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Abstract—Traffic accidents are still troubling our society.
The number of drive recorders sold has increased, and there-
fore we can collect large-scale vehicle recorder data to be
used to support traffic safety. We have developed a system
for detecting potentially risky crossroads on the basis of
vehicle recorder data, road shapes, and weather information.
Visualization combining space and time in a single display
called a “space time cube (STC)” helps us to understand and
analyze spatio-temporal mobility data on caution crossroads.
The STC enables us to simultaneously explore not only shapes
and positions of vehicle trajectories but also their temporal
distributions. However, it is difficult for users to manually
find good viewpoints for understanding such characteristics
of trajectories. In this paper, we propose an optimal viewpoint
selection method for visualizing spatio-temporal characteristics
of vehicle trajectories on a large set of crossroads using an
STC. Major contributions of this paper are as follows: (1) We
provide an algorithm based on viewpoint entropy weighted by
angles of trajectories with a horizontal line as a measure of a
viewpoint quality on a projected 2D image. (2) We demonstrate
our solution can be adapted to crossroads with different
trajectory shapes. We also extend the proposed method to find
an optimal viewpoint for multiple crossroads. (3) We verify the
proposed method through users’ evaluations. (4) We construct
an overviewing catalog of potentially risky crossroads detected
from real vehicle recorder big data to discuss and analyze them
with stakeholders.

I. INTRODUCTION

A total of 499, 201 traffic accidents occurred in Japan
according to recent transportation statistics in 2016 1. Traffic
accidents are still troubling our society. Precise traffic safety
support for drivers and pedestrians based on data such as
driving data is required to further reduce the number of
accidents.

The number of drive recorders sold domestically has
increased about three times compared to three years ago,
and has reached 790, 000 to date in Japan 2. This makes
it possible for us to collect large-scale vehicle recorder data
that can be used for traffic safety support. If we collect many

1Cabinet Office, Government of Japan:
http://www8.cao.go.jp/koutu/taisaku/h29kou haku/index zenbun pdf.html#h28
(in Japanese)

2GfK: http://www.gfk.com/jp/insights/press-release/1717drivingrecorder/
(in Japanese)

drivers’ records over a long time, the data will allow us
to explore caution spots for driving on the basis of spatio-
temporal driving data.

Visualization helps us to understand and analyze such
spatio-temporal mobility data. Much research has been
conducted on spatio-temporal analysis and visualization of
mobility data [1], [2], [3], [4], [5], [6], [7], [8]. Some systems
add a third axis to represent time. Visualization combining
space and time in a single display was originally proposed by
Hägerstrand [9], and is sometimes called a “space time cube
(STC)”. In an STC, movements with latitude, longitude, and
time become trajectories in a 3D space.

Amini et al. provided an experimental comparison of 2D
and 3D visualizations of movement data to reveal advantages
and disadvantages of 2D and 3D visualizations [10]. From
a comparison with 2D visualization using a time slider,
they found that an STC has an advantage of exploring
temporal information. However, the users spent much time
rotating the camera view in the STC. The STC requires more
panning and rotating compared to the 2D. Camera angle
reorganization is crucial for the STC to get good viewpoints
for understanding targets.

Some research has been conducted on viewpoint selection
for general 3D meshes and volume rendering [11], [12], [13].
Lee et al. and Tao et al. have studied viewpoint selection
for flow visualization [14], [15]. Although their studies
focused on streamline selection and viewpoint selection to
identify salient flow regions, our study focused on viewpoint
selection to understand both the shape of streamline on a
map and the streamline distribution on a time axis.

We have developed systems for exploring caution spots
from vehicle recorder big data [16]. We also have developed
a method for detecting crossroads with potential risks on
the basis of vehicle recorder data, road shapes, and weather
information. After ranking potentially risky crossroads, we
analyzed the detected crossroads with stakeholders in detail
from the following aspects:

• What kind of road structures are detected as caution
crossroads?

• What kind of caution operations occurred on the de-
tected crossroads?
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• What kind of trajectories did the caution operations
occur on?

• At what time of the day did they occur?
For these purposes, visualization of both spatial structure

and temporal distribution of vehicle trajectories is required.
We therefore adapt space time cube visualization to our
system. However, it is difficult for users to manually find
good viewpoints that well display both spatial and temporal
characteristics of vehicle trajectories for observing them on
a map. This is especially difficult when there are a lot of
crossroads. We need a method for automatically selecting
optimal viewpoints in STC.

