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Abstract A/B testing is a widely used method to estimate the effect of an intervention on the outcome (like the

effect of changing the position of a button on the click-through rate). Traditional A/B testing methods assume

SUTVA (Stable Unit Treatment Value Assumption) holds, which states that any experiment unit’s outcome will

not be interfered by other experiment units. However, this assumption does not hold in social network in many

occasions due to the network effect among users. Recent work on A/B testing proposed many new sampling meth-

ods and estimators to solve this problem. However, if the outcome is a real value, most of those methods still

underestimate the effect when the network effect is large. So in this paper, we propose new bias correction method

to further improve the estimation accuracy of A/B testing in social network. Compared with existing bias correction

method, our proposed method makes use of the information of more neighbors of a unit, making it less likely to

underestimate.
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1. INTRODUCTION

There are many occasions that we need to know the effect

of something. For example, pharmacists need to know the

effect of their new drugs on a certain disease, politicians need

to know the effect of their new policies on a certain social

problem, and web designers need to know the effect of their

new designs on the click-through rate.

A/B testing, which includes the Rubin causal model [2], is

the most widely used method to estimate the effect. In A/B

testing, Treatment indicates making an intervention (such

as applying a new drug), control indicates not making an

intervention, and assignment is either treatment or control.

We denote assignment as Z. Z = 1 indicates treatment and

Z = 0 indicates control. Outcome is the result we are inter-

ested in (such as the condition of the patient), and we denote

it as Y . We summarize some notations used in this paper in

Table 1.

Representation Example Meaning

Uppercase normal letter X Random variable

Uppercase bold letter X Random vector or matrix

Lowercase bold letter x Vector

Lowercase normal letter x Scalar

Table 1: Notations of Different Types of Symbols

The effect of an individual is called Individual Treatment

Effect (ITE), which is represented as:

δi = Yi(Zi = 1)− Yi(Zi = 0) (1)

where δi is the ITE of unit i. A/B testing aims to estimate

the Average Treatment Effect (ATE), which is the average

ITE over all units, and is represented as:

δ =
1

N

N∑
i=1

δi

=
1

N

N∑
i=1

[
Yi(Zi = 1)− Yi(Zi = 0)

]
=

1

N

N∑
i=1

Yi(Zi = 1)− 1

N

N∑
i=1

Yi(Zi = 0)

=
1

N

N∑
i=1

Yi(Z = 1)− 1

N

N∑
i=1

Yi(Z = 0)

(2)

where δ is ATE and N is the number of units, Z = 1 indi-

cates all units are treated and Z = 0 indicates all units are

controlled. ATE can be interpreted as the difference between

the average outcomes of two “parallel universes”, in one of

which all units are treated, and in the other all units are

controlled.

However, we are not able to both treat and control a unit

at the same time, that is, Zi cannot be both 1 and 0. So

in fact, ATE is a value that is impossible to be obtained.



What A/B testing does is to estimate the ATE, by making

use of randomization. Randomization means the assignment

of a unit is independent of the assignment of other units.

Based on randomization, the following difference-in-means

estimator is usually used to estimate the ATE.

δ̂ =
1

N1

∑
{i;zi=1}

Yi(Z = z)− 1

N0

∑
{i;zi=0}

Yi(Z = z) (3)

where N1 and N0 is the number of treated units and con-

trolled units respectively, Y is a random vector and Yi is

the outcome of unit i, z is the assignment vector. For all

i, if P (zi = 1) = P (zi = 0) = 0.5, where P indicates the

probability, the difference-in-means estimator is an unbiased

estimator [3].

This unbiased estimator is based on the Stable Unit Treat-

ment Value Assumption (SUTVA), which states that one

unit’s outcome cannot be influenced by other units. This

assumption is quite reasonable in many occasions, such as

the case that testing the effect of a new drug, because the

condition of a patient often will not be influenced by other

patients.

However, SUTVA is hard to hold for A/B testing in social

network. Users in social network interact with each other

intensively and there are many occasions that a unit’s out-

come can be influenced by other users. For example, if we

developed a recommendation algorithm that recommends in-

teresting tweets to each user, and the outcome we are inter-

ested in is the number of retweets of each user, and we also

assume the recommendation algorithm is indeed effective so

treated users would do more retweets, then the users who fol-

low the treated users can also see more interesting tweets in

their timelines, and as a result, their number of retweets will

also increase. Therefore, in this case, a unit’s outcome can

be influenced by other units. The effect that a unit received

from other units is often called network effect.

