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Abstract

Chunks (or phrases) once played a piv-
otal role in machine translation. By us-
ing a chunk rather than a word as
the basic translation unit, local (intra-
chunk) and global (inter-chunk) word or-
ders and dependencies can be easily mod-
eled. The chunk structure, despite its im-
portance, has not been considered in the
decoders used for neural machine trans-
lation (NMT). In this paper, we propose
chunk-based decoders for NMT, each of
which consists of a chunk-level decoder
and a word-level decoder. The chunk-
level decoder models global dependencies
while the word-level decoder decides the
local word order in a chunk. To output
a target sentence, the chunk-level decoder
generates a chunk representation contain-
ing global information, which the word-
level decoder then uses as a basis to pre-
dict the words inside the chunk. Experi-
mental results show that our proposed de-
coders can significantly improve transla-
tion performance in a WAT ’16 English-
to-Japanese translation task.

1 Introduction

Neural machine translation (NMT) performs end-
to-end translation based on a simple encoder-
decoder model (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b) and
has now overtaken the classical, complex statis-
tical machine translation (SMT) in terms of perfor-
mance and simplicity (Sennrich et al., 2016; Lu-
ong and Manning, 2016; Cromieres et al., 2016;
Neubig, 2016). In NMT, an encoder first maps
a source sequence into vector representations and
∗Contribution during internship at Microsoft Research.
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Figure 1: Translation from English to Japanese.
The function words are underlined.

a decoder then maps the vectors into a target se-
quence (§ 2). This simple framework allows re-
searchers to incorporate the structure of the source
sentence as in SMT by leveraging various architec-
tures as the encoder (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Cho et al., 2014b;
Eriguchi et al., 2016b). Most of the NMT models,
however, still rely on a sequential decoder based
on a recurrent neural network (RNN) due to the
difficulty in capturing the structure of a target sen-
tence that is unseen during translation.

With the sequential decoder, however, there are
two problems to be solved. First, it is difficult
to model long-distance dependencies (Bahdanau
et al., 2015). A hidden state ht in an RNN is
only conditioned by its previous output yt−1, pre-
vious hidden state ht−1, and current input xt. This
makes it difficult to capture the dependencies be-
tween an older output yt−N if they are too far
from the current output. This problem can become
more serious when the target sequence becomes
longer. For example, in Figure 1, when we trans-
late the English sentence into the Japanese one, af-
ter the decoder predicts the content word “帰っ
(go back)”, it has to predict four function words
“て (suffix)”, “しまい (perfect tense)”, “たい (de-
sire)”, and “と (to)” before predicting the next
content word “思っ (feel)”. In such a case, the
decoder is required to capture the longer depen-
dencies in a target sentence.

Another problem with the sequential decoder is
that it is expected to cover multiple possible word
orders simply by memorizing the local word se-
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quences in the limited training data. This problem
can be more serious in free word-order languages
such as Czech, German, Japanese, and Turkish. In
the case of the example in Figure 1, the order of
the phrase “早く (early)” and the phrase “家へ (to
home)” is flexible. This means that simply memo-
rizing the word order in training data is not enough
to train a model that can assign a high probability
to a correct sentence regardless of its word order.

In the past, chunks (or phrases) were utilized to
handle the above problems in statistical machine
translation (SMT) (Watanabe et al., 2003; Koehn
et al., 2003) and in example-based machine trans-
lation (EBMT) (Kim et al., 2010). By using a
chunk rather than a word as the basic translation
unit, one can treat a sentence as a shorter sequence.
This makes it easy to capture the longer dependen-
cies in a target sentence. The order of words in a
chunk is relatively fixed while that in a sentence is
much more flexible. Thus, modeling intra-chunk
(local) word orders and inter-chunk (global) de-
pendencies independently can help capture the dif-
ference of the flexibility between the word order
and the chunk order in free word-order languages.

In this paper, we refine the original RNN de-
coder to consider chunk information in NMT. We
propose three novel NMT models that capture and
utilize the chunk structure in the target language
(§ 3). Our focus is the hierarchical structure of a
sentence: each sentence consists of chunks, and
each chunk consists of words. To encourage an
NMT model to capture the hierarchical structure,
we start from a hierarchical RNN that consists of
a chunk-level decoder and a word-level decoder
(Model 1). Then, we improve the word-level de-
coder by introducing inter-chunk connections to
capture the interaction between chunks (Model 2).
Finally, we introduce a feedback mechanism to the
chunk-level decoder to enhance the memory ca-
pacity of previous outputs (Model 3).

We evaluate the three models on the WAT ’16
English-to-Japanese translation task (§ 4). The ex-
perimental results show that our best model out-
performs the best single NMT model reported in
WAT ’16 (Eriguchi et al., 2016b).

