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ABSTRACT
Emerging pa�erns are pa�erns whose support signi�cantly di�ers

between two databases. We study the problem of listing emerging

pa�erns with a multiple testing guarantee. Recently, Terada et

al. proposed the Limitless Arity Multiple-testing Procedure (LAMP)

that controls the family-wise error rate (FWER) in statistical associa-

tion mining. LAMP reduces the number of “untestable” hypotheses

without compromising its statistical power. Still, FWER is restric-

tive, and as a result, its statistical power is inherently unsatisfying

when the number of pa�erns is large. On the other hand, the false

discovery rate (FDR) is less restrictive than FWER, and thus control-

ling FDR yields a larger number of signi�cant pa�erns. We propose

two emerging pa�ern mining methods: the �rst one controls FWER,

and the second one controls FDR. �e e�ectiveness of the methods

is veri�ed in computer simulations with real-world datasets.
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1 INTRODUCTION
Finding di�erences between two datasets is of fundamental impor-

tance in many scienti�c �elds. Many tasks, such as binary clas-

si�cation, feature selection, change point detection, and concept

dri� learning, boil down to �nding good discriminative features

that explain the di�erences. When the structure of the problem is

simple, it su�ces to consider each single feature separately. How-

ever, when the problem is not straightforward, the combinatorial

e�ect of multiple features can be fundamentally important. Since

the number of possible combinations is exponential to the number

of features, this task is inherently challenging.

Emerging pa�ern mining (EPM) [10] is an approach that lists the

pa�erns where the di�erence between two datasets is larger than a

given threshold. One of the greatest advantages of EPM lies in that

it can naturally �nd combinatorial features: each combinatorial
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feature corresponds to an itemset in pa�ern mining. Although

there are many studies on EPM (for a detailed list of these papers,

see Dong and Bailey [9]. Moreover, for similar concepts such as

contrast set mining and subgroup mining, see Novak et al. [22]),

the standard formulation of EPM lacks a statistical assessment,

which induces a risk that a signi�cant fraction of found pa�erns are

just false positives; that is, the pa�erns may have only been found

because of the random nature of data and are actually insigni�cant.

Statistical testing is widely used to control such risks. In particular,

a procedure of listing pa�erns can be veri�ed within the framework

of multiple hypothesis testing by considering each itemset to be a

hypothesis.

Undoubtedly, we would like to �nd as many pa�erns as possible

for a given level of risk. �e study of multiple testing is somewhat

paradoxical: the larger the number of pa�erns to test is, the less

powerful the test becomes. �is is because that the risk of �nding

false discoveries rises as the number of pa�erns to test increases.

Since the number of possible pa�erns is 2
`

to the number of the

item `, testing all the pa�erns is unlikely to result in many pa�erns.

Moreover, testing all possible pa�erns is computationally prohib-

itive. In order to avoid this “combinatorial explosion curse”, we

would like to determine a set of pa�erns to test before conducting

multiple testing. Unfortunately, most of the existing data mining

approaches that take multiple testing into consideration are not

principled when it comes to determining the pa�erns to test: they

choose the minimum support by using implicit knowledge. If one

selects a set of hypotheses by looking into the database, that can

cause a selection bias that devastates the entire testing process. A

recently proposed method called Limitless-Arity Multiple-testing

Procedure (LAMP) [28] avoids this pitfall and enables us to select

the pa�erns to test in a principled way; it e�ectively reduces the

number of pa�erns without prior knowledge and alleviates the

combinatorial explosion curse.

�ere are two di�erent targets to control in multiple testing.

Namely, the family-wise error rate (FWER) and the false discovery

rate (FDR) [4]. �e former value is the probability of a false dis-

covery among the found pa�erns. �e aforementioned LAMP is

designed to control FWER. Although control of FWER is crucial in

some areas such as genome association studies, where a false dis-

covery can cause severe harm, the restrictive nature of FWER o�en

limits the statistical power. We hence argue that, in many cases,

some number of false discoveries is tolerable. For example, feature

selection is not harmed much when insigni�cant features are added.

Moreover, E-commerce data is o�en analyzed with the hope of



making discoveries that can boost revenue; a certain number of

false discoveries would be tolerable in this case as well. For such

applications, a more modern notion of FDR, i.e., is the probability of

false discoveries among all discoveries, is less restrictive and would

empower one to make discoveries. Unfortunately, there is as yet

no pa�ern mining method for controlling FDR with an ability to

choose an appropriate set of pa�erns to test.

�e statistical pa�ern mining is essentially comprised of two

stages: the �rst stage selects a set of pa�erns to test, and the second

stage tests the selected pa�erns. While LAMP is dependent on

Tarone’s exclusion principle [26] that excludes “untestable” pa�erns,

there is no corresponding notion in FDR, and thus, one must devise

a principled way to reduce a set of pa�erns. In this paper, we

describe a way to control FDR (Table 1). �e key notion for testing

FDR is ”quasi-testability”. �e quasi-testability takes the adaptive

nature of FDR into consideration, and hence, it e�ectively reduces

the hypotheses that are very unlikely to be signi�cant.

�e contributions of this paper are as follows. We formalize the

problem of statistical emerging pa�ern mining (SEPM). We propose

LAMP-EP, a version of LAMP for SEPM, which e�ectively lists

pa�erns while controlling FWER. Moreover, we propose QT-LAMP-

EP which controls FDR in SEPM. Note that the quasi-testability

based method is not only for emerging pa�erns and possibly be

applied to any pa�ern mining method. To verify the performance

of the methods, computer simulations were conducted with eight

real-world datasets. �e exhaustive set of simulations shows that

tolerance to a prede�ned FDR can lead to a signi�cantly larger set

of discoveries.

