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Abstract. A temporal database is a collection of transactions, ordered by their
timestamps. Discovering periodic patterns in temporal databases has numerous
applications. However, to the best of our knowledge, no work has considered min-
ing periodic patterns in temporal databases where items have dissimilar support
and periodicity, despite that this type of data is very common in real-life. Discov-
ering periodic patterns in such non-uniform temporal databases is challenging. It
requires defining (i) an appropriate measure to assess the periodic interestingness
of patterns, and (ii) a method to efficiently find all periodic patterns. While a
pattern-growth approach can be employed for the second sub-task, the first sub-
task has to the best of our knowledge not been addressed. Moreover, how these
two tasks are combined has significant implications. In this paper, we address
this challenge. We introduce a model to assess the periodic interestingness of
patterns in databases having a non-uniform item distribution, which considers
that periodic patterns may have different period and minimum number of cyclic
repetitions. Moreover, the paper introduces a pattern-growth algorithm to effi-
ciently discover all periodic patterns. Experimental results demonstrate that the
proposed algorithm is efficient and the proposed model may be utilized to find
prior knowledge about event keywords and their associations in Twitter data.

Keywords: data mining, periodic pattern, non-uniform temporal database

1 Introduction
Temporal databases are commonly used in many domains. A temporal database is a
collection of transactions, ordered by their timestamps. A temporal database is said
to be non-uniform if it contains items with dissimilar support and periodicity. Non-
uniform temporal data is naturally produced in many real-world situations. For instance,
disasters such as earthquakes and tsunami happen at irregular time intervals. Twitter
data related to these disasters is thus non-uniform. For example, Table 1 shows a part
of a temporal database generated from the tweets produced during the Great East Japan
Earthquake (GEJE), which occurred on the 11th March 2011.

Discovering patterns in temporal databases is challenging because they not only al-
low time gaps between consecutive transactions, but also to have multiple transactions



2 Authors Suppressed Due to Excessive Length

Table 1: Some tweets produced during GEJE
Timestamp Tweets
1301575750 #Discrimination n demagoguery 4 foreigners, mainly #Asian s by #Japanese

in #Sendai . #earthquake #jishin http://htn.to/rhGtmd
1301575750 shhhhh dont tell @jimcramer El-Erian says recent Japanese earthquake

is NOT like Kobe, won’t have same V shaped recovery - Reuters #newsmkr
1301583131 Some people will never be able to go home.

They lost their homes in the tsunami. #VOAAsiachat1
1301583579 Social media had a critical role in Japan during/after the quake/tsunami.

Somewhat else can better assess overall than me. #VOAAsiachat1

with the same timestamp. An important type of patterns that can be extracted from tem-
poral databases is (Partial) periodic patterns. A periodic pattern is something persistent
and predictable that appears in a database. Finding periodic patterns is thus useful to
understand the data. For example, it was revealed in our present study on Twitter data
related to the GEJE that over 80% of the event keywords found by a supervised event
detection algorithm [1] can also be discovered as periodic patterns. The proposed study
thus may be used as an unsupervised learning technique to generate some prior knowl-
edge about event keywords and their associations in Twitter data.

The task of finding periodic patterns has two important sub-tasks: (i) determining
the periodic interestingness of patterns, and (ii) finding all periodic patterns in a given
database. While a variation of pattern-growth algorithms could be employed for the
second sub-task, the first sub-task is non-trivial because of the following reasons:

1. Current periodic pattern models [2–4] do not take into account the information
about the temporal occurrences of items in a dataset.

2. Since a temporal database allows transactions to share a common timestamp, the
periodic interestingness of a pattern has to be determined by taking into account
not only its support, but also its inter-arrival times in a database. Unfortunately,
current measures assess the interestingness of a pattern by only taking its support
into account. We need to investigate new measure(s) to assess the interestingness
of patterns by taking into account both their support and periodicity in a database.