Our contributions are twofold: (1) chunk infor-
mation is introduced into NMT to improve transla-
tion performance, and (2) a novel hierarchical de-
coder is devised to model the properties of chunk
structure in the encoder-decoder framework.

2 Preliminaries: Attention-based Neural
Machine Translation

In this section, we briefly introduce the architec-
ture of the attention-based NMT model (Bahdanau
et al., 2015), which is the basis of our proposed
models.

2.1 Neural Machine Translation
An NMT model usually consists of two connected
neural networks: an encoder and a decoder. Af-
ter the encoder maps a source sentence into a
fixed-length vector, the decoder maps the vector
into a target sentence. The implementation of
the encoder can be a convolutional neural net-
work (CNN) (Kalchbrenner and Blunsom, 2013), a
long short-term memory (LSTM) (Sutskever et al.,
2014; Luong and Manning, 2016), a gated recur-
rent unit (GRU) (Cho et al., 2014b; Bahdanau et al.,
2015), or a Tree-LSTM (Eriguchi et al., 2016b).
While various architectures are leveraged as an en-
coder to capture the structural information in the
source language, most of the NMT models rely on a
standard sequential network such as LSTM or GRU

as the decoder.
Following (Bahdanau et al., 2015), we use GRU

as the recurrent unit in this paper. A GRU unit com-
putes its hidden state vector hi given an input vec-
tor xi and the previous hidden state hi−1:

hi = GRU(hi−1,xi). (1)

The function GRU(·) is calculated as

ri = σ(Wrxi +Urhi−1 + br), (2)

zi = σ(Wzxi +Uzhi−1 + bz), (3)

h̃i = tanh(Wxi +U(ri � hi−1 + b)), (4)

hi = (1− zi)� h̃i + zi � hi−1, (5)

where vectors ri and zi are reset gate and update
gate, respectively. While the former gate allows
the model to forget the previous states, the latter
gate decides how much the model updates its con-
tent. All the W s and Us, or the bs above are train-
able matrices or vectors. σ(·) and � denote the
sigmoid function and element-wise multiplication
operator, respectively.

In this simple model, we train a GRU function
that encodes a source sentence {x1, · · · , xI} into a
single vector hI . At the same time, we jointly train
another GRU function that decodes hI to the target
sentence {y1, · · · , yJ}. Here, the j-th word in the

1902



!"

だれ か が #"

!"#$%&'( )*%%&"( +,-,&+

$%
.

/ )&-'% &'

.

.

$( $'.

.)% )( )"

)* % )* ( )*"

Figure 2: Standard word-based decoder.

target sentence yj can be predicted with this de-
coder GRU and a nonlinear function g(·) followed
by a softmax layer, as

c = hI , (6)

sj = GRU(sj−1, [yj−1; c]), (7)

s̃j = g(yj−1, sj , c), (8)

P (yj |y<j ,x) = softmax(s̃j), (9)

where c is a context vector of the encoded sen-
tence and sj is a hidden state of the decoder GRU.

Following Bahdanau et al. (2015), we use a
mini-batch stochastic gradient descent (SGD) algo-
rithm with ADADELTA (Zeiler, 2012) to train the
above two GRU functions (i.e., the encoder and the
decoder) jointly. The objective is to minimize the
cross-entropy loss of the training data D, as

J =
∑

(x,y)∈D
− logP (y|x). (10)

2.2 Attention Mechanism for Neural
Machine Translation

To use all the hidden states of the encoder and
improve the translation performance of long sen-
tences, Bahdanau et al. (2015) proposed using an
attention mechanism. In the attention model, the
context vector is not simply the last encoder state
hI but rather the weighted sum of all hidden states
of the bidirectional GRU, as follows:

cj =
I∑

i=1

αjihi. (11)

Here, the weight αji decides how much a source
word xi contributes to the target word yj . αji is
computed by a feedforward layer and a softmax
layer as

eji = v · tanh(Wehi +Uesj + be), (12)

αji =
exp(eji)∑J

j′=1 exp(ej′i)
, (13)
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Figure 3: Chunk-based decoder. The top layer
(word-level decoder) illustrates the first term in
Eq. (15) and the bottom layer (chunk-level de-
coder) denotes the second term.

where We, Ue are trainable matrices and the v,
be are trainable vectors.1 In a decoder using the
attention mechanism, the obtained context vector
cj in each time step replaces cs in Eqs. (7) and
(8). An illustration of the NMT model with the
attention mechanism is shown in Figure 2.

The attention mechanism is expected to learn
alignments between source and target words, and
plays a similar role to the translation model in
phrase-based SMT (Koehn et al., 2003).