2 RELATEDWORK
Some studies are based on distributional assumptions. Kirsch et

al. [14] developed a multiple testing procedure that identi�es the

best support threshold such that the pa�ern will be signi�cant by as-

suming the supports of pa�erns are Poisson-distributed. Low-Kam

et al. [18] proposed a mining method that measures the signi�cance

of a pa�ern by the deviation from the null model. In this paper, we

do not assume such models; the only essential assumption we rely

on is the i.i.d. property of the transactions.

Unlike most of the existing work, the LAMP algorithm [28] does

not require a stringent distributional assumption and is capable of

determining the minimum support threshold. Some subsequent

Table 1: Comparison of methods for controlling FWER and
FDR in pattern mining. LAMP is a statistical association
mining (SAM) method that controls FWER by applying the
Bonferroni method [7] to testable patterns. �is paper pro-
poses LAMP-EP and QT-LAMP-EP that control FWER and
FDR in the SEPM problem. QT-LAMP-EP applies the step-
up method [6, 13] to quasi-testable patterns.

LAMP LAMP-EP QT-LAMP-EP
Mining target SAM SEPM SEPM

Multiple Testing FWER FWER FDR

Pa�ern Reduction Testable Testable �asi-Testable

Testing method Bonferroni Bonferroni Step-up

studies were inspired by LAMP: Sugiyama et al. [25] considered

statistical association in subgraph mining. Terada et al. [27] and

Felipe et al. [17] integrate the Westfall-Young permutation method

[32] into the pa�ern selection and showed that it empirically yields

more discoveries than LAMP. Note that the Westfall-Young method

exploits subset pivotality of SAM [20] and not applicable to EPM.

Papaxanthos et al. [23] extended LAMP to cases where categorical

covariates exist. Webb et al. [31] studied association rule mining

and proposed two methods to control the error rate. One method

uses explanatory and holdout datasets: the explanatory dataset is

for pa�ern discovery and the holdout dataset is for pa�ern test-

ing. Although this method is only for association rule mining, our

method is partly inspired by theirs in that it uses several indepen-

dent datasets. Riondato and Vandin [24] studied the association

rule mining. �ey conducted a statistical learning theory based

analysis that is distribution-free and derived a guarantee that is

similar to FWER. �eir analysis requires a minimum support thresh-

old. Hanhijärvi [12] proposed a procedure to adjust the Bonferroni

correction factor to control FWER by using randomization under

the assumption of subset pivotality. Lallich et al. [15, 16] proposed

a bootstrap-based algorithm for association mining that controls a

version of FWER that tolerates a �xed number of false discoveries.

3 PROBLEM SETUP
In this section, we �rst brie�y review the frequent pa�ern mining
(FPM) and emerging pa�ern mining (EPM) problems. �en, we

propose a new problem called statistical emerging pa�ern mining
(SEPM), which is an extension of EPM that assesses the chance of a

discovered pa�ern being a true discovery.

3.1 Frequent Pattern Mining (FPM)
LetD be a database, which is a set of transactions. Each transaction

is a tuple (x ,y), where x is a pa�ern and y ∈ {0, 1} is a label of

pa�ern x . Each pa�ern x is a subset of ` items indexed as I =
{1, 2, . . . , `}; namely, x ∈ 2

I
. A pa�ern with a label 0 (resp. 1) is

said to be negative (resp. positive). Given a dataset D, we use D+
and D− to denote sub-datasets of D that consist of positive and

negative pa�erns; namely,

D+ = {(x ,y) ∈ D : y = 1}, (1)

D− = {(x ,y) ∈ D : y = 0}. (2)

We assume that each transaction (x ,y) ∈ D is an i.i.d. sample from

an unknown joint distribution P[x ,y] on 2
I × {0, 1}; namely, D is

a random variable. All probability and expectations in this paper

are taken on this distribution.

Given a database D and a pa�ern e ∈ 2
I
, the occurrences of e

comprise a set of transactions inD that contains e . �e support of e
is the number of occurrences of e . We use Occ(e;D) and Sup(e;D)
to denote the occurrences and the support of e:

Occ(e;D) = {(x ,y) ∈ D : e ⊆ x}, (3)

Sup(e;D) = |Occ(e;D) |. (4)

Given a dataset D and a minimum support τ (τ = 0, 1, . . . , |D|),
a frequent pa�ern (FP) is a pa�ern that appears τ or more times in



D. We use EFP(τ ;D) to denote the set of all frequent pa�erns:

EFP(τ ;D) = {e ∈ 2
I

: Sup(e;D) ≥ τ }. (5)

�e goal of the frequent pa�ern mining (FPM) [1, 3] is to �nd

EFP(τ ;D) given τ and D. An item i ∈ I is said to be redundant
in D if Occ({i};D) = D; in other words, i appears in all trans-

actions in D. In this paper, we assume that the given dataset D
contains no redundant item. Consequently, the only pa�ern e ∈ 2

I

that satis�es Occ(e;D) = D is the empty pa�ern e = ϕ; namely,

EFP(|D|;D) = {ϕ}.

3.2 Emerging Pattern Mining (EPM)
Whereas FPM does not consider the labels of pa�erns, the goal

of emerging pa�ern mining (EPM) [10] is to list all pa�erns which

frequently appear inD+ but not inD−. Let GR(e;D) be the growth
rate of pa�ern e that is de�ned as follows:

GR(e;D) =


0 (Sup

(
e;D+

)
= 0 and Sup(e;D−) = 0),

∞ (Sup

(
e;D+

)
, 0 and Sup(e;D−) = 0),

Sup(e ;D+)
Sup(e ;D−) (otherwise).