Our major contributions are as follows:
• We propose a novel method for automatically select-

ing optimal viewpoints for visualizing spatio-temporal
characteristics of trajectories on a crossroad using an
STC. For this purpose, we provide an algorithm based
on viewpoint entropy weighted by angles with a hor-
izontal line as a measure of a viewpoint quality of
rendered trajectories on a projected image. As far as we
know, there has been no research on viewpoint selection
for visualizations of trajectories using an STC.

• We demonstrate our solution can be adapted to cross-
roads with different trajectory shapes. We also show the
proposed method can be extended to find an optimal
viewpoint for multiple crossroads to compare them
from the same angle.

• We verify the presented method through users’ evalu-
ations. For this purpose, we manually rank the view-
points through Scheffe’s paired comparison, and mea-
sure Spearman’s rank correlation coefficient between
rankings defined by the proposed method and by users.

• We construct an overviewing catalog of caution cross-
roads detected from real vehicle recorder big data to
discuss and analyze them with stakeholders of the data
for evaluating the usability of the method.

In what follows, we give an outline of related work in
Section II. We next introduce our approach for viewpoint
selection based on the viewpoint entropy in Section III.
Section IV provides users’ evaluation results. We present
case studies adapting the proposed method to detect caution
crossroads from actual vehicle recorder big data in Sec-
tion V. We conclude the paper in Section VI with a summary.

II. RELATED WORK

Much research has been conducted on visualization of
mobility data collected by tracking technologies such as
GPS using 2D visualization space [1], [2], [3], [4] and 3D
visualization space [5], [7], [8]. Andrienko et al. extracted
and characterized important places from mobility data such
as GPS tracks of cars and flight trajectories and visualized
them in 2D/3D spatio-temporal space [4], [5], [6]. However,
most of them focused on analyzing traffic jams or movement

patterns. SAFETY MAP 3 independently plots locations
in which traffic accidents occurred and drivers suddenly
braked. G Map 4 plots points in which rapid acceleration
occurred. However, they did not provide a function for ex-
ploring spatio-temporal characteristics of dangerous places.
For this purpose, a space time cube visualization approach
is required. Moreover, they did not provide a function for
overviewing a lot of dangerous places to compare them in
detail.

A number of approaches have been developed for
overviewing a lot of 3D scenes, such as a catalog page for vi-
sualization results [17], [18], [19], [20], [21]. Worldlets [17]
captures a 3D representation of a virtual environment land-
mark into a 3D thumbnail. It can provide catalogs for
landmarks in the virtual environment. WorldBottle [18]
made it possible to embed other spaces inside and render
them on their surface, so that users can simultaneously
compare multiple information spaces. Itoh et al. proposed a
spreadsheet-based visualization framework for end-users to
generate and modify multiple 3D visualizations [19]. They
can provide multiple visualizations at the same time, but
still have difficulty in finding good viewpoints for avoiding
occlusions. It is difficult for users to find a good viewpoint
for a 3D visualization, especially in multiple visualizations.

Many interactive techniques have been developed to deal
with the occlusion reduction problem using different ap-
proaches [22]. Elmqvist et al. presented five design patterns
for occlusion management based on a classification of ex-
isting interaction techniques such as multiple viewports, vir-
tual X-ray, tour planners, volumetric probes, and projection
distorters. Our purpose is not simply occlusion reduction,
but to find a good viewpoint to understand spatio-temporal
characteristics of the target spaces without deforming the
targets and spaces. For this purpose, an approach for tour
planners or viewpoint selection is required.

Research has been carried out on viewpoint selection
for general 3D meshes and volume rendering [11], [23],
[12], [13]. One solution for viewpoint selection for 3D
meshes is the viewpoint entropy formulated by Vázquez et
al. to evaluate the balance of visible faces in 2D projected
images [11], [23]. Locating optimal viewpoints for volumes
has been explored by Bordoloi and Shen [12]. They eval-
uated the balance between the contributions of voxels to
pixels in the resultant image using the entropy function.
Takahashi et al. decomposed an entire volume into a set of
feature components, then compromised between the locally
optimal viewpoints for the components to find the globally
best viewpoint [13]. Lee et al. and Tao et al. have studied
viewpoint selection for flow visualization [14] [15]. Lee et
al. proposed a maximum entropy projection buffer to select
the streamlines that would cause the minimum occlusion,

3http://www.honda.co.jp/safetymap/, (in Japanese)
4http://gmap.dgis.jp/dc/ngt.html, (in Japanese)
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(a) (b) (c)
Figure 1. Examples of bad viewpoints. (a) well displaying the structure
of trajectories, but crushing the temporal information, (b) well displaying
temporal information of trajectories, but not showing the structure of
trajectories, (c) not well displaying either shapes or temporal distributions
of the trajectories.