Moreover, how to combine the two aforementioned tasks has significant implications.
This paper addresses this challenge. It presents a model to discover periodic pat-

terns in non-uniform temporal databases. The proposed model lets the user specify a
different maximum inter-arrival time (MIAT ) for each item. Thus, different patterns
may satisfy different period depending on their items’ MIAT values. A new measure,
Relative Periodic-Support (RPS), is proposed to determine the periodic interestingness
of a pattern in a database. Unlike existing support-based measures, the proposed mea-
sure assess the interestingness of a pattern by taking into account its number of cyclic
repetitions in the database. An inter-arrival time of a pattern is considered periodic (or
cyclic) if it is no more than period. This measure satisfies the null-invariant property
[5]. Thus, the usage of item specific MIAT values and RPS allows the proposed model to
capture the non-uniform distribution of items in a database. We also propose a pattern-
growth algorithm that discovers the complete set of periodic patterns. Experimental
results demonstrate that the proposed algorithm is efficient. We also demonstrate the
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usefulness of the proposed model by finding various event keywords and their associa-
tions in disaster related Twitter data.

The rest of paper is organized as follows. Section 2 describes the related work.
Section 3 describes the proposed periodic pattern model. Section 4 introduces our al-
gorithm to find all periodic patterns in a database. Section 5 reports on experimental
results. Finally, Section 6 concludes the paper with future research directions.

2 Related Work
Frequent pattern mining is an important data mining task. Several support related mea-
sures have been discussed to determine the interestingness of a pattern in a transactional
database. Each measure has a selection bias that justifies the significance of a knowl-
edge pattern. As a result, there exists no universally acceptable best measure to judge
the interestingness of a pattern in any given database. Researchers have proposed crite-
ria to select an interestingness measure based on user and/or application requirements
[5]. Recently, measures that satisfy the null-invariant property have became popular for
finding frequent patterns. The reason is that this property guarantees finding genuine
correlation patterns that are not influenced by object co-absence in a database. Unfor-
tunately, current measures cannot be used to determine the periodic interestingness of
a pattern in temporal databases. This is because these measures only take the support
into account and completely ignore the temporal occurrence behavior of patterns in
databases. We introduce a new null-invariant measure that assess the interestingness of
a pattern by taking into account both the support and temporal occurrence information
of patterns.

Periodic patterns are an important class of regularities that exist in a time series data.
Since it was first introduced in [2], the problem of finding these patterns has received a
great deal of attention [4]. A major limitation of these studies is that they consider time
series as a symbolic sequence and ignore the temporal occurrence information about
events in a series.

Similar to our problem, the mining of full periodic-frequent patterns in a transac-
tional database has been studied in [6–8]. This problem of finding full periodic-frequent
patterns greatly simplifies the design of the model because there is no need of any
measure to determine the partial periodic interestingness of a pattern. More important,
these studies also consider transactional database as a symbolic sequence of transac-
tions (or itemsets) and ignore the temporal occurrence information of the transactions
in a database. To the best of our knowledge, this is the first study that considers the prob-
lem of finding (partial) periodic patterns by taking into account the temporal occurrence
information of the transactions in a database.

3 Proposed Model
Let I = {i1, i2, · · · , in} be the set of ‘n’ items appearing in a database. A set of items X ⊆ I
is called an itemset (or a pattern). A pattern containing k items is called a k-pattern.
The length of this pattern is k. A transaction is a triplet tr = (tid, ts,Y ) , where tid repre-
sents the transactional identifier, ts ∈ R represents the transaction time (or timestamp)
and Y is an itemset. A temporal database T DB is an ordered set of transactions, i.e.
T DB = {tr1, tr2, · · · , trm}, where m = |T DB| represents the database size (the number
of transactions). Let tsmin and tsmax denote the minimum and maximum timestamps in
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T DB, respectively. For a transaction tr = (tid, ts,Y ), such that X ⊆ Y , it is said that
X occurs in tr and such a timestamp is denoted as tsX . Let T SX = (tsX

a , ts
X
b , · · · , tsX

c ),
a ≤ b ≤ c, be the ordered list of timestamps of transactions in which X appears in
T DB. The number of transactions containing X in T DB (i.e., the size of T SX ) is defined
as the support of X and denoted as sup(X). That is, sup(X) = |T SX |.