(6)

Given a growth rate threshold a > 0, emerging pa�erns (EPs) are

de�ned as follows:

EEP(a;D) =
{
e ∈ 2

I
: GR(e;D) > a

}
. (7)

�e EPM problem is to �nd EEP(a;D) given a and D. Because list-

ing the entire EEP(a;D) is o�en computationally prohibitive, many

algorithms for EPM [2, 10, 19] set a minimum support τ for both

Sup

(
e;D+

)
and Sup(e;D−); in other words, usually only pa�erns

e ∈ EEP(a;D) such that Sup

(
e;D+

)
≥ τ and Sup

(
e;D+

)
≥ τ are

enumerated.

�e above formulation lacks a statistical assessment: for example,

how many of the found EPs are reproducible when we conduct an

EPM with another dataset D ′ generated by the same process? In

the next section, we extend EPM to statistically assess the found

pa�erns.

3.3 Statistical Emerging Pattern Mining (SEPM)
We �rst de�ne the true emerging pa�erns independently of the

observed datasetD. Let µe be the positive label probability of pa�ern

e ∈ 2
I

that is de�ned as follows:

µe = P[y = 1 | e ⊆ x] ∝
∑

e ′∈2I :e⊆e ′
P
[
y = 1,x = e ′

]
. (8)

Given a positive label probability threshold a ∈ (0, 1), we de�ne the

true emerging pa�erns Etrue and false pa�erns E
false

as follows:

Etrue = {e ∈ 2
I

: µe > a}, (9)

E
false
= {e ∈ 2

I
: µe ≤ a}. (10)

Since µe is unobservable, we need to estimate whether or not each

pa�ern e lies within Etrue from the observed dataset D.

Here, we describe a new problem, called statistical emerging pat-
tern mining (SEPM), which is to �nd a fraction of the true emerging

pa�erns Etrue from the given dataset D with a statistical error

bound. Ultimately, we would like to construct an algorithm that

exactly �nds Etrue; however, this is impossible because of the ran-

dom nature of D. Instead of �nding the whole Etrue, we a�empt

to construct an algorithm that �nds a set of appropriate pa�erns

E
alg
⊆ 2

I
and keeps its error rate under the given signi�cance level

q ∈ (0, 1). We consider two types of error rate, the family-wise error
rate (FWER) and the false discovery rate (FDR), de�ned as follows:

De�nition 3.1 (FWER). Given a signi�cance level q, an SEPM

algorithm is said to control FWER if

P
[
|E

alg
∩ E

false
| ≥ 1

]
≤ q. (11)

FWER is the probability that E
alg

contains a false pa�ern e ∈ E
false

.

De�nition 3.2 (FDR). Given a signi�cance level q, an SEPM algo-

rithm is said to control FDR if

E

[
|E

alg
∩ E

false
|

|E
alg
|

]
≤ q, (12)

where we de�ne 0/0 = 0. FDR is the expected ratio of false pa�erns

in E
alg

.

Note that an SEPM algorithm that controls FWER at signi�cance

level q also controls FDR at the same level q, but not vice versa. To

guarantee that an SEPM algorithm controls FWER or FDR, we for-

mulate this problem as multiple hypothesis testing in the following

section.

4 MULTIPLE HYPOTHESIS TESTING
In this section, we �rst formulate an SEPM problem as multiple

hypothesis testing. We then discuss the Bonferroni method and the

step-up method for controlling FWER and FDR, respectively. A�er

that, we discuss the procedure for reducing the number of hypothe-

ses by testability, which we generalize into two-stage mining.

4.1 SEPM as Multiple Hypothesis Testing
4.1.1 Hypothesis. Section 3.3 formalized SEPM. Considering

each pa�ern as a hypothesis, SEPM naturally �ts into the framework

of multiple hypothesis testing. In SEPM, a null hypothesis that

corresponds to pa�ern e is

H0

e : µe = a. (13)

Rejecting the null hypothesis H0

e implies that the following alterna-

tive hypothesis is supported:

H1

e : µe > a. (14)

�e alternative hypothesis H1

e states that pa�ern e is considered

to be the true emerging pa�ern: e ∈ Etrue. Whether the null

hypothesis H0

e is rejected or not at a given signi�cance level q is

determined by the p-value of pa�ern e . �e p-value is described in

Section 4.1.2. Note that thanks to the monotonicity of the p-value,

the case of µe < a is also covered by evaluating its null hypothesis

H0

e .

A discovered pa�ern e ∈ E
alg

is called a true discovery if e is

a true emerging pa�ern: e ∈ Etrue. On the other hand, e ∈ E
alg

is called a false discovery, or Type I error, if e is a false pa�ern:

e ∈ E
false

. A true emerging pa�ern e ∈ Etrue that fails to be

rejected (not discovered) is called a Type II error. Obviously, an

algorithm that rejects no hypothesis contains no false discovery



and always controls FWER and FDR at any signi�cance level q.

Such an algorithm is, however, u�erly useless. In general, there is

a trade-o� between the number of Type I errors and the number of

Type II errors. We are interested in a multiple hypothesis testing

algorithm that controls FWER or FDR at q and while providing

high statistical power, i.e., few Type II errors.

4.1.2 p-value. Under the null hypothesis H0

e , the labels corre-

sponding to pa�ern e follow a Bernoulli distribution with prob-

ability a. �us, the number of positive samples given the total

number of samples follows a Binomial distribution. We denote Ne
and N+e as the realized values of Sup(e;D) and Sup

(
e;D+

)
. �en,

the p-value of pa�ern e is de�ned as the probability that N+e or

more samples out of Ne samples have positively labeled under the

null hypothesis H0

e . We use pe to denote the p-value of e , which is

computed as follows:

pe = P
[
Sup

(
e;D+

)
≥ N+e | Sup(e;D) = Ne ,H

0

e
]

=

Ne∑
n=N +e

(
Ne
n

)
an (1 − a)Ne−n . (15)

Obtaining the above pe requires an exponential computation in Ne
and is quite hard whenNe is large. Let µ̂e = N+e /Ne be the empirical

positive label probability of e . �en, pe can be approximated by the

following Cherno� bound:

pC

e ≤
{

exp(−NedKL(µ̂e ,a)) (µ̂e > a),

1 (otherwise),
(16)

where dKL(p,q) = p log (p/q) + (1 − p) log((1 − p)/(1 − q)) is the

KL divergence between two Bernoulli distributions with their pa-

rameters p and q. Note that the exponential factor of the Cherno�

bound is optimal [8], and thus the approximation using the bound

is very tight for a su�ciently large value of |D|. In this paper, we

use the above pC

e as a proxy of the true p-value pe when we need

to compute pe for |D| > 100.