(a) (b)

Figure 2. Dividing screen space into tiles to calculate weighted viewpoint
entropy. (a) and (b) are visualized results from different viewpoints. Colors
of tiles represent the value of |sx |

S on each tile.

and also proposed a viewpoint selection algorithm that
works hand-in-hand with a streamline selection algorithm
to maximize the visibility of high complexity regions in
the flow field [14]. Although their study complementarily
selected streamlines and viewpoints to identify salient flow
regions, our study focuses on finding a viewpoint for already
displayed trajectories to understand both shapes of trajecto-
ries on a map and their distribution on a time axis.

III. VIEWPOINT ENTROPY-BASED APPROACH

“The best viewpoint is the one that obtains the max-
imum information of a scene. A good view must help
us to understand as much as possible the object or scene
represented” [11]. What is a good viewpoint in our required
system using a space time cube? First, it is one that clearly
displays the shapes of trajectories to enable us to understand
what kinds of driving situations occur at caution crossroads.
Second, it is one that easily enables us to understand the
positions of trajectories on a map to observe the surrounding
situations. Third, it is one that needs to show the distribution
of trajectories on a time axis to understand the time periods
in which traffic volume is high. Fourth, it is one for which
there is less overlapping of trajectories on the projected
screen.

To satisfy the first, third, and fourth requirements, it is
desirable that trajectories are widely distributed on the 2D
screen. However, if the trajectories are widely spread on
the screen, it is sometimes difficult to read their shapes.
For examples, Figure 1 (a) well displays the structure of
trajectories, but it crushes the temporal information. Figure 1
(b) well displays the temporal information of trajectories, but

it does not show their structures. From our observations, it is
hard to understand the shapes and temporal distributions of
the trajectories whose projected angles on a 2D screen with a
horizontal line are close to vertical as shown in Figure 1 (c).
It is easy to understand them if there are many trajectories
with loose angles with the horizontal line. Such loose angles
also help satisfy the second requirement.

To solve these problems, we adapted an viewpoint
entropy-based approach. We divided a screen space into tiles
as shown in Figure 2 and computed weighted viewpoint
entropy by using the following formula:

E = ∑
x=1...n

|sx|
S

log2
|sx|
S

· log2cλx (1)

Each trajectory consists of m segments 5 to show the
trajectory around a crossroad. We counted the number of
segments |sx| passing over each tile x. Here, S means the
total number of |sx|. We modified the formula for Shannon’s
entropy Enoweight =−∑x=1...n

|sx|
S log2

|sx|
S by weight log2cλx,

where c is a constant value. cλx is defined by the angles
of projected segments with the horizontal line in each tile
as λx =

∑s∈Sx f (θs)
L , where L is defined by ∑x=1..n ∑s∈Sx f (θs).

We assumed that the amount of information was large when
the angle was close to 30 degrees, so we defined f (θs) as

f (θs) =

{
−a∗θs +b (θs ≤ θ)
a∗θs −b (otherwise)

where 0 ≤ θs ≤ 90 6.
Trajectories spreading over the 2D screen simply cause

high entropy (viewpoint entropy without weight Enoweight in
this case). This mainly helps to solve the third requirement,
and also helps to solve the first and fourth requirements
because it makes it possible to avoid dense projection of
trajectories on the 2D screen that crushes the shapes of
trajectories and causes occlusions as shown in Figure 2
(b). However, the highest Enoweight sometimes causes the
situations shown in Figure 1 (b) and Figure 4 (a), which
do not preserve the shapes of trajectories. The viewpoint
from the top of the hemisphere preserves the shapes of
trajectories best. It satisfies the first and second requirements
at the same time, but might not satisfy the others as shown
in Figure 1 (a). From the comparison shown in Figure 4,
we consider that the angles of segments can preserve the
shapes of trajectories. We therefore introduced the weight
defined by the angle of segments in a 2D screen to solve this
tradeoff. θ can control the tradeoff. If we define θ as near 90
degrees, the result might strongly satisfy the first and second
requirements, but might not satisfy the others as shown in
Figure 1 (a) and sometimes might not satisfy the first and
fourth requirements as shown in Figure 1 (c). Although we