3 Neural Machine Translation with
Chunk-based Decoder

Taking non-sequential information such as chunks
(or phrases) structure into consideration has
proved helpful for SMT (Watanabe et al., 2003;
Koehn et al., 2003) and EBMT (Kim et al., 2010).
Here, we focus on two important properties of
chunks (Abney, 1991): (1) The word order in a
chunk is almost always fixed, and (2) A chunk
consists of a few (typically one) content words sur-
rounded by zero or more function words.

To fully utilize the above properties of a chunk,
we propose modeling the intra-chunk and the
inter-chunk dependencies independently with a
“chunk-by-chunk” decoder (See Figure 3). In the
standard word-by-word decoder described in § 2, a
target word yj in the target sentence y is predicted
by taking the previous outputs y<j and the source
sentence x as input:

P (y|x) =
J∏

j=1

P (yj |y<j ,x), (14)

where J is the length of the target sentence. Not
1We choose this implementation following (Luong et al.,

2015b), while (Bahdanau et al., 2015) use sj−1 instead of sj
in Eq. (12).
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Figure 4: Proposed model: NMT with chunk-based decoder. A chunk-level decoder generates a chunk
representation for each chunk while a word-level decoder uses the representation to predict each word.
The solid lines in the figure illustrate Model 1. The dashed blue arrows in the word-level decoder denote
the connections added in Model 2. The dotted red arrows in the chunk-level decoder denote the feedback
states added in Model 3; the connections in the thick black arrows are replaced with the dotted red arrows.

assuming any structural information of the target
language, the sequential decoder has to memorize
long dependencies in a sequence. To release the
model from the pressure of memorizing the long
dependencies over a sentence, we redefine this
problem as the combination of a word prediction
problem and a chunk generation problem:

P (y|x) =
K∏

k=1



P (ck|c<k,x)

Jk∏

j=1

P (yj |y<j , ck,x)



 ,

(15)
whereK is the number of chunks in the target sen-
tence and Jk is the length of the k-th chunk (see
Figure 3). The first term represents the generation
probability of a chunk ck and the second term in-
dicates the probability of a word yj in the chunk.
We model the former term as a chunk-level de-
coder and the latter term as a word-level decoder.
As demonstrated later in § 4, both K and Jk are
much shorter than the sentence length J , which is
why our decoders do not have to capture the long
dependencies like the standard decoder does.

In the above formulation, we model the in-
formation of words and their orders in a chunk.
No matter which language we target, we can as-
sume that a chunk usually consists of some con-
tent words and function words, and the word or-
der in the chunk is almost always fixed (Abney,
1991). Although our idea can be used in sev-
eral languages, the optimal network architecture
could depend on the word order of the target lan-
guage. In this work, we design models for lan-

guages in which content words are followed by
function words, such as Japanese and Korean. The
details of our models are described in the follow-
ing sections.

3.1 Model 1: Basic Chunk-based Decoder
The model described in this section is the basis of
our proposed decoders. It consists of two parts: a
chunk-level decoder (§ 3.1.1) and a word-level de-
coder (§ 3.1.2). The part drawn in black solid lines
in Figure 4 illustrates the architecture of Model 1.

3.1.1 Chunk-level Decoder
Our chunk-level decoder (see Figure 3) outputs a
chunk representation. The chunk representation
contains the information about words that should
be predicted by the word-level decoder.

To generate the representation of the k-th chunk
s̃
(c)
k , the chunk-level decoder (see the bottom layer

in Figure 4) takes the last states of the word-level
decoder s(w)

k−1,Jk−1
and updates its hidden state s(c)k

as:

s
(c)
k = GRU(s

(c)
k−1, s

(w)
k−1,Jk−1

), (16)

s̃
(c)
k = Wcs

(c)
k + bc. (17)

The obtained chunk representation s̃
(c)
k continues

to be fed into the word-level decoder until it out-
puts all the words in the current chunk.

3.1.2 Word-level Decoder
Our word-level decoder (see Figure 4) differs from
the standard sequential decoder described in § 2 in
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that it takes the chunk representation s̃(c)k as input:

s
(w)
k,j = GRU(s

(w)
k,j−1, [s̃

(c)
k ;yk,j−1; ck,j−1]), (18)

s̃
(w)
k,j = g(yk,j−1, s

(w)
k,j , ck,j), (19)

P (yk,j |y<j ,x) = softmax(s̃(w)
k,j ). (20)

In a standard sequential decoder, the hidden
state iterates over the length of a target sentence
and then generates an end-of-sentence token. In
other words, its hidden layers are required to mem-
orize the long-term dependencies and orders in the
target language. In contrast, in our word-level de-
coder, the hidden state iterates only over the length
of a chunk and then generates an end-of-chunk
token. Thus, our word-level decoder is released
from the pressure of memorizing the long (inter-
chunk) dependencies and can focus on learning the
short (intra-chunk) dependencies.