In the case of single hypothesis testing, we reject the null hy-

pothesis H0

e if its p-value pe is lower than the given signi�cance

level q; however, in the case of multiple hypothesis testing, we need

to correct the signi�cance level q based on the basis of the number

of hypotheses.

4.2 Bonferroni Method for FWER
For a single null hypothesis H0

e , the probability of a false discovery

is upper-bounded by its p-value pe . However, the probability of

�nding a false pa�ern (e ∈ E
false

) with pe smaller than any level q,

converges to 1 as the number of hypotheses increases. �erefore, a

multiple hypothesis testing correction is necessary for bounding

FWER.

Let e1, . . . , em be a set ofm pa�erns that we would like to test.

FWER can be controlled by adapting Bonferroni’s correction [7],

which simply divides the required signi�cance levelq by the number

of pa�ernsm. �en, the discovered pa�erns E
alg

by the Bonferroni

method is

E
alg
=

{
e ∈ {e1, . . . , em } : pe ≤

q

m

}
, (17)

and the Bonferroni method correctly controls FWER at signi�cance

level q.

4.3 �e Step-Up Method for FDR
Unlike FWER, a simple correction factor, such as q/m, is not able to

control FDR appropriately because the ratio of the expected number

of false discoveries depends on all p-values of the pa�erns to test.

For example, suppose we have tested some pa�erns and rejected k
out of them. If all rejected pa�erns have low p-values, the expected

number of false discoveries in the k rejected pa�erns is also low. In

such a case, we can safely reject the next pa�ern even if its p-value

is not very low because the average p-value of the rejected pa�erns

is smaller than the given threshold. Conversely, if some of the

rejected pa�erns have high p-values, we have to require a small

p-value for other pa�erns to be rejected so as to keep the average

p-value of the rejected pa�erns small. Consequently, in the case of

controlling FDR, whether or not to reject a pa�ern depends on the

p-values of the other pa�erns.

�e step-up method [13] is widely used for controlling FDR.

Given m pa�erns e1, . . . , em and their p-values pe1
, . . . ,pem , we

use e(i) to refer the pa�ern with the ith smaller p-value and p(i) to

denote the p-value of e(i); namely, p(1) ≤ · · · ≤ p(m). Accordingly,

the step-up method outputs the following pa�erns as discoveries:

E
alg
=

{
e ∈ {e1, . . . , em } : pe ≤ p(k)

}
, (18)

k = arg max

0≤i≤m

{
p(i) ≤

q

c(m)
i

m

}
, (19)

where c(m) is an adjustment function. �e correction factor in the

step-up method is proportional the number of rejected hypotheses.

When each hypothesis is independent, se�ing c(m) = 1 su�ces

to control FDR at a signi�cance level q, which we call the Benjamini-

Hochberg (BH) method [4]. On the other hand, the Benjamini-

Yekutieli (BY) method [6], which uses c(m) = ∑m
i=1
(1/i), controls

FDR when hypotheses have an arbitrary dependence.

4.4 Two-Stage Procedure for Improving the
Statistical Power

In SEPM, each pa�ern is naturally associated with a hypothesis,

and the number of possible pa�erns is exponential to the number

of items. �e larger the number of pa�erns m to test is, the weaker

the power of �nding signi�cant pa�erns becomes, as indicated by

m in the denominator of (17) and (19). It may be the case that the

number of hypotheses is so large that a simple application of the

Bonferroni or step-up method yields no pa�ern.

In the context of statistical association mining, LAMP [28] con-

trols FWER and uses Tarone’s exclusion principle for improving its

statistical power.

Tarone’s Exclusion Principle [26]: a pa�ern e is said to be

untestable with respect to signi�cance level q if the lower bound

of its p-value is greater than q. Untestable pa�erns do not increase

FWER and can be ignored before running a multiple hypothesis

test.

�e notion of testability is generalized in the following two-stage

procedure:

Selection Stage: Find E
select

⊆ 2
I
: each e ∈ E

select
is testable.

Testing Stage: Conduct a multiple hypothesis test on the selected

testable pa�erns E
select

and output E
alg
⊆ E

select
where e ∈ E

alg

is rejected at a corrected signi�cance level.



Taking this into consideration, in the next section, we propose

two-stage methods for controlling FWER and FDR in SEPM. We

should point out that checking testability in FDR is not a trivial ex-

ercise because the correction factor of the step-up method depends

not only on the number of hypotheses but also on the p-values of all

pa�erns. To put it di�erently, we cannot judge whether the lower-

bound of the p-value is greater than the corrected signi�cance level

or not in the selection stage. To solve this problem, we put forward

a new notion called quasi-testability and use it to select a subset of

pa�erns to test.

5 PROPOSED METHODS
We propose two SEPM algorithms: LAMP-EP to control FWER and

QT-LAMP-EP to control FDR. Both algorithms are based on the

two-stage procedure discussed above.