Bias is of great importance to evaluate the performance

of an A/B testing method. The bias of ATE is expressed as

E(δ̂)−δ. There are mainly two ways to reduce the bias intro-

duced by the interference among units. The first way is to

improve the sampling method. When SUTVA holds, uniform

sampling is enough. When it does not hold, cluster random-

ized sampling is often used [4] [5], which first partitions the

network into clusters, and then samples on cluster level. In

this way, a treated user will have more treated neighbors and

a controlled user will also have more controlled neighbors. In

other words, the treatment group and control group will be

more similar to the two ‘parallel universes’. Since cluster ran-

domized sampling cannot solve the problem completely, bias

correction is also needed, which is the second way to reduce

bias and what we are going to introduce in this paper.

2. RELATED WORK

To estimate the average outcome when adding a new fea-

ture, which only takes effect when a user and at least d of

its neighbors are treated, the problem called Network Bucket

Testing is formulated and discussed in [6] [7]. It differs from

A/B testing in that its goal is to estimate the average out-

come on a small portion of users before releasing the new

feature, rather than to estimate the effect.

To reduce the estimation bias of ATE, the use of cluster

randomized sampling is introduced [4] [5] [8], and some unbi-

ased estimators are also proposed [3] based on cluster ran-

domized sampling and SUTVA. Since they are also based

on SUTVA, they are not truly unbiased when there exist

interferences among clusters. [5] uses bias correction to fur-

ther reduce the estimation bias by assuming the outcome is

a linear function of the assignment and the treated ratio of

neighbors.

Other than the estimation of ATE, there are also some

other work trying to estimate the network effect or test the

existence of the network effect [9] [10] [11].

3. Synthetic Outcome Model

In A/B testing, although outcomes such as the condition of

patients or the number of retweets of each users, are observ-

able, the ATE is impossible to be obtained as we explained

in Section 1. To obtain the ground truth of ATE to eval-

uate the proposed methods, a synthetic outcome model is

necessary.

In this paper, we use synthetic outcome model proposed

in [8]. It is written as:

Y∗
i,t = α+ λ1Zi + λ2

1

di

∑
j∈η(i)

Yj,t−1 +Ui,t

Yi,t = g(Y∗
i,t)

(4)

where α is a constant, λ1 is the direct treatment effect, λ2

is the network effect, A is the adjacency matrix (a binary

matrix), d is the degree vector, U is a random vector rep-

resenting user specific traits and for all i, Ui ∼ N (0, 1), the

subscript ‘t’ is the iteration step, and g is a function.

The outcomes are computed iteratively until the mean of

Y converges, and Y is initialized as 0. Y is summed up by

the following four components.

• α: α is the baseline value which is a constant. It sim-

ply indicates that even if there is no treatment, the outcome

may still be non-zero. For example, if the outcome is the

number of retweets, it is non-zero even if a new feature is

not added.

• λ1Zi: Zi = 1 if unit i is treated, and Zi = 0 if it is

controlled. Therefore, the outcome of a user will increase by



λ1 if it is treated, and will not increase if it is controlled. So

we call λ1 direct treatment effect.

• λ2
1
di

∑
j∈η(i) Yj,t−1: this component is the average

outcome of user i’s neighbors （1） at the previous iteration

step multiplied by a coefficient λ2, which is the network ef-

fect. A large λ2 indicates the outcome of a user is influenced

more by the neighbors, while a small λ2 indicates the out-

come of a user is influenced less by the neighbors, and in

particular, when λ2 = 0 the outcome of a user does not de-

pend on other users, which is equivalent to SUTVA.

• Ui: Since every user is reasonable to respond differ-

ently to the treatment due to some user specific traits, like

the age, personality, occupation, etc., a Gaussian random

variable is used to capture these traits.

The function g is applied to the outcomes at each iteration

step. When g(x) = 1(x), where 1 is a indicator function, the

synthetic outcome model is a probit model. In this case, the

outcome is either 0 or 1, and it can represent the kind of

outcomes such as like/dislike. When g(x) = x, it is a linear-

in-means model, which is a model usually used to capture

the interaction of social and economic phenomenon [12] [13].