3.2 Model 2: Inter-Chunk Connection
The second term in Eq. (15) only iterates over one
chunk (j = 1 to Jk). This means that the last state
and the last output of a chunk are not being fed
into the word-level decoder at the next time step
(see the black part in Figure 4). In other words,
s
(w)
k,1 in Eq. (18) is always initialized before gen-

erating the first word in a chunk. This may have a
bad influence on the word-level decoder because it
cannot access any previous information at the first
word of each chunk.

To address this problem, we add new connec-
tions to Model 1 between the first state in a chunk
and the last state in the previous chunk, as

s
(w)
k,1 = GRU(s

(w)
k−1,Jk−1

, [s̃
(c)
k ;yk−1,Jk−1

; ck−1,Jk−1
]).

(21)
The dashed blue arrows in Figure 4 illustrate the

added inter-chunk connections.

3.3 Model 3: Word-to-Chunk Feedback
The chunk-level decoder in Eq. (16) is only con-
ditioned by s

(w)
k−1,Jk−1

, the last word state in each
chunk (see the black part in Figure 4). This may
affect the chunk-level decoder because it cannot
memorize what kind of information has already
been generated by the word-level decoder. The
information about the words in a chunk should
not be included in the representation of the next
chunk; otherwise, it may generate the same chunks
multiple times, or forget to translate some words in
the source sentence.

To encourage the chunk-level decoder to mem-
orize the information about the previous outputs
more carefully, we add feedback states to our
chunk-level decoder in Model 2. The feedback
state in the chunk-level decoder is updated at every
time step j(> 1) in k-th chunk, as

s
(c)
k,j = GRU(s

(c)
k,j−1, s

(w)
k,j ). (22)

The red part in Figure 4 illustrate the added
feedback states and their connections. The con-
nections in the thick black arrows are replaced
with the dotted red arrows in Model 3.

4 Experiments

4.1 Setup

Data To examine the effectiveness of our de-
coders, we chose Japanese, a free word-order
language, as the target language. Japanese sen-
tences are easy to break into well-defined chunks
(called bunsetsus (Hashimoto, 1934) in Japanese).
For example, the accuracy of bunsetsu-chunking
on newspaper articles is reported to be over
99% (Murata et al., 2000; Yoshinaga and Kit-
suregawa, 2014). The effect of chunking errors
in training the decoder can be suppressed, which
means we can accurately evaluate the potential of
our method. We used the English-Japanese train-
ing corpus in the Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016), which
was provided in WAT ’16. To remove inaccurate
translation pairs, we extracted the first two million
out of the 3 million pairs following the setting that
gave the best performances in WAT ’15 (Neubig
et al., 2015).

Preprocessings For Japanese sentences, we per-
formed tokenization using KyTea 0.4.72 (Neu-
big et al., 2011). Then we performed bunsetsu-
chunking with J.DepP 2015.10.053 (Yoshinaga
and Kitsuregawa, 2009, 2010, 2014). Special end-
of-chunk tokens were inserted at the end of the
chunks. Our word-level decoders described in
§ 3 will stop generating words after each end-
of-chunk token. For English sentences, we per-
formed the same preprocessings described on the
WAT ’16 Website.4 To suppress having possible

2http://www.phontron.com/kytea/
3http://www.tkl.iis.u-tokyo.ac.jp/

˜ynaga/jdepp/
4http://lotus.kuee.kyoto-u.ac.jp/WAT/

baseline/dataPreparationJE.html
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Corpus # words # chunks # sentences
Train 49,671,230 15,934,129 1,663,780
Dev. 54,287 - 1,790
Test 54,088 - 1,812

Table 1: Statistics of the target language
(Japanese) in extracted corpus after preprocessing.

chunking errors affect the translation quality, we
removed extremely long chunks from the train-
ing data. Specifically, among the 2 million pre-
processed translation pairs, we excluded sentence
pairs that matched any of following conditions: (1)
The length of the source sentence or target sen-
tence is larger than 64 (3% of whole data); (2)
The maximum length of a chunk in the target sen-
tence is larger than 8 (14% of whole data); and (3)
The maximum number of chunks in the target sen-
tence is larger than 20 (3% of whole data). Table 1
shows the details of the extracted data.

Postprocessing To perform unknown word re-
placement (Luong et al., 2015a), we built a bilin-
gual English-Japanese dictionary from all of the
three million translation pairs. The dictionary
was extracted with the MGIZA++ 0.7.05 (Och and
Ney, 2003; Gao and Vogel, 2008) word alignment
tool by automatically extracting the alignments
between English words and Japanese words.