5.1 LAMP-EP for FWER
LAMP-EP is a version of LAMP for statistical emerging pa�ern

mining (SEPM). Testability is critical for reducing the number of

pa�erns to test: under Bonferroni’s correction, a pa�ern e is said

to be untestable if the lower bound of its p-value pe is greater than

the corrected signi�cance level q/m, where q is a given signi�cance

level and m is the number of pa�erns to test. In SEPM, from the

de�nition of the p-values shown in Equation (15), the p-value of

e can be lower-bounded as pe ≥ aSup(e ;D), where Sup(e;D) is

the number of occurrences of e in D. Let ψ (τ ) = aτ . Given q
and m, a pa�ern e is said to be testable with respect to q and m if

ψ (Sup(e;D)) ≤ (q/m). Furthermore, the untestable pa�erns can be

safely removed from the candidates thanks to Tarone’s exclusion

principle [26].

In the selection stage, we �nd E
select

⊆ 2
I

that only consists of

testable pa�erns. As the support of a pa�ern determines its testabil-

ity, we want to �nd an appropriate threshold τ such that EFP(τ ;D)
contains no untestable pa�ern, and choose E

select
= EFP(τ ;D). We

here introduce the optimal selection threshold τ ∗
FWER

de�ned as

follows:

τ ∗
FWER

= min

τ
{τ : ψ (τ ) ≤ δFWER(τ ;q,D)} , (20)

δFWER(τ ;q,D) = q

|EFP(τ ;D) | , (21)

where δFWER(τ ;q,D) is the corrected signi�cance level. Choosing

E
select

= EFP

(
τ ∗

FWER
;D

)
is reasonable because it is the largest set

of frequent pa�erns that only consists of testable pa�erns. �e

following proposition clari�es the optimization problem of τ ∗
FWER

.

Proposition 5.1. Given a datasetD and signi�cance level q such
that a |D | < q, there exists a unique τ ∗

FWER
such that

ψ (τ ∗
FWER

− 1) > δFWER

(
τ ∗

FWER
− 1;q,D

)
, (22)

ψ (τ ∗
FWER

) ≤ δFWER

(
τ ∗

FWER
;q,D

)
, (23)

Proof. Let LHS(τ ) = ϕ(τ ) and RHS(τ ) = δFWER(τ ;q,D). LHS(τ )
and RHS(τ ) are decreasing and increasing functions of τ , respec-

tively. Namely, if τ satis�es LHS(τ ) ≤ RHS(τ ), all τ ′ > τ also satisfy

the same inequation. For τ = 0, LHS(τ ) > RHS(τ ) holds because

ψ (0) = 1 and δFWER(0;q,D) ≤ q < 1. For τ = |D|, LHS(τ ) <

RHS(τ ) holds because ψ (|D|) = a |D | < q = δFWER(|D|;q,D),
where we have used the fact that |EFP(|D|;D) | = |{ϕ}| = 1 in the

last transformation. Combining the above facts, we see that there

exists the unique threshold value τ such that LHS(τ ) > RHS(τ ) and

LHS(τ + 1) ≤ RHS(τ + 1). �

It is easy to see that τ ∗
FWER

in Eq. (22) and Eq. (23) corresponds the

selection threshold de�ned in Eq. (20). Due to the monotonicity of

each side of the inequality, τ ∗
FWER

can be found by using a bisection

search.

Taking the above fact into consideration, we propose LAMP-EP

as the following two-stage procedure:

Selection Stage: Find τ ∗
FWER

and obtain E
select

= EFP

(
τ ∗

FWER
;D

)
by using a frequent pa�ern mining algorithm.

Testing Stage: Conduct a multiple test with the Bonferroni’s method

for E
select

and output the rejected pa�erns as E
alg

.

�e LAMP-EP correctly controls FWER at a signi�cance level q.

5.2 QT-LAMP-EP for FDR
In the case of FWER, thanks to Tarone’s exclusion principle, we are

able to remove untestable pa�erns from the candidate pa�erns and

conduct Bonferroni’s correction on the remaining pa�erns. Gilbert

[11] showed that a Tarone-like exclusion principle can also be used

for controlling FDR when the pa�erns are independent. However,

when the pa�erns are dependent, which is the case in SEPM, it is

not known whether the same principle applies or not. In order to

improve the statistical power under a controlled FDR, we need a

new exclusion principle that reduces the number of pa�erns before

conducting the step-up correction. In the following, we propose an

unbiasedness condition that is su�cient for controlling FDR. A�er

that, we propose quasi-testability for optimizing statistical power.

Following the introduction of these notions, we describe QT-LAMP-

EP that controls FDR.

Let E
select

be a set of selected pa�erns in the selection stage.

E
select

is said to be unbiased with respect to dataset D ′ if, for any

transaction (x ,y) ∈ D ′,

P[y | e ⊆ x] = P[y | e ⊆ x , E
select
] . (24)

If an unbiased E
select

can be obtained in the selecting stage, we can

apply the step-up method for E
select

in the testing stage because

p-value conditioned on the selection is correctly controlled: the

resulting two-stage procedure always controls FDR.

To guarantee unbiasedness, we �rst split the given dataset D
into two sub-datasets: the calibration dataset D

carib
and the main

datasets Dmain. In the selection stage, we �rst compute a selec-

tion threshold τFDR fromD
carib

and set E
select

= EFP(τFDR;Dmain).
�en, we conduct the step-up method for E

select
using Dmain in

the testing stage. �is two-stage procedure satis�es the above unbi-

asedness condition with respect to Dmain; because of the assumed

i.i.d. property of the transactions in D, τFDR is determined inde-

pendent of the realization of the main dataset Dmain. �erefore,

whether or not a pa�ern e is selected is determined solely on its

support size. Since the p-value is de�ned by the conditional proba-

bility on Sup(e;D) = Ne (Section 4.1.2) and no information on the

labels of these pa�ern is exploited, the p-value correctly represents

the tail probability if e is a null hypothesis.



