‖I + A‖∞ + ‖B‖L−1∞
)

(34)

Due to the fact that

‖I + A‖∞ = 1 − 2(1 − p)

nσ1
and ‖B‖∞ = 1 − p

σn

(
1 − σn − 1

n

)
(35)

the maximum number of agents running on a node satisfies

‖p(t)‖∞ ≤ kr

(L−1∑
i=0

‖B‖i∞ − 2(1 − p)

nσ1

L−2∑
i=0

‖B‖i∞
)

= krδ/nσ1

1 − (1 − p)/σn(1 − (σn − 1)/n)
(36)

where δ is defined as

δ = nσ1

(
1 −

[
1 − p

σn

(
1 − σn − 1

n

)]L)
− 2(1 − p)

(
1 −

[
1 − p

σn

(
1 − σn − 1

n

)]L−1)

= nσ1 − 2(1 − p)−
(

1 − p

σn

)L(
1 − σn − 1

n

)L−1

[nσ1 − σ1(σn − 1)− 2σn]
≤ nσ1 − 2(1 − p) (37)

Thus, the theorem is proven. �
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Figure 4. Results for Case A.

From the above analytical results, we can claim that both the number of mobile agents in the network
and the number of mobile agents on each node will not increase infinitely over time t . The upper bound
of these two numbers can be controlled by tuning the number of mobile agents generated per request.

5. EXPERIMENTAL RESULTS

In this section, we present some simulation results on the population of mobile agents from OMNet++
simulator [28] in order to evaluate our model in comparison with existing models from [20,26]. Due to
space limitation, only the following cases of network topologies are included in the experiments:

1. Case A: σ1 large, σn medium;
2. Case B: σ1 medium, σn medium;
3. Case C: σ1 medium, σn small;
4. Case D: σ1 small, σn small.

Figure 3 gives some simple examples for these cases.
We use ER to denote the result from [26], GCC to denote the result from [20], and CR to denote

the result in this paper. Figures 4–7 show the results on the population of agents running in a host.
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Figure 5. Results for Case B.

In detail, we set σ1 = 100 and σn = 30 for Case A, σ1 = 30 and σn = 20 for Case B, σ1 = 30 and
σn = 4 for Case C, and σ1 = 5 and σn = 3 for Case D. From the experimental results we can obviously
see that our model can outperform the existing results greatly. As [26] sets a death rate to mobile agents
so that an agent may stop its searching activity at any step before finding the destination, this leads to
a relatively poorer searching efficiency as compared with [20] and therefore a larger amount of agents
are needed. Our model allows agents to check the routing addresses of multiple nodes at each jump,
which results in a superior performance among these three models. In our experiments, there are 1000
nodes randomly generated by the simulator, for each time unit there are 50 requests received from a
node, and for each node, 50 mobile agents are generated. Each mobile agent generated has a life-span
limitation of 50 hops. The probability that a node may fail is set to be 0.001. From these figures we can
also see that the number of agent is an increasing function on the size of the network.

6. CONCLUDING REMARKS

In this paper, we addressed the problem of network routing and management by deploying mobile
agents. We proposed an extended routing algorithm and analyzed the population distribution of
mobile agents under the proposed model. Based on our analytical results, the number of agents is
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Figure 6. Results for Case C.

a monotonically increasing function on the number of nodes in the network, the number of agents
generated per request, and the agent life-span limit and a monotonically decreasing function on the
possibility system failures. Therefore, we can dispatch a small number of mobile agents and achieve a
good network performance by selecting an optimal number of mobile agents generated per request and
giving them an optimal life-span limit. We also compared our model with existing models. Since agents
in our model can perform a more efficient search, the number of agents needed per request is less than
that in existing models. On the other hand, with the same number of agents generated per request, the
searching time of the agents is less than in existing models, which results in a superior performance
compared with existing models. Our contributions are summarized as follows.

• We proposed a mobile agent-based routing model for use in vulnerable networks in which a
mobile agent on a node knows information of its neighboring nodes and is assumed a life-span
limit.

• We analyzed the population distribution of mobile agents, which provided a useful tool to reduce
the computational resource consumption by adjusting the number of agents to be generated at
individual nodes and the life-span of these mobile agents.
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