In this case, the outcome is a real value, and it can represent

the kind of outcomes such as the number of retweets or the

number of clicks.

4. Existing Methods

To estimate the ATE when the interferences among units

present, recent work mainly tries to propose new sampling

methods and estimators.

4. 1 Uniform Sampling And Cluster Randomized

Sampling

Uniform sampling is extensively used in traditional A/B

testing, which assumes SUTVA. In uniform sampling, Zi ∼
Bernoulli(0.5), and every unit has the same probability to be

either treated or controlled.

When all units are treated, a treated unit is surrounded

by only treated units, and when all units are controlled, a

controlled unit is surrounded by only controlled users. So

we should make treated units closer to treated units and

controlled units closer to controlled units. To achieve this,

we can first partition the network into clusters, and then

sample on cluster level [4] [5]. If we partition the network

into M clusters, C1, C2, . . . , CM , and we denote the assign-

ment of cluster j as WCj , then WCj ∼ Bernoulli(0.5), and

Zi = WCj if unit i is in cluster j. According to the analysis

in [3], when we use the difference-in-means estimator as ex-

pressed in Equation 3, the clusters should be balanced in size

（1）：In directed graph, we use neighbors to mean the successors (nodes

pointed to by directed edges from a starting node)

Figure 1: Linear regression using the linear model estima-

tor. Green lines are the fitted lines, the left and right black

points are the estimated average outcomes when all units are

controlled and treated respectively.

to reduce the bias. In this case, some balanced partitioning

algorithm are readily to use [14] [15] [16].

4. 2 Exposure Condition

Even using cluster randomized sampling, some treated

units may still have few treated neighbors, and some con-

trolled units may still have few controlled units, which indi-

cates they are not “effectively” treated or controlled. There-

fore, we may only use the data of the units who are “ef-

fectively” treated or controlled to estimate the ATE, and

they are network exposed to treatment and network exposed

to control respectively based on the definition of exposure

condition [4].

4. 3 Unbiased Estimators Based on Cluster Ran-

domized Sampling And SUTVA

When making use of cluster randomized sampling, the

difference-in-means estimator in Equation 3 is no longer un-

biased even assuming SUTVA. Several unbiased estimator,

such as Horvitz-Thompson estimator and Raj estimator, are

proposed [3]. But those estimators for cluster randomized

sampling are only unbiased based on SUTVA.

4. 4 Linear Model Estimator

The linear model estimator proposed in [5] differs with

other estimators in that its estimated ATE is not a pure

statistic obtained from the observed outcome data, but the

predicted value based on the assumption of outcome model.

It assumes the outcome is a linear function of the assignment

Z and the neighbor treated ratio σ. It is expressed as

Yi = α+ βZi + γσi (5)

σi =
1

di

∑
j∈η(i)

Zj (6)

where σ is the neighbor treated ratio. The parameters α, β

and γ can be estimated using linear regression as shown in

Figure 1.

If all users are treated, Z = 1, and also σ = 1. If all



Figure 2: Different outcomes obtained by setting different

treatment probability.

users are controlled, Z = 0, and also σ = 0. So the aver-

age outcome when all users are treated can be predicted by

setting both Z and σ to 1, which is the right black point in

Figure 1. And likewise, the average outcome when all users

are controlled can be predicted by setting both Z and σ to

0, which is the left black point in Figure 1. Finally, the ATE

can be estimated as the vertical distance between those two

points.

5. BIAS CORRECTION FOR ATE ES-

TIMATION

In this section, we first explain the reason why bias cor-

rection is necessary, and then introduce our proposed bias

correction method.

5. 1 Why Bias Correction Is Necessary

In Figure 2, we show different outcomes obtained by set-

ting different treatment probability (0.5, 0.7, 0.9). When we

conduct an A/B testing experiment, usually 50% units are

treated and the outcomes are plotted by red points. When

we increase the probability of treatment, the average out-

come is going to be larger, as the yellow and green points

show. If all users are treated, the probability of treatment is

1, and therefore the average outcome will be larger than the

average outcome of treated users when the treatment prob-

ability is 0.5. For the same reason, the average outcome in

the case that all users are controlled will be smaller than

the average outcome of controlled users when the treatment

probability is 0.5. So we have

δ̂ =
1

N1

∑
{i;zi=1}

Yi(Z = z)− 1

N0

∑
{i;zi=0}

Yi(Z = z)

<=
1

N

N∑
i=1

Yi(Z = 1)− 1

N

N∑
i=0

Yi(Z = 0)

= δ

(7)

Thus, common estimators such as the linear-in-means esti-

mator usually tend to underestimate. This is the reason why

we need bias correction.