Inspired by testability, we propose a new notion called quasi-
testability: e is quasi-testable with respect to q,

ˆk , and m̂ if

ψ (Sup(e;D
carib
)) ≤ q

c(m̂)
ˆk

m̂
. (25)

If we can set
ˆk = k and m̂ = m in Equation (19), quasi-testability

is a su�cient condition for the pa�ern not to be rejected by the

step-up method. We estimate these values from D
carib

. In the

selection stage, we �nd E
select

⊆ 2
I

such that E
select

consists of

only quasi-testable pa�erns. Similar to the LAMP-EP (Section 5.1)

that selects the largest set of testable pa�erns, we would like to

�nd τ ∗
FDR

de�ned as follows:

τ ∗
FDR
= min

τ
{τ : ψ (τ ) ≤ δFDR(τ ;q,D

carib
)} , (26)

δFDR(τ ;q,D
carib
) = q

c(|EFP(τ ;D
carib
) |)

ˆk(τ ;D
carib
)

|EFP(τ ;D
carib
) | , (27)

where
ˆk(τ ;D

carib
) is an estimator of k of Equation (19), which is

computed by conducting the step-up correction on EFP(τ ;D
carib
)

by using D
carib

, and δFDR(τ ;q,D
carib
) is the corrected signi�cance

level. �e following proposition clari�es the optimization of τ ∗
FDR

:

Proposition 5.2. Given a dataset D
carib

and a signi�cance level
q such that a |Dcarib | < q, there exists a threshold τFDR such that

ψ (τFDR − 1) > δFDR(τFDR − 1;q,D
carib
) (28)

ψ (τFDR) ≤ δFDR(τFDR;q,D
carib
) (29)

and τ ∗
FDR

de�ned by Eq. (26) is the minimum of such τFDR.

Proof. Let LHS(τ ) = ϕ(τ ) and RHS(τ ) = δFDR(τ ;q,D
carib
). Be-

cause ψ (0) = 1 and δFDR(τ ;q,D
carib
) ≤ q < 1 hold, LHS(0) >

RHS(0) holds. For τ = |D
carib
|, LHS(τ ) < RHS(τ ) holds because

ψ (|D
carib
|) = a |Dcarib | and δFDR(τ ;q,D

carib
) = q. From the above

facts, there exists at least one τ such that LHS(τ ) > RHS(τ ) and

LHS(τ + 1) ≤ RHS(τ + 1). By de�nition, τ ∗
FDR

is the minimum of

such τFDR. �

Note that the above τFDR is not necessary unique. �is unique-

ness is due to the inherent nature of FDR: the corrected signi�cance

level δFDR(τ ;q,D
carib
) is not monotone to the addition of pa�erns.

�is non-monotonicity is closely related to the following fact. In the

step-up method, non-signi�cant pa�erns can become signi�cant

if we add more pa�erns with very small p-values. Unfortunately,

�nding τ ∗
FDR

, which results a largest set of quasi-testable pa�erns

among the possibly non-unique values of τFDR, requires an incre-

mental search over τ [21, 25], which is not very e�cient when no

early termination is applied. In practice, we observed that τFDR

is usually unique and thus corresponds to τ ∗
FDR

(see Figure 3 in

Section 6). Here, therefore, we will look for one of τFDR instead

of the τ ∗
FDR

and use the found τFDR to select the pa�erns in the

selection stage. Note that a bisection search over threshold values

can be used for �nding one of τFDR.

Finally, we propose QT-LAMP-EP as the following two-stage

procedure:

Selection Stage: Find τFDR by using calibration dataset D
carib

and obtain E
select

= EFP(τFDR;Dmain) by using a frequent pa�ern

mining algorithm.

Testing Stage: Conduct a multiple hypothesis test with the step-

up method for E
select

with dataset Dmain and output the rejected

pa�erns as E
alg

.

�e following �eorem 5.3 states that QT-LAMP-EP strictly con-

trols FDR for a given error rate q.

Theorem 5.3. Assume that E
select

satis�es the unbiased property
(Ineq. (24)). With c(m) = ∑m

i=1
(1/i), �e FDR of QT-LAMP-EP is q or

smaller.

Proof. Let the total pa�erns be 2
I
. Let S ⊆ 2

I
be a subset of

pa�erns. Let Q = V /R be the rate of false discoveries, whereV and

R are the numbers of rejected true null hypotheses and rejected

null hypotheses, respectively. To prove �eorem 5.3, we use the

following lemma.

Lemma 5.4. (�eorem 1.3 in Benjamini and Yekutieli [6]) For
arbitrary δ ∈ [0, 1], if P[pe ≤ δ | Eselect

= S] ≤ δ holds for a true
hypothesis, then E[Q | E

select
= S] ≤ q holds by applying the step-up

method with the BY correction at the second stage.

Note that P[pe ≤ q | E
select

= S] ≤ q holds if E
select

has the

unbiased property. �erefore, the FDR is bounded as follow:

FDR = E[Q] =
∑
S ⊆2

I

E[Q | E
select

= S]P[E
select

= S]

≤
∑
S ⊆2

I

qP[E
select

= S] (By Lemma 5.4)

= q.

�

6 EXPERIMENTS
�is section describes the results of computer simulations. First,

we show the results for a synthetic dataset on which we measured

the false discovery rate. Second, we show the results for eight

real-world datasets to verify the statistical power of our algorithms.

6.1 Hardware and So�ware
We used a Linux machine with two 12-Core 2.40GHz Intel Xeon

(E5-2620 v3) CPUs and 132GB of memory for running all the exper-

iments. LAMP-EP and QT-LAMP-EP each used an FPM algorithm

as a building block. We implemented our algorithms on top of

LCM++
1
, an open source C++ implementation of the LCM [29] al-

gorithm. LCM is an award-winning
2

algorithm for frequent pa�ern

mining and is known as one of the fastest one for FPM. LCM++

is a li�le bit slower than the original implementation of LCM but

has improved readability; it enables each of our experiment that

involves from thousands to a half a million transactions to be com-

pleted within a day. For the ease of computation, we restricted

our interest to closed itemsets that had no superset of the same

occurrence. We used a bisection search over threshold values to

�nd τ ∗
FWER

and τFDR for LAMP-EP and QT-LAMP-EP, respectively.