Example 1. Table 2 shows a temporal database with I = {abcde f g}. The set of items
‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This pattern contains 2 items. Therefore, it is a 2-
pattern. The length of this pattern is 2. In the first transaction, tr1 = (100,1,ab), ‘100’
represents the tid of the transaction, ‘1’ represents the timestamp of this transaction
and ‘ab’ represents the items occurring in this transaction. Other transactions in this
database follow the same representation. The size of the database is m = 12. The min-
imum and maximum timestamps in this database are 1 and 14, respectively. Therefore,
tsmin = 1 and tsmax = 14. The pattern ‘ab’ appears in the transactions whose timestamps
are 1, 3, 6, 8, 10, 11 and 12. Therefore, T Sab = {1,3,6,8,10,11,12}. The support of
‘ab,’ i.e., sup(ab) = |T Sab|= 7.

Definition 1. (Period of a pattern X) Let MIAT (i j) be the user-defined maximum inter-
arrival time (MIAT ) specified for an item i j ∈ I. The period of a pattern X, denoted
as PER(X), represents the largest MIAT value of all items in X. That is, PER(X) =
max(MIAT (i j)|∀i j ∈ X). The items’ MIAT values can also be expressed in percentage
of (tsmax− tsmin).

Example 2. Let the MIAT values for the items a, b, c, d, e, f and g be 2, 2, 2, 2, 3, 4
and 4, respectively. The period of the pattern ‘ab,’ i.e., PER(ab) = max(2,2) = 2.

The usage of items’ MIAT values enable us to achieve the goal of having lower periods
for patterns that only involve frequent items, and having higher periods for patterns that
involve rare items. The items’ MIAT values may be derived using the period determin-
ing functions, such as Fast Fourier Transformations (FFTs) and auto-correlation.

Table 2: Running example: temporal database
tid ts items tid ts items tid ts items tid ts items
100 1 ab 103 4 cd 106 8 abcd 109 11 ab f
101 3 acdg 104 6 abcd 107 9 ce 110 12 abcd
102 3 abe f 105 7 e f g 108 10 abe f 111 14 acdeg

Definition 2. (Periodic occurrence of a pattern X) Let tsX
j , tsX

k ∈ T SX , 1≤ j < k≤m,
denote any two consecutive timestamps in T SX . The time difference between tsX

k and tsX
j

is referred as an inter-arrival time of X, and denoted as iatX . That is, iatX = tsX
k − tsX

j .
Let IAT X = {iatX

1 , iatX
2 , · · · , iatX

k }, k = sup(X)− 1, be the list of all inter-arrival times
of X in T DB. An inter-arrival time of X is said to be periodic (or cyclic) if it is no more
than PER(X). That is, a iatX

i ∈ IAT X is said to be periodic if iatX
i ≤ PER(X).

Example 3. The pattern ‘ab’ has initially appeared at the timestamps of 1 and 3. The
difference between these two timestamps gives an inter-arrival time of ‘ab.’ That is,
iatab

1 = 2 (= 3−1). Similarly, other inter-arrival times of ‘ab’ are iatab
2 = 3 (= 6−3),
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iatab
3 = 2 (= 8−6), iatab

4 = 2 (= 10−8), iatab
5 = 1 (= 11−10) and iatab

6 = 1 (= 12−
11). Therefore, IAT ab = {2,3,2,2,1,1}. If PER(ab) = 2, then iatab

1 , iatab
3 , iatab

4 , iatab
5

and iatab
6 are considered as the periodic occurrences of ‘ab’. The iatab

2 is considered as
an aperiodic occurrence of ‘ab’ because iatab

2 6≤ PER(ab).

Definition 3. (Relative periodic-support of a pattern X) Let ÎAT X be the set of all
inter-arrival times in IAT X that have iatX ≤ PER(X). That is, ÎAT X ⊆ IAT X such that
if ∃iatX

k ∈ IAT X : iatX
k ≤ PER(X), then iatX

k ∈ ÎAT X . The relative periodic-support of

X, denoted as RPS(X) = |ÎAT X |
|IAT i j |

, where i j is an item that has the lowest support and

maximum MIAT value among all items in X. This measure satisfies the null-invariant
property [5].