5. 2 Proposed Bias Correction Method

To correct the bias, we need make an assumption of the

outcome model. [5] assumes the outcome model is a lin-

ear function depending on the assignment and the neighbor

treated ratio, as expressed in Equation 5, and they achieved

better estimation accuracy than the estimators which only

use pure statistic from the data. Since the linear model esti-

mator only uses the information of 1-hop neighbors, we can

further increase the estimation accuracy by making use of

the information of more neighbors in the social network.

We define the treated strength as:

τ i = (1− p)Zi + p
1

di

∑
j∈η(i)

τ j (8)

where p is a hyper-parameter and 0 <= p <= 1. If we expand

Equation 8, it can be written as:

τ i = (1− p)Zi +
p

di

∑
j∈η(i)

τ j

= (1− p)Zi +
p

di

∑
j∈η(i)

(1− p)Zj +
p

di

∑
j∈η(i)

p

dj

∑
k∈η(j)

τ k

(9)

The treated strength τ can be further expanded, so the

treated strength of a single unit uses the information of all

connected units（2）. It is also easy to show that the weight

of (k + 1)-hop neighbors is less than that of k-hop neigh-

bors. For example, the weight of 0-hop neighbor (the unit

it self) is 1− p, the weight of 1-hop neighbors is p(1−p)
di

, and

the weight of 2-hop neighbors is p2(1−p)
didj

. Therefore, close

neighbors contribute more to a unit’s treated strength than

faraway neighbors do.

The treated strength τ can be computed iteratively until

convergence as expressed in the following equations:

τ i,t = (1− p)Zi + p
1

di

∑
j∈η(i)

τ j,t−1 (10)

τ i,0 = (1− p)Zi (11)

We then show some lemmas for our defined treated

strength.

Lemma 1. For all i, 0 <= τ i <= 1

Proof. This can be easily proved by induction. When t = 0,

since 0 <= 1− p <= 1 and Zi ∈ {0, 1}, we have 0 <= τ i,0 <= 1.

Assume, for t = k, 0 <= τ i,k <= 1. Let t = k + 1,

τ i,k+1 = (1− p)Zi + p
1

di

∑
j∈η(i)

τ j,k

<= (1− p) + p

<= 1

（2）：Unit a and unit b is connected if there is a path from unit a to

unit b.



Graph Name Nodes Edges Description

wiki-Vote 7,115 103,689 Wikipedia who-votes-on-whom network

soc-Epinions1 75,879 508,837 Who-trusts-whom network of Epinions.com

soc-Slashdot0811 77,360 905,468 Slashdot social network from November 2008

Table 2: Graph dataset information

and τ i,k+1 >= 0 because all summands in Equation 10 are

greater than or equal to 0 when t = k+1. So 0 <= τ i,k+1 <= 1.

Therefore, 0 <= τ i,t <= 1 holds for all t. ■

Lemma 2. If p |= 1, for all i, τ i = 0 when Z = 0, and

τ i = 1 when Z = 1.

Proof. This can also be proved by induction. When Z = 0,

τ i,0 = 0. Assume for t = k, τ i,k = 0. Let t = k + 1, since

for any unit i, both Zi = 0 and
∑

j∈η(i) τ j,k = 0, we have

τ i,k+1 = 0. Therefore, when Z = 0, in any iteration round

t, τ = 0.

When Z = 1, we have

τ i,0 = (1− p)

τ i,1 = (1− p) + p(1− p) = (1− p)(1 + p)

τ i,2 = (1− p) + p(1− p)(1 + p) = (1− p)(1 + p+ p2)

Assume for t = k, τ i,k = (1− p)
∑k

a=0 p
a. Let t = k + 1,

τ i,k+1 = (1− p) + p(1− p)

k∑
a=0

pa

= (1− p) + (1− p)

k+1∑
a=1

pa

= (1− p)

k+1∑
a=0

pa

So for all t >= 0, τ i,t = (1 − p)
∑t

a=0 p
a = 1 − pt+1, and

then limt→∞ τ i,t = 1. Therefore τ i = 1 when Equation 10

converges. ■

Based on the treated strength we defined, we propose a

new linear model estimator:

Yi = α+ βτ i (12)

The parameters α and β can be estimated using linear re-

gression. Then the outcome of unit i is estimated as:

Ŷi = α̂+ β̂τ i (13)

Since τ varies with the choice of the hyper-parameter p, we

choose the p that minimizes the regression loss when esti-

mating the parameters α and β.