1
h�ps://code.google.com/archive/p/lcmplusplus/

2
h�p://�mi.ua.ac.be/�mi04/



(a) svmguide3 (b) a1a (c) mushroom

(d) phishing (e) ijcnn1 (f) cod-rna

(g) splatoon (h) covtype

Figure 1: Number of discovered patterns. �e horizontal
axis indicates the maximum size of the patterns to search,
where +∞ indicates a limitless procedure where all patterns
are searched.

6.2 Experimental Settings
�roughout the experiments, the signi�cance level q was set to be

0.05 for both FWER and FDR mining.

We compared the following algorithms as to their numbers of

discoveries and corrected signi�cance levels: EPM is a traditional

emerging pa�ern mining algorithm for �nding EEP(a;D); we set its

minimum support to 10 for the sake of a short enough computation.

LAMP-EP and QT-LAMP-EP are our methods. We tested the

BH and BY corrections (i.e., c(m) = 1 and

∑m
i=1
(1/i), resp.) for QT-

LAMP-EP. BH is the standard BH correction that where the number

of hypothesesm is all the possible pa�erns 2
I
. We did not use the

standard Bonferroni’s method that tests all the pa�erns because it

always �nds the same number or fewer discoveries than BH does.

In QT-LAMP-EP, we used 80% ofD as the main datasetDmain. �e

calibration dataset D
carib

was resampled from the other 20% of D
until its size reaches the size ofDmain. Namely, we spend 20% of the

dataset to determine an appropriate value of τFDR. Although this

spli�ing generated a randomness in the algorithm, the randomness

had li�le e�ect on the large databases. �e other algorithms used

the entire D.

6.3 Synthetic Dataset
To show how many true and false discoveries were found by the

algorithms listed in Section 6.2, we conducted simulations with a

synthetic dataset. �e dataset consisted of 100, 000 transactions that

involved itemsets with |I | = 100. 10% of the transactions contained

some of items {1, . . . , 10} and P[y | x] = 0.7 for these transactions.

�e other 90% of the transactions contained items {11, 12, . . . , 100}
and P[y | x] = 0.5. �e value of a was set to be 0.5, and thus,

(a) svmguide3 (b) a1a (c) mushroom

(d) phishing (e) ijcnn1 (f) cod-rna

(g) splatoon (h) covtype

Figure 2: Corrected signi�cance level of algorithms. �e
horizontal axis is the same as in Figure 1, and the vertical
axis is the signi�cance level. �e LAMP-EP results show the
corrected signi�cance level. �e QT-LAMP-EP results show
qk/(c(m)m), where k is the number of rejected hypotheses
among m ones. We omit presenting the signi�cance of BH
because its signi�cance level was too low to draw in the �g-
ure.

the pa�erns that contained items in {11, 12, . . . , 100} were false

pa�erns.

Table 2 shows the results of the experiment. EPM, which lacks a

statistical assessment, �nds the largest set of true discoveries but

su�ers a very high family-wise error rate. LAMP-EP controls both

FDR and FWER. QT-LAMP-EP with both BH and BY adjustments

factor maintains FDR at a level less than q.

Necessity of BY adjustment: �e BY adjustment (i.e., c(m) =∑m
i=1

1/i) is theoretically required for controlling FDR. However,

in Benjamini and Yekutieli [6], it is noted that the BY adjustment

is “very o�en unneeded, and yields too conservative a procedure”.

�is remark is consistent with our result that QT-LAMP-EP (BY)

has much smaller FDR than q: even on this synthetic dataset where

the correlation among pa�erns is very large, the BH adjustment

(i.e., c(m) = 1) alone is enough to control FDR.

Table 2: Performance of the procedures. TDs and FDs corre-
spond to true and false discoveries, respectively. �e results
are empirical averages over 100 runs.

algorithms # of TDs # of FDs FDR FWER

EPM 516.50 3848.61 0.88 1.00

LAMP-EP 166.32 0.01 6.02e-05 0.01

QT-LAMP-EP (BH) 230.87 4.10 0.017 0.99

QT-LAMP-EP (BY) 184.10 0.40 2.13e-03 0.32



(a) svmguide3 (b) a1a (c) mushroom

(d) phishing (e) ijcnn1 (f) cod-rna

(g) splatoon (h) covtype

Figure 3: Appropriateness of τFDR. �e horizontal axis is
the minimum support τ of FPM, and the vertical axis is the
number of discovered patterns when we conducted the BH
method on the frequent patterns EFP(τ ;Dmain). �e horizon-
tal line indicates τFDR that is optimized by QT-LAMP-EP.

Gap between the actual FDR and q: �ere are several reasons

for the gap between the actual FDR and q = 0.05: First, the step-up

method actually controls FDR at a level q(m0/m) ≤ q, where m0

is the number of true null hypotheses (i.e., insigni�cant pa�erns)

that are selected in the �rst stage [5]. Second, the discreteness of

the Binomial probability implies that P[pe ≤ δ ] is smaller than δ .

�ird, since the p-values in our experiment were highly dependent,

the probability of having an extremely low p-value was not very

large. For these reasons, it is not surprising that the actual false

discovery rate of QT-LAMP-EP was smaller than q.