Example 4. Continuing with the previous example, ÎAT ab = {2,2,2,1,1}, the item ‘b’
in the pattern ‘ab’ has the lowest support and maximum MIAT value. Therefore, the

relative periodic-support of ‘ab,’ i.e., RPS(ab) = |ÎAT ab|
|IAT b| =

5
6 = 0.83.

For brevity, we call ÎAT X as periodic-frequency. The periodic-frequency determines
the number of cyclic repetitions of a pattern in the data. The proposed measure enables
us to achieve the goal of specifying a higher number of cyclic repetitions for patterns
that only involve frequent items, and a lower number of cyclic repetitions for patterns
that involve rare items. For a pattern X , RPS(X) ∈ [0,1]. If all inter-arrival times of X
are more than PER(X), then RPS(X) = 0. In other words, X is an irregular pattern. If
all inter-arrival times of X are within PER(X), then RPS(X) = 1. In other words, X is a
full periodic pattern.

In the proposed model, we have considered an inter-arrival time of X as interesting
if iatX ≤ PER(X). However, our model is flexible and allows other ways to consider
an inter-arrival time of a pattern as interesting. For instance, we can consider an inter-
arrival time of a pattern as interesting if iatX ≤ PER(X)±Ω, where Ω > 1 is a constant
that denotes time tolerance. We stick to the above definition for brevity.

Definition 4. (Periodic pattern X) The pattern X is a periodic pattern if RPS(X) ≥
minRPS, where minRPS is the user-specified minimum relative periodic-support.

Example 5. Continuing with the previous example, if the user-specified minRPS = 0.6,
then ‘ab’ is a periodic pattern because RPS(ab)≥ minRPS.

Definition 5. (Problem definition) Given a temporal database (T DB), set of items
(I), user-defined minimum interval times of the items (MIAT ) and minimum relative
periodic-support (minRPS), the problem of finding periodic patterns involve discover-
ing all patterns in T DB that have relative periodic-support no less than minRPS.

The periodic patterns generated by the proposed model satisfy the convertible anti-
monotonic property [9].

Property 1. Let Z = {i1, i2, · · · , ik}, 1≤ k≤ |I|, be a pattern with MIAT (i1)≥MIAT (i2)≥

MIAT (ik). If Y ⊂ Z and i1 ∈ Y , then RPS(Y )≥ RPS(Z) as |ÎATY |
|IAT i1 | ≥

|ÎAT Z |
|IAT i1 | .
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4 Periodic Pattern-Growth Algorithm

In this section, we describe the proposed PP-growth algorithm that discovers the com-
plete set of periodic patterns. Our algorithm involves the following two steps: (i) com-
press the database into a periodic pattern tree (PP-tree) and (ii) recursively mine the
PP-tree to find all periodic patterns. Before we discuss these two steps, we describe the
PP-tree structure.

Structure of PP-tree structure A PP-tree has two components: a PP-list and a prefix-
tree. The PP-list consists of each distinct item (i) with minimum interval time (MIAT ),
support (S), periodic-frequency (PF) and a pointer pointing to the first node in the
prefix-tree carrying the item. The prefix-tree in a PP-tree resembles that of the prefix-
tree in a FP-tree [10]. However, to capture both support and inter-arrival times of the
patterns, the nodes in the PP-tree explicitly maintain the occurrence information for
each transaction by keeping an occurrence timestamp list, called a ts-list. To achieve
memory efficiency, only the last node of every transaction maintains the ts-list. We now
explain the construction and mining of PP-tree.

Algorithm 1 Construction of PP-Tree(T DB: Time series database, I: Set of items,
MIAT : minimum interval time, minRPS: minimum relative periodic-support)
1: Insert all items in T DB into the PP-list with their MIAT values. Set the support and periodic-

frequency values of all these items to 0. The timestamps of the last occurring transactions of
all items in the PP-list are explicitly recorded for each item in a temporary array, called tsl .