5m = 20 in this experiment.
6c = 1, a = 1.0/60,b = 0.5 and θ = 30 in this experiment.
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selected 30 degrees as θ from our observations (such as
Figure 4) in this experiment, more detailed investigation
through users’ evaluations is necessary as a subject for future
work.

To search for the optimal viewpoint, we sampled 144
viewpoints from an upper hemisphere surrounding the target
STC. We then ranked the viewpoints by the corresponding
entropies to select the optimal viewpoint. The viewpoint
samples were generated by rotating a viewpoint by 15
degrees up, down, left and right around the center of the
STC.

The suitable size of a tile depends on the screen size and
the distance between the target STC and the viewpoint. We
manually selected the size in this experiment, but we plan
to provide a method for automatically finding the suitable
tile size in future work.

A. Results of Viewpoint Ranking

We have developed a system for ranking caution cross-
roads on the basis of vehicle recorder big data, road shapes,
and weather information (details are explained in Section V).

We sampled some caution crossroads and verified the
viewpoint ranking results calculated by the proposed
method. Figure 3 shows the viewpoint ranking results ob-
tained for six types of crossroads, which have characteristic
trajectory shapes such as t-shaped, l-shaped, s-shaped, +-
shaped, −-shaped, and u-shaped. Each row shows the top
three rankings and the worst two rankings of viewpoints
for each crossroad, and shows their rankings and values of
weighted entropy at the bottom of the images. Each cross-
road displays top 30 anomalous operations with 20-second
trajectories before and after the operations occurred. The
types of trajectory shapes are characterized by anomalous
operations other than road shapes.

From the results, we confirmed that the top three view-
points obviously well display 1) characteristics of trajec-
tories’ shapes, 2) positions of trajectories on the map, 3)
distribution of trajectories on a time axis, and 4) trajectories
with fewer occlusions compared to the worst two viewpoints.

1) Comparison with No Weight: Figure 4 shows com-
parison results for the top ranked viewpoint of the same
crossroad by using viewpoint entropy without considering
weight Enoweight = −∑x=1...n

|sx|
S log2

|sx|
S and with weight

E = ∑x=1...n
|sx|
S log2

|sx|
S · log2cλx. This result clearly shows

weight log2cλx works well for displaying the structure of
trajectories from a better viewpoint.

B. Finding Common Optimal Viewpoint for Multiple Cross-
roads

We extended the proposed method to find an optimal
viewpoint for multiple crossroads to compare them from
the same angle. It is also used for finding an optimal
viewpoint for multiple operations on the same crossroads
from the same angle. Because trajectories related to the

braking operations and handling operations are sometimes
completely different, finding a common optimal viewpoint
is required for observing them from the same direction.

We considered the total of normalized entropies for
multiple crossroads. If we consider two crossroads a and
b, common viewpoint entropy Ecommon is described as
Ecommon = Ea/Emaxa +Eb/Emaxb . Emaxa and Emaxb is max-
imum viewpoint entropy among 144 viewpoints for each
crossroad a and b respectively. Ea and Eb are defined by
equation 1.

Figure 5 shows the top three common optimal viewpoints
for different crossroad (a) and (b). Each row shows the
trajectories on different crossroads from the same viewpoint.
These results show the top three viewpoints are completely
different, but they are optimal viewpoints for two crossroads.

IV. USERS’ EVALUATIONS

To verify the effectiveness of the presented method
through users’ evaluations, we first manually ranked the
viewpoints through Scheffe’s paired comparison method,
and then measured Spearman’s rank correlation coefficient
between rankings defined by the proposed method and by
users.

We asked nine colleagues (all males, ranging in age
between 20 and 50 years) who worked in the computer
science domain to evaluate pairs of visualized images taken
from ten multiple viewpoints, and obtained their feedback.
All of them were familiar with visualization systems, but
some of them were not familiar with 3D software. We uni-
formly sampled ten visualized images from the top ranking
viewpoints, selecting two crossroads (Figure 3 (b) and (c))
for evaluation.