Model Architecture Any encoder can be com-
bined with our decoders. In this work, we
adopted a single-layer bidirectional GRU (Cho
et al., 2014b; Bahdanau et al., 2015) as the encoder
to focus on confirming the impact of the proposed
decoders. We used single layer GRUs for the word-
level decoder and the chunk-level decoder. The
vocabulary sizes were set to 40k for source side
and 30k for target side, respectively. The condi-
tional probability of each target word was com-
puted with a deep-output (Pascanu et al., 2014)
layer with maxout (Goodfellow et al., 2013) units
following (Bahdanau et al., 2015). The maximum
number of output chunks was set to 20 and the
maximum length of a chunk was set to 8.

Training Details The models were optimized
using ADADELTA following (Bahdanau et al.,
2015). The hyperparameters of the training pro-
cedure were fixed to the values given in Table 2.
Note that the learning rate was halved when the
BLEU score on the development set did not in-

5https://github.com/moses-smt/mgiza

ρ of ADADELTA 0.95
ε of ADADELTA 1e−6

Initial learning rate 1.0
Gradient clipping 1.0
Mini-batch size 64
dhid (dimension of hidden states) 1024
demb (dimension of word embeddings) 1024

Table 2: Hyperparameters for training.

crease for 30,000 batches. All the parameters were
initialized randomly with Gaussian distribution. It
took about a week to train each model with an
NVIDIA TITAN X (Pascal) GPU.

Evaluation Following the WAT ’16 evaluation
procedure, we used BLEU (Papineni et al., 2002)
and RIBES (Isozaki et al., 2010) to evaluate
our models. The BLEU scores were calculated
with multi-bleu.pl in Moses 2.1.16 (Koehn
et al., 2007); RIBES scores were calculated with
RIBES.py 1.03.17 (Isozaki et al., 2010). Follow-
ing Cho et al. (2014a), we performed beam search8

with length-normalized log-probability to decode
target sentences. We saved the trained models
that performed best on the development set dur-
ing training and used them to evaluate the systems
with the test set.

Baseline Systems The baseline systems and the
important hyperparamters are listed in Table 3.
Eriguchi et al. (2016a)’s baseline system (the first
line in Table 3) was the best single (w/o en-
sembling) word-based NMT system that were re-
ported in WAT ’16. For a more fair evaluation,
we also reimplemented a standard attention-based
NMT system that uses exactly the same encoder,
training procedure, and the hyperparameters as
our proposed models, but has a word-based de-
coder. We trained this system on the training data
without chunk segmentations (the second line in
Table 3) and with chunk segmentations given by
J.DepP (the third line in Table 3). The chun-
ked corpus fed to the third system is exactly the
same as the training data of our proposed sys-
tems (sixth to eighth lines in Table 3). In addi-
tion, we also include the Tree-to-Sequence mod-
els (Eriguchi et al., 2016a,b) (the fourth and fifth
lines in Table 3) to compare the impact of captur-
ing the structure in the source language and that in

6http://www.statmt.org/moses/
7http://www.kecl.ntt.co.jp/icl/lirg/

ribes/index.html
8Beam size is set to 20.
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System Hyperparameter Dec. time
Encoder Type / Decoder Type |Vsrc| |Vtrg| demb dhid BLEU RIBES [ms/sent.]

Word-based / Word-based (Eriguchi et al., 2016a) 88k 66k 512 512 34.64 81.60 -
/ Word-based (our implementation) 40k 30k 1024 1024 36.33 81.22 84.1

+ chunked training data via J.DepP 40k 30k 1024 1024 35.71 80.89 101.5
Tree-based / Word-based (Eriguchi et al., 2016b) 88k 66k 512 512 34.91 81.66 (363.7)9

/ Char-based (Eriguchi et al., 2016a) 88k 3k 256 512 31.52 79.39 (8.8)9

Word-based / Proposed Chunk-based (Model 1) 40k 30k 1024 1024 34.70 81.01 165.2
+ Inter-chunk connection (Model 2) 40k 30k 1024 1024 35.81 81.29 165.2
+ Word-to-chunk feedback (Model 3) 40k 30k 1024 1024 37.26 82.23 163.7

Table 3: The settings and results of the baseline systems and our systems. |Vsrc| and |Vtrg| denote the
vocabulary size of the source language and the target language, respectively. demb and dhid are the
dimension size of the word embeddings and hidden states, respectively. Only single NMT models (w/o
ensembling) reported in WAT ’16 are listed here. Full results are available on the WAT ’16 Website.10

the target language. Note that all systems listed in
Table 3, including our models, are single models
without ensemble techniques.

4.2 Results

Proposed Models vs. Baselines Table 3 shows
the experimental results on the ASPEC test set.
We can observe that our best model (Model 3) out-
performed all the single NMT models reported in
WAT ’16. The gain obtained by switching Word-
based decoder to Chunk-based decoder (+0.93
BLEU and +1.01 RIBES) is larger than the gain ob-
tained by switching word-based encoder to Tree-
based encoder (+0.27 BLEU and +0.06 RIBES).
This result shows that capturing the chunk struc-
ture in the target language is more effective than
capturing the syntax structure in the source lan-
guage. Compared with the character-based NMT

model (Eriguchi et al., 2016a), our Model 3 per-
formed better by +5.74 BLEU score and +2.84
RIBES score. One possible reason for this is that
using a character-based model rather than a word-
based model makes it more difficult to capture
long-distance dependencies because the length of
a target sequence becomes much longer in the
character-based model.