2: Let t = {tscur,X} denote the current transaction with tscur and X representing the timestamp
and pattern, respectively.

3: for each transaction t ∈ T DB do
4: for each item i ∈ X do
5: S(i)++;
6: if ((tsl(i) 6= 0)&&(tscur− tsl(i))≤MIAT (i)) then
7: PF(i)++;
8: tsl(i) = tscur;
9: All items in PP-list are sorted in ascending order of their MIAT values. The items having a

common MIAT value are sorted in descending order of their support.
10: Measure the RPS value for the bottom most item in the PP-list. If the RPS value of this item

is less than minRPS, then prune this item from the PP-list and repeat the same step for the
next bottom most item in the PP-list. Stop this pruning process once the RPS value of the
bottom most item in PP-list is no less than minRPS. Let CI denote this sorted list of items.

11: Create a root node in the prefix-tree, T , and label it as “null.”
12: for each transaction t ∈ T DB do
13: Sort the items in X according to the order of CI. Let the sorted candidate item list in t be

[p|P], where p is the first item and P is the remaining list. Call insert tree([p|P], tscur,T ),
which is performed as follows. If T has a child N such that N.item-name 6= p.item-name,
then create a new node N, Let its parent link be linked to T . Let its node-link be linked
to nodes with the same item-name via the node-link structure. Remove p from P. If P is
nonempty, call insert tree(P, tscur,N) recursively; else add tscur to the leaf node.



Discovering Periodic Patterns in Non-Uniform Temporal Databases 7

Algorithm 2 PP-growth(Tree, α)
1: for each ai in the header of Tree do
2: if PF(ai)

S(ai)−1 ≥ minRPS then
3: Generate pattern β = ai ∪α. Traverse Tree using the node-links of β, and construct

an array, T Sβ, which represents the timestamps at which β has appeared in T DB.
Construct β’s conditional pattern base and β’s conditional PP-tree Treeβ by calling
calculateRPS(β, T Sβ, MIAT (ai)). The calculateRPS function calculates the periodic-
frequency of β from T Sβ, and returns RPS value by dividing the periodic-frequency
with S(ai)−1.

4: if Treeβ 6= /0 then
5: call PP-growth(Treeβ, β);
6: Remove ai from the Tree and push the ai’s ts-list to its parent nodes.

Construction of PP-tree. The procedure for constructing a PP-tree is shown in Algo-
rithm 1. We illustrate the working of this algorithm using the database shown in Table
2. (Please note that we ignore the tid information of transactions for brevity).

tslMIATi PFS

02a 00

02b 00

02c 00

02d 00

03e 00

04g 00

(a) (b)

04f 00

tslMIATi PFS

12a 01

12b 01

02c 00

02d 00

03e 00

04g 00

04f 00

MIATi PFS

2a 79

2b 57

2c 57

2d 46

3e 25

4f 34

4g 03

tsl

14

12

14

14

14

11

14

MIATi PFS

2a 79

2b 57

2c 57

2d 46

3e 25

4f 34

4g 03

MIATi PFS

2a 79

2b 57

2c 57

2d 46

3e 25

4f 34

(c) (d) (e)

Fig. 1: Construction of PP-List. (a) Before scanning the database (b) After scanning
the first transaction (c) After scanning the entire database (d) Updated PP-list (e) Final
PP-list with sorted list of items

