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Sequential pattern mining is very important because it 
is the basis of many applications. Although there has been 
a great deal of effort on sequential pattern mining in 
recent years, its performance is still far from satisfactory 
because of two main challenges: large search spaces and 
the ineffectiveness in handling dense data sets. To offer a
solution to the above challenges, we have proposed a 
series of novel algorithms, called the LAst Position 
INduction (LAPIN) sequential pattern mining, which is 
based on the simple idea that the last position of an item, 
α , is the key to judging whether or not a frequent 
k-length sequential pattern can be extended to be a 
frequent (k+1)-length pattern by appending the item α

to it. LAPIN can largely reduce the search space during 
the mining process, and is very effective in mining dense
data sets. Our experimental data and performance 
studies show that LAPIN outperforms PrefixSpan by up 
to an order of magnitude on long pattern dense data sets.

1. Introduction
Sequential pattern mining, which extracts frequent 

subsequences from a sequence database, has attracted a 

great deal of interest during the recent surge in data 

mining research because it is the basis of many 

applications, such as customer behavior analysis, stock 

trend prediction, and DNA sequence analysis. 

The sequential mining problem was first introduced in 

[4]. From then on, much work has been carried out on mining 

frequent patterns, as for example, in [1][2][3][5]. 

However, all of these works suffer from the problems of 

having a large search space and the ineffectiveness in 

handling dense data sets. In this work, we propose a new 

strategy to reduce the space necessary to be searched. 

Instead of searching the entire projected database for 

each item, as PrefixSpan [2] does, we only search a small 

portion of the database by recording the last position 

of each item in each sequence. Because support counting 

is usually the most costly step in sequential pattern 

mining, the Last Position INduction (LAPIN) technique can 
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Table 1: Sequence Database

SID Sequence

10 ac(bc)d(abc)ad

20 b(cd)ac(bd)

30 d(bc)(ac)(cd)

improve the performance greatly by avoiding cost scanning

and comparisons using a pre-constructed table in bit 

vector format.

  Let our running database be the sequence database S
shown in Table 1 with min_support = 2. We can see that 

the set of items in the database is {a,b,c,d}. The length 

of the second sequence is equal to 7. A 2-sequence<ac>

is contained in the sequence 10, 20, and 30, respectively, 

and its support is equal to 3. Therefore, <ac> is a 

frequent pattern.

1.1 Overview of Our Algorithm
        
Discovering (k+1)-length frequent patterns. For any time 

series database, the last position of an item is the key

used to judge whether or not the item can be appended to 

a given prefix (k-length) sequence (assumed to be s). For 
example, in a sequence, if the last position of item α

is smaller than, or equal to, the position of the last 

item in s, then item α cannot be appended to s as a 
(k+1)-length sequence extension in the same sequence.

Example 1. When scanning the database in Table 1 for the 

first time, we obtain Table 2, which is a list of the last

positions of the 1-length frequent sequences in ascending 

order. At the same time, we can obtain Table 3, which is 

a list of the last positions of the frequent 2-length IE
sequences in ascending order. Suppose that we have a 

prefix frequent sequence <a>, and its positions in Table 

1 are 10:1, 20:3, 30:3, where sid:eid represents the 

sequence ID and the element ID. Then, we check Table 2 

to obtain the first indices whose positions are larger 

than <a>'s, resulting in 10:1, 20:2, 30:3, i.e., (10:blast
= 5, 20:clast = 4, and 30:clast = 4). We start from these 

indices to the end of each sequence, and increment the 

support of each passed item, resulting in <a>:1, <b>:2, 

<c>:3, and <d>:3, from which, we can determine that <ab>, 

<ac> and<ad> are the frequent patterns. The I-Step 

methodology is similar to the S-Step methodology, with 

the only difference being that, when constructing the 

mapping table, I-Step maps the specific position to the 

index whose position is equal to or larger than the

position in Table 3. To determine the itemset extension 

pattern of the prefix sequence <a>, we obtain its mapped 

indices in Table 3, which are 10:1, 20:2, and 30:2. Then, 

we start from these indices to the end of each sequence, 

and increment the support of each passed item, resulting 

in <(ab)>:1, and<(ac)>:2. We can also obtain the support 

of the 3-length sequences <a(bc)>:1, <a(bd)>:1, and 

<a(cd)>:1, which is similar to the bi-level strategy of

PrefixSpan, but we avoid scanning the entire projected

database.
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       Table 2: SE Item Last Position List 
SID Last Position of SE Item