Comparison between Baselines Among the
five baselines, our reimplementation without
chunk segmentations (the second line in Table 3)
achieved the best BLEU score while the Eriguchi
et al. (2016b)’s system (the fourth line in Table 3)
achieved the best RIBES score. The most probable
reasons for the superiority of our reimplementa-
tion over the Eriguchi et al. (2016a)’s word-based
baseline (the first line in Table 3) is that the dimen-
sions of word embeddings and hidden states in our
systems are higher than theirs.

Feeding chunked training data to our baseline
system (the third line in Table 3) instead of a
normal data caused bad effects by −0.62 BLEU

score and by −0.33 RIBES score. We evaluated
the chunking ability of this system by comparing
the positions of end-of-chunk tokens generated by
this system with the chunk boundaries obtained
by J.DepP. To our surprise, this word-based de-
coder could output chunk separations as accurate
as our proposed Model 3 (both systems achieved
F1-score> 97). The results show that even a stan-
dard word-based decoder has the ability to predict
chunk boundaries if they are given in training data.
However, it is difficult for the word-based decoder
to utilize the chunk information to improve the
translation quality.

Decoding Speed Although the chunk-based de-
coder runs 2x slower than our word-based decoder,
it is still practically acceptable (6 sentences per
second). The character-based decoder (the fifth
line in Table 3) is less time-consuming mainly be-
cause of its small vocabulary size (|Vtrg| = 3k).

Chunk-level Evaluation To confirm that our
models can capture local (intra-chunk) and global
(inter-chunk) word orders well, we evaluated the
translation quality at the chunk level. First, we
performed bunsetsu-chunking on the reference
translations in the test set. Then, for both refer-
ence translations and the outputs of our systems,
we combined all the words in each chunk into a
single token to regard a chunk as the basic trans-
lation unit instead of a word. Finally, we com-
puted the chunk-based BLEU (C-BLEU) and RIBES

9Tree-to-Seq models are tested on CPUs instead of GPUs.
10http://lotus.kuee.kyoto-u.ac.jp/WAT/

evaluation
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Figure 5: Translation examples. “/” denote chunk boundaries that are automatically determined by our
decoders. Words colored blue and red respectively denote correct translations and wrong translations.

Decoder C-BLEU C-RIBES

Word-based (our implementation) 7.56 50.73
+ chunked training data via J.DepP 7.40 51.18
Proposed Chunk-based (Model 1) 7.59 50.47
+ Inter-chunk connection (Model 2) 7.78 51.48
+ Word-to-chunk feedback (Model 3) 8.69 52.82

Table 4: Chunk-based BLEU and RIBES with the
systems using the word-based encoder.

(C-RIBES). The results are listed in Table 4. For
the word-based decoder (the first line in Table 4),
we performed bunsetsu-chunking by J.DepP on its
outputs to obtain chunk boundaries. As another
baseline (the second line in Table 4), we used
the chunked sentences as training data instead of
performing chunking after decoding. The results
show that our models (Model 2 and Model 3) out-
perform the word-based decoders in both C-BLEU

and C-RIBES. This indicates that our chunk-based
decoders can produce more correct chunks in a
more correct order than the word-based models.

Qualitative Analysis To clarify the qualitative
difference between the word-based decoder and
our chunk-based decoders, we show translation
examples in Figure 5. Words in blue and red re-
spectively denote correct translations and wrong
translations. The word-based decoder (our im-
plementation) has completely dropped the trans-
lation of “by oneself.” On the other hand,
Model 1 generated a slightly wrong translation
“自分の技術を習得すること (to master own
technique).” In addition, Model 1 has made an-
other serious word-order error “特別な調整 (spe-
cial adjustment).” These results suggest that
Model 1 can capture longer dependencies in a long
sequence than the word-based decoder. However,
Model 1 is not good at modeling global word or-
der because it cannot access enough information

about previous outputs. The weakness of model-
ing word order was overcome in Model 2 thanks
to the inter-chunk connections. However, Model 2
still suffered from the errors of function words: it
still generates a wrong chunk “特別な (special)”
instead of the correct one “特別に (specially)”
and a wrong chunk “よる” instead of “より.”
Although these errors seem trivial, such mistakes
with function words bring serious changes of sen-
tence meaning. However, all of these problems
have disappeared in Model 3. This phenomenon
supports the importance of the feedback states to
provide the decoder with a better ability to choose
more accurate words in chunks.