6.4 Real-world Datasets
�e simulations involved eight datasets. Mushroom dataset was

obtained from the UCI repository
3
. �e Splatoon

4
dataset consisted

of the results of online multi-player games. We gathered the results

of about 400, 000 Splatoon matches on Stat.ink
5

from October 31,

2015 to January 30, 2016. We converted the players’ weapons,

ranks, and the features related to the ba�le arena into items. �e

other six datasets (A1a, Cod-RNA, Covtype, IJCNN1, Phishing, and

SVMGuide3) were obtained from the libSVM dataset repository
6
.

�e real-valued features of some datasets were divided into two

classes by thresholding at the median, and each class was converted

into an item. �e statistics of the datasets are shown in Table 3. We

set the value of a to 0.3 for A1a, IJCNN1, and SVMGuide3, 0.4 for

Cod-RNA, 0.5 for Mushroom, 0.55 for Covtype, 0.6 for Splatoon,

3
h�ps://archive.ics.uci.edu/ml/datasets/Mushroom

4
h�ps://www.nintendo.com/games/detail/splatoon-wii-u

5
h�ps://stat.ink/

6
h�ps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

and 0.8 for Phishing. �ese values are set so as the number of the

found pa�erns are modest.

Figure 1 shows the number of found pa�erns. �e BH procedure

that takes all possible pa�erns into consideration performed worst.

�is means our algorithms were e�ective at boosting the statistical

power of �nding pa�erns. For all datasets, when the maximum size

of pa�erns to search was large, QT-LAMP-EP with both the BH and

BY correction outperformed LAMP-EP. QT-LAMP-EP with the BH

adjustment always �nds more pa�erns than the QT-LAMP-EP with

the BY adjustment; this result is natural since the BH adjustment

admits a larger signi�cance level. �e advantage of QT-LAMP-

EP is even larger in terms of the signi�cance level (Figure 2). In

the limitless case, QT-LAMP-EP (BY), which strictly controls FDR

(�eorem 5.3), admi�ed about a 10
2

to 10
3

times larger signi�cance

level than that of LAMP-EP. QT-LAMP-EP (BH), which is very likely

to control FDR as shown in the synthetic data, even admi�ed a 10

times larger signi�cance level on many datasets.

6.5 Appropriateness of the Selection�reshold
To verify the appropriateness of the selection threshold τFDR in

terms of its power to make discoveries, we varied the minimum

support τ and conducted a BH over all frequent pa�erns with τ .

Figure 3 shows the number of found pa�erns as a function of τ :

Here, the τFDR selected by QT-LAMP-EP does not always maximize

the number of pa�erns but was always a very close-to-optimal

choice of τ . �is result empirically supports the proposed criteria

based on quasi-testability.

6.6 Sensitivity on the Value of a
We also conducted simulations with di�erent values of the positive

label probability threshold a and no maximum pa�ern sizes. Figure

4 shows the results of that experiment. �e de�nition of SEPM

means that it natural that the number of found pa�erns is the

decreasing as a increases. �e fact that QT-LAMP-EP �nds more

pa�ern than LAMP-EP is consistent with all the values of a and

datasets.

7 CONCLUSION
We studied the problem of �nding emerging pa�erns that are sig-

ni�cant in the sense of multiple testing. We devised procedures,

called LAMP-EP and QT-LAMP-EP to control FWER and FDR. �e

Table 3: Statistics of the datasets. |D| and |I | are the numbers
of transactions and items (features), respectively. Avg |x | is
the averaged number of items in a datapoint.

dataset |D | |I | Avg |x | |D+ |/ |D |
svmguide3 1,243 42 20.9 0.24

a1a 1,605 174 13.9 0.25

mushroom 8,124 117 22.0 0.48

phishing 11,055 813 30.0 0.56

ijcnn1 49,990 44 13.0 0.10

codrna 59,535 16 8.0 0.33

splatoon 404,515 54 11.0 0.50

covtype 581,012 64 11.9 0.49



(a) svmguide3 (b) a1a (c) mushroom

(d) phishing (e) ijcnn1 (f) cod-rna

(g) splatoon (h) covtype

Figure 4: Number of patterns found as a function of a. �e
horizontal axis is the value of a, and the vertical axis is the
corresponding number of found patterns.

di�culty of multiple testing stems from the fact that the number of

hypotheses is exponential to the size of the itemset; this motivated

us to select a subset of pa�erns to test. In controlling FWER, as

is done in previous papers [25, 28], our procedure selects testable

hypotheses. For controlling FDR, we proposed the criteria of quasi-

testability that e�ectively eliminates most of the hypotheses by

estimating the corrected signi�cance level. Notably, ours is the �rst

method that controls FDR in combinatorial pa�ern mining with

adaptive selection of hypotheses. It is not very di�cult to apply

our QT-LAMP-EP to other pa�ern mining tasks such as statistical

association mining. �e following are important directions of fu-

ture works:

A cleverer data splitting: in deriving τFDR, we used a calibration

dataset that is di�erent from the main dataset. �is restriction

comes from the requirement of unbiasedness (Ineq. (24)). If one

can fully utilize the entire dataset for the testing by relaxing the

requirement, it will increase the e�ciency of how the dataset is

used.

A more e�cient computation of τFDR: Sugiyama et al. [25] dis-

cussed that an incremental search with an e�cient early termina-

tion rule runs faster than a bisection search. An incremental search

algorithm for QT-LAMP-EP, preferably with a one-pass modi�ca-

tion [21], would enable QT-LAMP-EP to be applied to datasets with

billions of transactions. Alternatively, a bisection search that starts

with an estimated lower bound [30] of τFDR can be much faster

since it can avoid computing FPs with low support thresholds.
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[22] Petra Kralj Novak, Nada Lavrač, and Geo�rey I. Webb. 2009. Supervised Descrip-

tive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pa�ern and

Subgroup Mining. J. Mach. Learn. Res. 10 (June 2009), 377–403.

[23] Laetitia Papaxanthos, Felipe Llinares-López, Dean A. Bodenham, and Karsten M.
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