When all units are treated, Z = 1, and by Lemma 2, τ = 1.

Likewise, when all units are controlled, τ = 0. So the ATE

is estimated as:

δ̂ =
N∑
i=1

Ŷi(Z = 1)−
N∑
i=1

Ŷi(Z = 0)

=

N∑
i=1

Ŷi(τ = 1)−
N∑
i=1

Ŷi(τ = 0)

= (α̂+ β̂)− α̂

= β̂

(14)

Therefore, the ATE is estimated as β̂.

6. EXPERIMENT AND RESULTS

In this section, we evaluate our proposed bias correction

method in terms of the estimation bias.

6. 1 Experiment Settings

a ) Data Sets

For the network data, we use “wiki-Vote”, “soc-Epinions1”

and “soc-Slashdot0811” from [1]. The information of these

data sets is listed in Table 2. In the experiment, we con-

verted all these graphs to undirected graphs, and dangling

nodes, whose degree is 0, are removed.

b ) Outcomes

As we mentioned before, in A/B testing, the true ATE

as expressed in Equation 2 is unobservable. So to evaluate

our proposed method, we have to generate the outcome by

a synthetic outcome model. And the true ATE can also be

obtain making use of the synthetic outcome model. In our

experiment, we use the synthetic outcome model expressed

in Equation 4, by setting g(x) = 1(x) and g(x) = x. With-

out loss of generality, when g(x) = 1(x), α in the model is

set to −1.5, and when g(x) = x, α is set to 3. For both cases,

λ1 is set to 0.0 ∼ 1.0, and λ2 is set to 0.0, 0.2, 0.4, 0.6, 0.8, 0.9.

c ) Baseline Method

We use the linear model estimator proposed in [5] and

discussed in Section 4. 4 as our baseline method because it

achieved the best estimation accuracy among existing meth-

ods. Both our proposed method and the baseline method

use cluster randomized sampling.

6. 2 Results

Since the variances of both our proposed bias correction

method and the baseline method are relatively small com-

pared with the bias, we evaluate the proposed method in

terms of the absolute value of bias |bias|. The smaller the

|bias|, the better the performance.

When g(x) = 1(x), the results are shown in Figure 3. Since



(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 3: Results on different data sets when g(x) = 1(x).

λ1 ∈ [0, 1], λ2 ∈ [0, 1], and |bias| < 0.02, the estimation

bias of both baseline method and our proposed method is

small. When λ1 and λ2 are both large, our proposed method

perform slightly better, while the proposed method may be

unstable and produces slightly large bias when λ1 is small.

When g(x) = x, the results are shown in Figure 4. It is

easy to observe that when λ2 is large, the baseline method

produces significant bias while our proposed method still pro-

duces small bias. So our proposed method is less likely to

underestimate the ATE.



(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4: Results on different data sets when g(x) = x.

7. CONCLUSION

In this paper, we argued that without bias correction, ex-

isting estimation methods usually tend to underestimate the

ATE, and to correct the bias, we proposed a new bias cor-

rection method. In our proposed bias correction method, we

first defined the treated strength, which makes use of the

assignment information of all connected units, then we pro-

posed a new linear model estimator based on the treated

strength. Since our proposed method incorporates the infor-



mation of not only 1-hop neighbors, but also 2-hop, 3-hop,

. . ., n-hop neighbors, it is less likely to be underestimate the

ATE. As shown in the experiment results, when g(x) = x,

in which case the outcome tends to get large due to large

network effect, our proposed bias correction method still es-

timate the ATE accurately while the baseline method under-

estimates significantly.

Since we use a synthetic outcome model to generate the

outcomes and evaluate our proposed method, the perfor-

mance may depend on the synthetic outcome model we

choose. For future research, we plan to evaluate our proposed

method based on more kinds of synthetic outcome models.
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