5 Related Work

Much work has been done on using chunk (or
phrase) structure to improve machine translation
quality. The most notable work involved phrase-
based SMT (Koehn et al., 2003), which has been
the basis for a huge amount of work on SMT for
more than ten years. Apart from this, Watanabe
et al. (2003) proposed a chunk-based translation
model that generates output sentences in a chunk-
by-chunk manner. The chunk structure is effective
not only for SMT but also for example-based ma-
chine translation (EBMT). Kim et al. (2010) pro-
posed a chunk-based EBMT and showed that using
chunk structures can help with finding better word
alignments. Our work is different from theirs in
that our models are based on NMT, but not SMT

or EBMT. The decoders in the above studies can
model the chunk structure by storing chunk pairs
in a large table. In contrast, we do that by indi-
vidually training a chunk generation model and a
word prediction model with two RNNs.

While most of the NMT models focus on the
conversion between sequential data, some works
have tried to incorporate non-sequential informa-
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tion into NMT (Eriguchi et al., 2016b; Su et al.,
2017). Eriguchi et al. (2016b) use a Tree-based
LSTM (Tai et al., 2015) to encode input sentence
into context vectors. Given a syntactic tree of a
source sentence, their tree-based encoder encodes
words from the leaf nodes to the root nodes recur-
sively. Su et al. (2017) proposed a lattice-based
encoder that considers multiple tokenization re-
sults while encoding the input sentence. To pre-
vent the tokenization errors from propagating to
the whole NMT system, their attice-based encoder
can utilize multiple tokenization results. These
works focus on the encoding process and propose
better encoders that can exploit the structures of
the source language. In contrast, our work focuses
on the decoding process to capture the structure of
the target language. The encoders described above
and our proposed decoders are complementary so
they can be combined into a single network.

Considering that our Model 1 described in § 3.1
can be seen as a hierarchical RNN, our work is also
related to previous studies that utilize multi-layer
RNNs to capture hierarchical structures in data.
Hierarchical RNNs are used for various NLP tasks
such as machine translation (Luong and Manning,
2016), document modeling (Li et al., 2015; Lin
et al., 2015), dialog generation (Serban et al.,
2017), image captioning (Krause et al., 2016), and
video captioning (Yu et al., 2016). In particular,
Li et al. (2015) and Luong and Manning (2016)
use hierarchical encoder-decoder models, but not
for the purpose of learning syntactic structures of
target sentences. Li et al. (2015) build hierarchi-
cal models at the sentence-word level to obtain
better document representations. Luong and Man-
ning (2016) build the word-character level to cope
with the out-of-vocabulary problem. In contrast,
we build a hierarchical models at the chunk-word
level to explicitly capture the syntactic structure
based on chunk segmentation.

In addition, the architecture of Model 3 is also
related to stacked RNN, which has shown to be ef-
fective in improving the translation quality (Luong
et al., 2015a; Sutskever et al., 2014). Although
these architectures look similar to each other, there
is a fundamental difference between the directions
of the connection between two layers. A stacked
RNN consists of multiple RNN layers that are con-
nected from the input side to the output side at ev-
ery time step. In contrast, our Model 3 has a dif-
ferent connection at each time step. Before it gen-

erates a chunk, there is a feed-forward connection
from the chunk-level decoder to the word-level de-
coder. However, after generating a chunk repre-
sentation, the connection is to be reversed to feed
back the information from the word-level decoder
to the chunk-level decoder. By switching the con-
nections between two layers, our model can cap-
ture the chunk structure explicitly. This is the first
work that proposes decoders for NMT that can cap-
ture plausible linguistic structures such as chunk.

Finally, we noticed that (Zhou et al., 2017)
(which is accepted at the same time as this pa-
per) have also proposed a chunk-based decoder for
NMT. Their good experimental result on Chinese
to English translation task also indicates the effec-
tiveness of “chunk-by-chunk” decoders. Although
their architecture is similar to our Model 2, there
are several differences: (1) they adopt chunk-level
attention instead of word-level attention; (2) their
model predicts chunk tags (such as noun phrase),
while ours only predicts chunk boundaries; and (3)
they employ a boundary gate to decide the chunk
boundaries, while we do that by simply having the
model generate end-of-chunk tokens.

6 Conclusion

In this paper, we propose chunk-based decoders
for NMT. As the attention mechanism in NMT

plays a similar role to the translation model in
phrase-based SMT, our chunk-based decoders are
intended to capture the notion of chunks in chunk-
based (or phrase-based) SMT. We utilize the chunk
structure to efficiently capture long-distance de-
pendencies and cope with the problem of free
word-order languages such as Japanese. We de-
signed three models that have hierarchical RNN-
like architectures, each of which consists of a
word-level decoder and a chunk-level decoder. We
performed experiments on the WAT ’16 English-
to-Japanese translation task and found that our
best model outperforms the strongest baselines by
+0.93 BLEU score and by +0.57 RIBES score.