10 blast=5 clast=5 alast=6 dlast=7

20 alast=3 clast=4 blast=5 dlast=5

30 blast=2 alast=3 clast=4 dlast=4

       Table 3: IE Item Last Position List 
SID Last Position of IE Item

10 (ab)last=5 (ac)last=5 (bc)last=5

20 (cd)last=2 (bd)last=5

30 (bc)last=2 (ac)last=3 (cd)last=4

From the above example, we can show that the main 

difference between LAPIN and previous works is the scope 

of the search space. PrefixSpan scans the entire 

projected database to find the frequent pattern. SPADE

temporally joins the entire ID-List of the candidates to 

obtain the frequent pattern of next layer. LAPIN can

obtain the same result by scanning only part of the search

space of PrefixSpan and SPADE, which indeed, are the last 

positions of the items. Let D be the average number of

customers (i.e., sequences) in the projected DB, L  be

the average sequence length in the projected DB, N be

the average total number of the distinct items in the 

projected DB, and m be the distinct item recurrence rate 

or density in the projected DB. Then m= L / N (m≥1), and 

the relationship between the runtime of PrefixSpan (Tps) 

and the runtime of LAPIN (Tlapin) in the support counting 

part is

Tps/Tlapin=( D X L )/( D X N )=m          (1).

Because support counting is usually the most costly

step in the entire mining process, Eq. (1) illustrates 

the main reason why our LAPIN algorithm is faster than 

PrefixSpan for dense data sets, whose m (density) can be 
very high. 

The remainder of this paper is organized as follows. 

In Section 2, we introduce a series of LAPIN algorithms 

in detail. Our experimental results and performance 

analysis are reported in Section 3. We conclude the paper 

in Section 4.

2. LAPIN: Design and Implementation
In this section, we describe the LAPIN algorithms in 

detail. We use a lexicographic tree [1] as the search path 

of LAPIN and adopt a lexicographic order [1], which

employs the Depth First Search (DFS) strategy. The pseudo 

code of LAPIN is shown in Fig. 1.

As Example 1 in Section 1.1 shows, the I-Step

methodology is similar to the S-Step methodology in LAPIN. 

We will first describe the S-Step process. In Step 1, by 

scanning the DB once, we obtain the SE position list table
and all the 1-length frequent patterns. Based on the last 

element in each position list, we sort and construct the 

SE item-last-position list in ascending order, as shown 
in Table 2.

In function Gen_Pattern, to find the prefix border 
position set of k-length α (Step 4), we first obtain the

Figure 1. LAPIN Algorithm pseudo code

position list of the last item ofα, and then perform a

binary search in the list for the (k-1)-length prefix 

border position. For S-Step, we look for the first 
position that is larger than the (k-1)-length prefix 

border position.

Step 5, shown in Fig. 1, is used to find the frequent 

SE (k+1)-length pattern based on the frequent k-length 

pattern and the 1-length candidate items. Step 5 can be

justified in [6]. Commonly, support counting is the most

time consuming part in the entire mining process. Here, 

we face a problem. "Where do the appended 1-length

candidate items come from?" We can test each candidate 

item in the local candidate item list (LCI-oriented), 
which is similar to the method used in SPADE [3]. Another 

choice is to test the candidate item in the projected DB, 

just as PrefixSpan [2] does (Suffix-oriented). The
correctness of these methods was discussed in [2] and [3], 

respectively.