It is difficult for users to arbitrarily rank many viewpoints,
so we ranked viewpoints by paired comparisons. For this
purpose, users scored pairs of viewpoints through the inter-
face shown in Figure 6, where two images and five options
appear. These options are linked to the Likert scale; e.g.,
“the left image is definitely a better viewpoint than the right
image” is for option -2, and the complete opposite is option
2. Option 0 is “these two viewpoints are equally good or
equally not good.”

After that, we ranked ten viewpoints according to
Scheffe’s method of paired comparisons (Nakaya’s modi-
fication) [24]. The resulting p-value of the main effect is
almost zero. We therefore consider that there is a significant
difference among the ten viewpoints.

We next compared viewpoint rankings defined by the pro-
posed method and users’ evaluations by using Spearman’s
rank correlation. In both cases (Figure 3 (b) and (c)), the p-
values were below 0.01 (0.00198 and 0.0082) and the rank
correlation coefficients were over 0.8 (0.87879 and 0.80606).
We therefore consider that there is a positive correlation
between the two rankings.
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Figure 3. Ranking of viewpoints by proposed viewpoint entropy based methods. Each row represents the results for different types of crossroads having
characteristic trajectory shapes: (a) t-shaped, (b) l-shaped, (c) s-shaped, (d) +-shaped, (e) −-shaped, and (d) u-shaped.

Some users commented “It is a very difficult task for me
to judge which one is a better viewpoint.”, and “I’m not
confident of the results.” Such feedback shows that it is a

fundamentally difficult task for human beings to manually
find the optimal viewpoints.
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(a) without weight (b) with weight

Figure 4. Comparison result of top ranked viewpoint by using entropy
without considering weight (a) and with weight (b).

Figure 5. Top three common optimal viewpoints for different crossroads
(a) and (b).

V. CASE STUDY

We conducted a case study with large-scale driving
records provided by a public transport bus company. The bus
company shares catalogs of caution roads with drivers. Since
they are based on interviews and reports from drivers, it is
tedious and time-consuming to maintain them. We automat-
ically extracted caution crossroads by analyzing the driving
records, and provided a catalog of these crossroads created
by our proposed visualization method. In this section, we
will first describe the driving record dataset and then our
method for extracting caution crossroads. Finally, we will
show the created catalog and the results we obtained in
discussions with bus company personnel.

Figure 6. Interface for scoring viewpoints for a pairwise comparison
approach. Users compared two viewpoints and scored them in five ranks.

Table I
OPERATION RECORD VARIABLES

Operation Variables
Braking date time, latitude/longitude, velocity (V), longi-

tudinal acceleration (Gx), and jerk (derivative of
acceleration with respect to time, Jx)

Handling date time, latitude/longitude, V, yaw velocity (Yr),
yaw acceleration, and lateral acceleration (Gy)

A. Dataset

We utilized four datasets for extracting caution crossroads.
In addition to the driving record dataset, we used road
map, rainfall, and traffic accident datasets. The details are
described in the following.

1) Driving Record Dataset: In cooperation with a vehicle
recorder vendor, Datatec Co., Ltd., we were provided a large-
scale driving record dataset from a public transport bus com-
pany. The records were collected from over 2,700 drivers
for about one month. The bus company uses multifunctional
vehicle recorders developed by Datatec that have a longitudi-
nal accelerometer, lateral accelerometer, gyro compass, and
GPS. The vehicle recorders captured driving trajectory and
status every 0.5 seconds. They also automatically detected
basic driving operations such as braking and handling. Sev-
eral values, including speed and acceleration, were recorded
during the operation. The details of the recorded data for
each operation are shown in Table I.

2) Road Map Dataset: We consider that the character-
istics of roads affect driving operations. To extract road
information in which each driving operation occurs, we
utilized a road map dataset including information about
crossroads and roads connecting them. We matched each
driving operation with the nearest road segment, and used
the road width as one of the road characteristics.