In future work, we will explore the optimal
structures of chunk-based decoder for other free
word-order languages such as Czech, German,
and Turkish. In addition, we plan to combine
our decoder with other encoders that capture lan-
guage structure, such as a hierarchical RNN (Lu-
ong and Manning, 2016), a Tree-LSTM (Eriguchi
et al., 2016b), or an order-free encoder, such as a
CNN (Kalchbrenner and Blunsom, 2013).
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1724–
1734.

Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Kyoto university par-
ticipation to WAT 2016. In Proceedings of the Third
Workshop on Asian Translation (WAT). pages 166–
174.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016a. Character-based decoding in tree-
to-sequence attention-based neural machine transla-
tion. In Proceedings of the Third Workshop on Asian
Translation (WAT). pages 175–183.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016b. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th

Annual Meeting of the Association for Computa-
tional Linguistics (ACL). pages 823–833.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing. pages 49–57.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML).
pages 1319–1327.

Shinkichi Hashimoto. 1934. Kokugoho Yosetsu. Meiji
Shoin.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). pages 944–952.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1700–
1709.

Jae Dong Kim, Ralf D. Brown, and Jaime G. Carbonell.
2010. Chunk-based EBMT. In Proceedings of the
14th workshop of the European Association for Ma-
chine Translation (EAMT).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
177–180.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics (HLT-NAACL).
pages 48–54.

Jonathan Krause, Justin Johnson, Ranjay Krishna,
and Li Fei-Fei. 2016. A hierarchical approach
for generating descriptive image paragraphs. In
arXiv:1611.06607 [cs.CV].

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (ACL-IJCNLP).
pages 1106–1115.

1910



Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou,
and Sheng Li. 2015. Hierarchical recurrent neural
network for document modeling. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). pages 899–907.

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
1054–1063.

Minh-Thang Luong, Ilya Sutskever, Quoc Le, Oriol
Vinyals, and Wojciech Zaremba. 2015a. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
Seventh International Joint Conference on Natural
Language Processing (ACL-IJCNLP). pages 11–19.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015b. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1412–
1421.

Masaki Murata, Kiyotaka Uchimoto, Qing Ma, and
Hitoshi Isahara. 2000. Bunsetsu identification us-
ing category-exclusive rules. In Proceedings of
the 18th International Conference on Computational
Linguistics (COLING). pages 565–571.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. ASPEC:
Asian scientific paper excerpt corpus. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC). pages
2204–2208.

Graham Neubig. 2016. Lexicons and minimum risk
training for neural machine translation: NAIST-
CMU at WAT2016. In Proceedings of the Third
Workshop on Asian Translation (WAT). pages 119–
125.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015.
In Proceedings of the Second Workshop on Asian
Translation (WAT). pages 35–41.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (ACL-HLT). pages 529–533.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. In Proceedings of the
Second International Conference on Learning Rep-
resentations (ICLR).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation (WMT). pages 371–
376.

Iulian V. Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the 31st AAAI Conference on Artifi-
cial Intelligence (AAAI).

Jinsong Su, Zhixing Tan, Deyi Xiong, Rongrong Ji, Xi-
aodong Shi, and Yang Liu. 2017. Lattice-based re-
current neural network encoders for neural machine
translation. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence (AAAI).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems (NIPS). pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing (ACL-IJCNLP). pages
1556–1566.

Taro Watanabe, Eiichiro Sumita, and Hiroshi G.
Okuno. 2003. Chunk-based statistical translation.
In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL).
pages 303–310.

Naoki Yoshinaga and Masaru Kitsuregawa. 2009.
Polynomial to linear: Efficient classification with
conjunctive features. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 1542–1551.

Naoki Yoshinaga and Masaru Kitsuregawa. 2010. Ker-
nel slicing: Scalable online training with conjunc-
tive features. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(COLING). pages 1245–1253.

Naoki Yoshinaga and Masaru Kitsuregawa. 2014. A
self-adaptive classifier for efficient text-stream pro-
cessing. In Proceedings of the 25th International

1911



Conference on Computational Linguistics (COL-
ING). pages 1091–1102.

Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and
Wei Xu. 2016. Video paragraph captioning using
hierarchical recurrent neural networks. In Proceed-
ings of the 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pages 4584–
4593.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. In arXiv:1212.5701 [cs.LG].

Hao Zhou, Zhaopeng Tu, Shujian Huang, Xiaohua Liu,
Hang Li, and Jiajun Chen. 2017. Chunk-based bi-
scale decoder for neural machine translation. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

1912


	Chunk-based Decoder for Neural Machine Translation