For the construction of PP-list, we insert all items into the PP-list with their MIAT
values. The support and periodic-frequency of all these items are simultaneously set
to 0. Figure 1 (a) shows the PP-list generated before scanning the database (line 1 in
Algorithm 1). The scan on the first transaction, “1:ab,” updates the support and tsl
values of a and b to 1 and 1, respectively. Figure 1 (b) shows the PP-list generated
after scanning the first transaction. This process is repeated for other transactions in the
database and PP-list is updated accordingly. Figure 1 (c) shows the PP-list generated
after scanning the entire database (lines 2 to 8 in Algorithm 1). The items in PP-list are
sorted in ascending order of their MIAT values. Items having a common MIAT value
are sorted in descending order of their support (to achieve memory efficiency). Figure
1 (d) shows the sorted PP-list (line 9 in Algorithm 1). We calculate RPS for the item
‘g,’ which is the bottom-most item in the PP-list. As RPS(g) 6≥ minRPS, the item ‘g’
is pruned from the PP-list. Next, we calculate the RPS value for the item f , which is
the current bottom-most item in the PP-list. As RPS( f ) ≥ minRPS, we consider f as
a periodic 1-pattern and stop the process of pruning other aperiodic 1-patterns from
the PP-list. Figure 1 (e) shows the final PP-list after pruning some of the aperiodic 1-
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patterns whose supersets can never produce any periodic pattern (line 10 in Algorithm
1). Let CI denote the sorted list of items in PP-list. That is, CI = {a,b,c,d,e, f}. Next,
we create a root node in the prefix-tree of PP-tree, and label it as “null” (line 11 in
Algorithm 1).

In the next step, we update the PP-tree by performing another scan on the database.
The items in the first transaction, “1 : ab,” are sorted in CI order and a first branch
is constructed with two nodes 〈a〉 and 〈b : 1〉, where ‘a’ is linked as a child of the
root and ‘b’ is linked as the child node of ‘a’. As ‘b’ represents the leaf node of the
first transaction, this node carries the timestamp of 1. Figure 2(a) shows the PP-tree
updated after scanning the first transaction. This process is repeated for the remaining
transactions in the database and the PP-tree is updated accordingly. Figure 2(b) shows
the PP-tree generated after scanning the second transaction. Figure 2(c). shows the PP-
tree generated after scanning the entire database (lines 12 and 13 in Algorithm 1).

(b)

{}null

a

b:1 c

d:3c

d:6,8,

    12

f:11e

f:3,10

c

d:4 e:9

e

f:7

e:14

(c)

MIATi PFS

2a 79

2b 57

2c 57

2d 46

3e 25

4f 34

{}null

a

b:1

{}null

a

b:1 c

d:3

(a)

Fig. 2: Construction of PP-Tree. (a) After scanning the first transaction (b) After scan-
ning the second transaction (c) After scanning the entire database

Recursive mining of PP-tree. The PP-tree is mined as follows. Start from length-1
pattern (as an initial suffix pattern). If the RPS value of this pattern satisfies the minRPS,
then consider this pattern as a periodic item (or 1-pattern), construct its conditional
pattern base (a sub-database, which consists of the set of prefix paths in the PP-tree
with the suffix pattern), then construct its conditional PP-tree, and recursively mine
that tree. Pattern-growth is achieved by concatening the suffix pattern with the periodic
patterns generated from a conditional PP-tree. Next, the initial suffix pattern is pruned
from the original PP-tree by moving its ts-lists to the corresponding parent nodes.

Table 3: Mining the PP-tree by creating conditional (sub-)pattern bases
item support MIAT Conditional Pattern Base Conditional PP-tree Periodic patterns

f 4 4 {abe : 3,10}, {ab : 11}, {e : 7} 〈e : 3,7,10〉 {e f : 0.66}
e 5 3 − − −
d 6 2 {abc : 6,8,12}, {ac : 3,14}, {c : 4} 〈c : 3,4,6,8,12,14〉 {cd : 0.8}
c 7 2 {ab : 6,8,12}, {a : 3,14} − −
b 7 2 {a : 1,3,6,8,10,11,12} 〈a : 1,3,6,8,10,11,12〉 {ab : 0.83}

Algorithm 2 describes the procedure for finding periodic patterns in a PP-tree. We
do not discuss this algorithm in detail as it is straightforward to understand. Min-
ing the PP-tree is summarized in Table 3. It can be observed that conditional pattern
bases have not been constructed for the item ‘e,’ because it is an aperiodic 1-pattern
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with RPS(e) 6≥ minRPS. The above bottom-up mining technique is efficient, because
it shrinks the search space dramatically as the mining process progresses. Some of the
improvements discussed for FP-growth [10] can be straight forward extended to PP-
growth. We are unable to discuss these improvements due to the page limitation.