3) Rainfall Dataset: We consider that the weather affects
road conditions and driving operations. We used X-band
Multi Parameter Radar information collected by the Ministry
of Land, Infrastructure, Transport and Tourism. It detected
rainfall in a 250 m mesh every minute. Since every operation
record contained GPS data and time information, we were
able to match each operation location with the rainfall
information at that time.
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4) Traffic Accident Dataset: We used traffic accident
datasets provided by the bus company and the Institute for
Traffic Accident Research and Data Analysis (ITARDA).
The bus company dataset included accidents involving its
buses in recent years and the ITARDA dataset included
accidents resulting in injury or death of involved persons
from 2012 to 2014. We used crossroads where these acci-
dents occurred as training samples for classifying caution
crossroads.

B. Extracting Caution Crossroads

We have developed a method for detecting crossroads
with potential risks. Our method analyzes driving operations
occurring at crossroads while taking into account situations
such as road width and rainfall. It tries to classify crossroads
with/without a history of accidents on the basis of driving
record features (e.g., velocity, acceleration, jerk), situations
(e.g., road width, rainfall), the number of anomalous op-
erations, and other factors. We utilized several standard
classifiers such as logistic regression and SVM. We have
omitted the details of features and evaluations here since
they are out of scope of this paper.

A crossroad actually has the risk if accidents have oc-
curred at it in recent years. When classifiers detect a cross-
road at which no accidents have occurred as one at which
accidents have occurred, we can consider it is potentially
risky. Usually, classifiers provide their decisions with certain
confidence scores, which we use to rank potentially risky
crossroads.

C. Catalog Page for Ranked Crossroads

We visualized the 20 top-ranked potentially risky cross-
roads detected by the method described in Subsection V-B
using the dataset described in Subsection V-A. A potentially
risky crossroad is one at which no accidents have occurred
but has been detected as a caution crossroad by the classifier.
We removed some crossroads that were very near railroad
stations because driving operations around the stations are
always unstable. Each visualization displayed trajectories for
the 30 top-ranking anomalous braking or handling opera-
tions. Trajectories consisted of 20-second position and time
information before and after operations occurred, and were
gradually colored from gray to black. The height represents
time, with later times at the bottom. To observe the space
time cube related to braking and handling operations from
the same direction, we selected optimal viewpoints by using
the method mentioned in Subsection III-B.

We provided the resulting crossroads ranked as potentially
risky to the transport bus company and got feedback from
them. We compared our results with their lists of caution
spots, which were developed on the basis of drivers’ expe-
riences. In so doing, we found that nine crossroads we had
classified as potentially risky were included in their lists
. Moreover, we were able to point out caution crossroads

that the bus drivers did not recognize. Figure 7 shows the
potentially risky crossroads that were included in the bus
company’s lists of caution spots.

As the result of discussions with stakeholders, we found
that the comparison results included the following types of
spots ranked as caution spots:

• Spots ranked as caution spots because of cars making
sudden lane changes and/or cutting off other cars (Fig-
ure 7 (1), (6), and (9))

• Spots ranked as caution spots because of drivers ignor-
ing stop lights or pedestrians and/or bicycles making
reckless road crossings (Figure 7 (5), (6), (14), (15)
and (19))

• Spots ranked as caution spots because of pedestrians
and/or bicycles suddenly appearing from blind spots
(Figure 7 (9), (11), and (20))

The bus company personnel also commented that “We
observed that a lot of anomalous operations tend to be
made in the morning and evening at places where abnormal
congestion is likely to occur, such as places near bridges.
Such congestion sometimes makes drivers stamp down hard
on the accelerator because of impatience, and this causes
sudden handling operations as shown in Figure 7 (6), (9),
and (15). 3D visualization using a space time cube helps us
to observe the differences in abnormalities among hours.”

VI. CONCLUSION

We have developed and propose a novel method to select
optimal viewpoints for exploring trajectories in a space time
cube. We provided an algorithm based on viewpoint entropy
weighted by angles of trajectories with a horizontal line
on a projected 2D image. As far as we know, there has
been no research on viewpoint selection for visualizations
of trajectories using an STC. We evaluated the proposed
method through users’ evaluations and case studies. In the
case studies, we generated visualizations of a lot of caution
crossroads and discussed them with stakeholders.

We plan to provide a method for automatically finding
the most suitable tile sizes. We also plan to evaluate our
method by comparing it with other methods such as the
one reported by Lee et al. [14] . Utilizing crowdsourcing to
gather pairwise comparisons between viewpoints is another
possibility for evaluating the results.
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