We find that LCI-oriented and Suffix-oriented have 
their own advantages for different types of data sets [6]. 

Based on this discovery, we propose two algorithms 

categorized into two classes. One class is LCI-oriented, 
LAPIN_LCI, and the other class is Suffix-oriented, LAPIN 
_Suffix. 

2.1 LAPIN LCI
LAPIN_LCI tests each item which is in the local candidate 

item list. In each customer sequence, it directly judges 

whether an item can be appended to the prefix sequence 

or not by comparing this item's last position with the

prefix border position. Increment the support value of 

the candidate item by 1 if the candidate item's last

position is larger than the prefix border position. As 

an optimization, we use bitmap strategy to avoid such 

comparison process. A pre-constructed table,
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Figure 2. Finding the SE frequent patterns using LAPIN_LCI

Figure 3. Finding the SE frequent patterns using LAPIN_Suffix

named ITEM_IS_EXIST_TABLE is constructed while first 

scanning to record the last position information. In the 

table, we use a bit vector to represent all the 1-length

frequent items existing for a specific position. To 

accumulate the candidate sequence's support, we only need

to check this table, and add the corresponding item's 

vector value, thus avoiding the comparison process.

Space Optimization of LAPIN_LCI. We find that only part 

of the table is useful, and that most is not. The useful

information is stored in some key positions' lines, which 

indicate the last positions of the 1-length frequent

items (except the last one). Hence, we only store these 

vectors. The pseudo code of LAPIN_LCI is shown in Fig. 

2. Please refer [6] for detail. 

Example 2. Let us assume that we have obtained the 

prefix border position set of the pattern <a> in Table 

1, i.e., (1,3,3). We also know that the local candidate 
item list is (a, b, c, d). Then, we can obtain the bit 

vector mapped from the specific position, which are 1111, 

0111, and 0011 with respect to the pattern <a>'s prefix 

border position set, (1,3,3), and accumulate them, 

resulting in <a>:1, <b>:2, <c>:3, and <d>:3. From here, 

we can deduce that <ab>, <ac>, and <ad> are frequent 

patterns.

2.2 LAPIN Suffix
When the average size of the candidate item list is larger 

than the average size of the suffix, then scanning in the 

suffix to count the support of the (k+1)-length sequences 

is better than scanning in the local candidate item list. 

Therefore, we propose a new algorithm, LAPIN_Suffix. In 

the item-last-position list, i.e., Table 2, we look for 

the first element whose last position is larger than the 

prefix border position. Then, we go to the end of this

list and increment each passed item's support. Obviously, 

we only pass and count once for each different item in

    
Figure 4. The different sizes of the data sets

the suffix (projected database). The pseudo code of 

LAPIN_Suffix is shown in Fig. 3. Example 1 in Section 1.1

describes the flow of LAPIN_Suffix.

Note that in LAPIN, the I-Step is similar to the S-Step.
Due to limited space, we do not describe it here. 

Interested readers can refer [6] for detail.

3. Performance Study
We perform the experiments using a 1.6 GHz Intel 

Pentium(R)M PC machine with a 1 G memory, running WinXP. 

We conducted experiments on both synthetic and real 

datasets. However, due to space limitation, we will only 

report results on synthetic data here. 

The synthetic data sets are generated by an IBM data 

generator [4]. We first test on different sized data sets 

for various minimum supports. The statistics of these 

data sets is shown in Fig. 4(a).

PrefixSpan vs. LAPIN. We define search space as in 

PrefixSpan, to be the size of the projected DB, denoted 

as Sps, and in LAPIN the sum of the number of different 

items for each sequences in the suffix (LAPIN_Suffix) or 

in the local candidate item list (LAPIN_LCI), denoted as 

Slapin. Fig. 4(b) and Fig. 4(c) show the running times and 

the searched space comparison between PrefixSpan and 

LAPIN and clearly illustrate that PrefixSpan is slower 

than LAPIN using the medium data set and the large data 

set. This is because the searched spaces of the two data 

sets in PrefixSpan are much larger than that in LAPIN. 