5 Experimental Results
Since there exists no algorithm to find periodic patterns in temporal databases, we only
evaluate the proposed algorithm and show that our algorithm is memory and runtime
efficient. We also show that PP-tree consumes less memory than the FP-tree for many
databases. Finally, we discuss the usefulness of the proposed model by demonstrating
that over 80% of the event keywords found by a supervised event detection system [1]
in Twitter data can also be discovered as periodic patterns. (Similar to FP-growth [9,
10], PP-growth also scales linearly with the increase of database size. Unfortunately,
we are unable to present these results due to page limitation.)

The algorithms PP-growth and FP-growth are written in GNU C++ and run on
a 2.66 GHz machine having 16 GB of memory. Ubuntu 14.04 is the operating sys-
tem of our machine. The event detection system is written in python and java, and
available for download at https://github.com/aritter/twitter_nlp. The experi-
ments have been conducted using both synthetic (T10I4D100K) and real-world (FAA-
accidents and Twitter) databases. The synthetic database, T10I4D100K, is generated
by using the IBM data generator [11]. This data generator is widely used for evaluat-
ing association rule mining algorithms. The T10I4D100K database contains 870 items
with 100,000 transactions. The FAA-accidents database is constructed from the ac-
cidents data recorded by the Federal Aviation Authority (FAA) from 1-January-1970
to 31-December-2014. Only categorical attributes have been taken into account while
constructing the database. This database contains 9,290 items and 98,864 transactions.
The Twitter database constitutes of 2,680,896 tweets collected from 10-march-2011 to
31-march-2011. These tweets are related to GEJE. We have created temporal database
by considering top 4000 frequent english words.

Figure 3(a)-(c) present scatter plots about the inter-arrival times of items in the
T10I4D100K, FAA-accidents and Twitter databases, respectively. The X-axis repre-
sents the items ranked in descending order of their support and Y -axis represents the
median of inter-arrival times of an item in a database. The thick line in these figures de-
note the trend line. The equations of these trend lines and R2 values are shown in Table
4. It can be observed from the trend lines that rare items not only have low support, but
also have high inter-arrival times as compared against the frequent items. This experi-
ment clearly demonstrates the importance of enabling every pattern to satisfy a different
period and minimum number of cyclic repetitions to be a periodic pattern.

The performance of PP-growth has to be evaluated by varying the items’ MIAT
values. Unfortunately, popular period identification functions (e.g. FFTs and auto-
correlation) do not help us vary items’ MIAT values. In this context, we employ the
following methodology to specify the items’ MIAT values. For each database, we use
the equation of trend line as a reference, and specify the items’ MIAT values by multi-
plying the equation of the trend line with a constant β. That is, MIAT (i j) = β× f (x),
where β≥ 1 is a user-specified constant and f (x) is the equation of trend line in which
x denotes the rank of an item in support descending order.
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(a) T10I4D100K (b) FAA-accidents (c) Twitter
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Fig. 3: The median of inter-arrival times of items in a database

Table 4: Trend line Equations for various databases
Database Equation of trend line ( f (x)) R2

T10I4D100K y = 7.06E-05x2 +0.12x+14.70 0.9892
FAA-Accidents y = -9.67E-05x2 +0.04x+1 0.9122
Twitter y = 3.32E-06x2 +0.11x+21.39 0.0777

Figure 4(a)-(c) shows the number of periodic patterns generated for different minRPS
and β values in T10I4D100K, FAA-accidents and Twitter databases, respectively. The
following two observations can be drawn from these figures: (i) Increase in β value
may increase the number of periodic patterns. The reason is that higher β values tend
to increase MIAT values of items. (ii) Increase in minRPS may decrease the number of
periodic patterns. The reason is that increasing minRPS increases the minimum number
of cyclic repetitions necessary for a pattern to be a periodic pattern.
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Fig. 4: The periodic patterns generated at different minRPS and β values

Figure 5(a)-(c) show the runtime requirements of PP-growth at different minRPS
and β values in T10I4D100K, FAA-accidents and Twitter databases, respectively. It can
be observed that varying the β and minRPS values has similar influence on runtime than
on the generation of periodic patterns.

Table 5 lists the maximum memory usage of PP-tree and FP-tree on T10I4100K,
FAA-accidents and Twitter databases, respectively. Both trees are constructed with ev-
ery item in the database. It can be observed from the results that PP-tree consumes less
memory than FP-tree if number of nodes in a tree exceed the database size, otherwise,
PP-tree consumes more memory than FP-tree.
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Fig. 5: Runtime requirements of PP-growth at different minRPS and β values

Table 5: Memory comparison of FP-tree and PP-tree
Data set FP-tree (in MB) PP-tree (in MB) No. of Nodes
T10I4D100K 10.906 8.561 714,739
FAA-accidents 5.898 4.801 316,935
Twitter 7.172 15.606 470,040

5.1 A case study: evaluation of periodic patterns discovered from Twitter data

While investigating the usefulness of periodic patterns discovered from Twitter data,
we have observed that many generated periodic 1-patterns (and their associations) were
interesting as they were referring to the event GEJE. This motivated us to study the
following: (i) Do event keywords in Twitter exhibit periodic behavior? and (ii) If event
keywords exhibit periodic behavior, then what would be their percentage? The signifi-
cance of this study is that if we find many event keywords exhibiting periodic behavior,
then one can use the proposed model as an unsupervised learning technique to derive
some prior knowledge about event keywords and their associations in Twitter data.

Ritter et al. [1] discussed a supervised learning model to discover event keywords
from tweets. We use this model for our experiment. This model annotates tweets us-
ing natural language processing techniques, generates a model from the training set of
tweets and uses the model to extract event keywords from the test set of tweets. As the
authors have already trained their model to identify event keywords in tweets, we have
simply provided our Twitter data as the test set and extracted event keywords. A total of
325 event keywords have been extracted from the Twitter data. (We found that only 106
event keywords have appeared in top 500 frequent words. This clearly demonstrates
that f requency has less influence in determining a word as an event keyword.) When
we compared these event keywords against the periodic 1-patterns generated at β = 3
and minRPS = 0.6, we found that 267 event keywords have been generated as periodic
1-patterns. In other words, 82.15% (= 267×100

325 ) of keywords have exhibited periodic be-
havior in Twitter data. This clearly demonstrates that periodic pattern mining can be
used to find prior knowledge about event keywords and their associations in Twitter
data. Table 6 lists some of the generated periodic patterns and their associated tweets.

6 Conclusions and Future Work
We have proposed a model to find periodic patterns in temporal databases. It enables
every pattern to satisfy different period and minimum number of cyclic repetitions de-
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Table 6: Some of the interesting periodic patterns and tweets containing the patterns
Pattern RPS Tweets
still,death,alive,- 0.83 S Yuko Yamaguchi (Hello Kitty) & Satoshi Tajiri (Pokemon) are still
rumors,celeb alive. Please stop spreading J-celeb death rumors. #earthquake
jishin,helpme,anpi,- 0.86 twitter社より。統一のハッシュタグなどが発表になりました。
hinan,nosg 情報の統合に協力しましょう。 #jishin:地震一般に関する情報

#j j helpme :救助要請 #hinan :避難 #anpi :安否確認 #311care:
医療系被災者支援情報” #NOSG (summary: users were tweeting
the list of hashtags provided by Twitter for GEJE)

tsunami,earthquake,- 0.83 RT @bbcbreaking: #Tsunami warning is widened to incl
warning,massive,- rest of Pacific coast, incl #Australia and #South America
widened massive #earthquake in #Japan

pending on its items. A null-invariant measure, relative periodic-support, was discussed
to determine the periodic interestingness of a pattern in a database. A pattern-growth
algorithm has also been presented to find periodic patterns. Experimental results show
that the proposed model can find useful information and that the algorithm is efficient.

Our study has been confined to mining periodic patterns in a static temporal database.
The method developed here can be extended to incremental mining of temporal databases.
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