For the small data set, the ineffectiveness of searched 

space saving and the initial overhead needed to set up 

meant that LAPIN is slower than PrefixSpan. Overall, our 

runtime tests show that LAPIN excels at finding the 

frequent sequences for many different types of large data 

sets.

Eq.(1) in Section 1.1 illustrates the relationship 

between the runtime of PrefixSpan and that of LAPIN in 

the support counting part, which also approximately

expresses the relationship between the entire mining time
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Figure 5. Varying the parameters of the data sets

of PrefixSpan and that of LAPIN because support counting

is usually the most costly step in the entire mining 

process. Eq.(1) illustrates that, the higher the value 

of m is, the faster LAPIN becomes compared to PrefixSpan.

The experimental data shown in Fig. 4(c) and Fig. 4(c)

is in accordance with our theoretical analysis.

LAPIN_Suffix vs. LAPIN_LCI. The main difference of 

LAPIN_Suffix and LAPIN_LCI is in the support counting 

phase: LAPIN_Suffix searches in the suffix, whereas 

LAPIN_LCI searches in the local candidate item list. Let 

mSuffix be the distinct item recurrence rate of the 

projected DB, mLCI be the distinct item recurrence rate 

of the local candidate item list. The relationship 

between the entire mining time of LAPI_Suffix (TSuffix) and 

that of LAPIN_LCI (TLCI) is as

TSuffix/TLCI ≈ mLCI/mSuffix            (2).

Eq.(2) is in accordance with the experimental data shown

in Fig. 4(b) and Fig. 4(c). LAPIN_Suffix is faster than 

LAPIN_LCI for small data sets because the former one

searches smaller spaces than the latter one does. However, 

for medium and large dense data sets, LAPIN_LCI is faster 

than LAPIN_Suffix because the situation is reversed.

Memory usage analysis. As Fig. 4(d) shows, LAPIN_Suffix 

expends almost the same amount of memory as PrefixSpan 

does, except for small data sets because LAPIN_Suffix 

uses more memory than PrefixSpan to store initialization 

information. LAPIN_LCI, because it needs to store the 

items' last position information in bit vector format,

requires more space than LAPIN_Suffix and PrefixSpan do.

Let C' be the average number of the key positions per
customer. LAPIN_LCI requires (DC'N)/8 bytes to store the 

last position information for all the items. From Fig.

4, it can be seen that there is a trade-off between 

LAPIN_Suffix and LAPIN_LCI in terms of speed and space.

Different parameters analysis. Please refer [4] for the 

meaning of the different parameters. As Fig. 5 shows, when 

C increases, T increases, and N decreases, the 
performance of LAPIN improves even more relative to 

PrefixSpan. Let us consider Eq.(1), m= L / N =C T / N , 

where C is the average number of transactions per 

customer in the projected DB, and T  is the average 

number of items per transaction in the projected DB. On 

keeping the other parameters constant, increasing C, T
and decreasing N, respectively, will result in an 
increase in the distinct item recurrence rate, m, which 
is in accordance with the experimental data shown in Fig. 

5. With regards to the other parameters, the discrepancy

between the running times does not change significantly 

because these parameters do not contribute to the 

variance of the distinct item recurrence rate, m. For 
LAPIN_LCI and LAPIN_Suffix, the former is always the 

fastest because its searched space is less than that of 

the latter. 

4. Conclusion
In this work, we have proposed novel algorithms for

efficient sequential pattern mining. LAPIN can reduce 

searching significantly by only scanning a small portion

of the projected database or the ID-List, as well as 

handling dense data sets efficiently. By thorough 

experiments and evaluations, we have demonstrated that 

LAPIN outperforms PrefixSpan by up to an order of 

magnitude, which is in accordance with our theoretical

analysis. 
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