
Aging Locality Awareness in Cost Estimation
for Database Query Optimization

Chihiro Kato1(B), Yuto Hayamizu1, Kazuo Goda1, and Masaru Kitsuregawa1,2

1 The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, Japan
kato@tkl.iis.u-tokyo.ac.jp

http://www.u-tokyo.ac.jp/
2 National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo, Japan

http://www.nii.ac.jp/

Abstract. A number of insertions, updates and deletions eventually
deteriorate the structural efficiency of database storage, and then cause
performance degradation. This phenomenon is called “aging.” In real-
world database systems, aging often exhibits strong locality because of
the inherent skewness of data access; specifically speaking, the cost of
I/O operations is not uniform throughout the storage space. Potentially
query execution cost is influenced by the aging. However, conventional
query optimizers do not consider the aging locality; thus they cannot
accurately estimate the cost of query execution plans at times. In this
paper, we propose a novel method of cost estimation that has the key
capability of accurately determining aging phenomena, even though such
phenomena are non-uniformly incurred. Our experiment on PostgreSQL
and TPC-H data sets showed that the proposed method can accurately
estimate the query execution cost even if it is influenced by the aging.

Keywords: Database systems · Query optimizer · Database aging

1 Introduction

The structural efficiency of database storage is fundamental to the query execu-
tion performance in database systems. Insertions, updates and deletions can scat-
ter densely packed records and disturb the physical ordering of records. Repeated
execution of these operations eventually deteriorates the structural efficiency and
then causes performance degradation. This phenomenon is called “aging”. Aging
can greatly affect the I/O cost of query execution, and its influence is different
for each candidate plan owing to the difference of I/O strategies. The progress
of aging phenomenon can cause errors in cost estimation. Thus query optimizers
may choose non-optimal plans because they are unaware of aging phenomenon.

C. Kato—Currently, Fujitsu Laboratories.
The original version of this chapter was revised: The authors’ affiliations were incor-
rect. This has been corrected. An erratum to this chapter can be found at 10.1007/
978-3-319-44406-2 40

c© Springer International Publishing Switzerland 2016
S. Hartmann and H. Ma (Eds.): DEXA 2016, Part II, LNCS 9828, pp. 389–396, 2016.
DOI: 10.1007/978-3-319-44406-2 32

http://dx.doi.org/10.1007/978-3-319-44406-2_40
http://dx.doi.org/10.1007/978-3-319-44406-2_40


390 C. Kato et al.

The difficulty of aging-aware cost estimation is that aging often has strong
locality due to the skewness of data access by user activities. Actual cost of query
executions can differ even when queries are the same except for access ranges.
While the significance of aging on database performance has been recognized
from the early history of database systems, awareness of aging locality in query
optimization has been remained largely unexplored to the best of our knowledge.

In this paper, we propose a novel method of cost estimation for query opti-
mization that has the key capability of figuring out the aging phenomenon accu-
rately even though this occurs non-uniformly. Our experiments showed that the
proposed method yields good cost estimation and helps the choice of optimal
query plans. The rest of this paper is organized as follows. We describe the
proposed method in Sect. 2. We then present the evaluation of the proposed
method in Sect. 3. We summarize related work in Sect. 4 and conclude the paper
in Sect. 5.

2 Aging Locality Aware Cost Estimation

2.1 Influence of Aging and Its Locality on Query Optimization

While initially loaded databases can enjoy good efficiency, repeated execution
of insertions, updates and deletions eventually disturb the physical ordering of
a table, spatially scatter records across a table, and then degrade performance.
This phenomenon is called aging. As described in the previous section, databases
in production are inherently in aged states for most of their lifetimes.

In terms of query optimization, this performance degradation due to aging
means the increase of the I/O cost. This cost increase has two aspects: temporal
and spatial variation. Both can lead to wrong choices of query execution plans in
different ways. The temporal variation of the I/O cost is caused by the progress of
aging and can change the optimal query execution plan for a certain query. The
spatial variation of the I/O cost is caused by aging locality. Even if queries are
the same except for access ranges, as seen in prepared statements, the optimal
query execution plans can be different in the presence of spatial variation of the
I/O cost.

In situations with aging locality, a conventional optimizer cannot reflect the
spatial variation of the I/O cost in the cost estimation, which can result in
choosing non-optimal query execution plans. In order to choose the optimal
query execution plan on aged databases, cost models should be aware of aging
locality. In the next subsection, we present I/O cost models with aging locality
and provide a method to measure the increase of the I/O cost for the presented
models.

2.2 I/O Cost Models with Aging Locality

First, we model the I/O access cost for only one table. We define S(x) as a
window function of the access range, and D(x) as the distribution density of



Aging Locality Awareness in Cost Estimation for Query Optimization 391

data, where x can be the value of an indexing key or an address in a table space.
If the cost C(x) of accessing a record pointed by x is given, the I/O cost for a
single table access can be described as follows:

Γ =
∫

S(x)D(x)C(x)dx (1)

S(x) is equal to 1 if x is in an accessed range; otherwise, it is 0. D(x) denotes
the number of records for x. When the table is initialized or reorganized, C(x)
should be nearly a constant; as the table ages, C(x) changes its shape according
to the increase of the I/O cost. Note that we do not consider a composite primary
key in this paper; this will be left for future work.

For join queries, we combine these functions to estimate the I/O cost. For
example, a nested loop join query picks up matching records in table t1 one
by one. For each record in table t1, scans records in table t2 that satisfy join
conditions. Thus, its I/O cost can be described with the join cardinality jt12(x)
between tables t1 and t2 as follows:

ΓNLJ =
∫

St1(x)Dt1(x)Ct1(x)dx +
∫

jt12(x){St1(x)Dt1(x)}Ct2(x)dx (2)

On the other hand, the I/O cost of hash join queries are rather simple:

ΓHJ =
∫

St1(x)Dt1(x)Ct1(x)dx +
∫

St2(x)Dt2(x)Ct2(x)dx (3)

In order to calculate a value of the I/O cost of a requested query, C(x) must
be available before query requests. In this paper, we focus on two fundamental
access methods; full-table scan and index scan. We employed a measurement-
based approach with performance test queries to approximate C(x) for each
access method. For the full-table scan, regardless of the actual C(x), the average
of the I/O cost increase is enough for cost estimation, so its performance test
query is just a simple full-table scan. For the index scan, the x-space is divided
equally into N parts, and performance test queries are given as index scan queries
of each part. By measuring the execution time of these performance test queries
beforehand, approximate values of C(x) can be provided for our cost models.

The purpose of this paper is showing that aging locality aware cost model-
ing can improve the accuracy of cost estimation. This approach requires non-
negligible amount of workload. We would like to further investigate efficient
calculation of C(x) in future.

3 Experiment

In order to validate the potential benefits of the proposed cost estimation, we
performed intensive experiments by using an open-source database system and
an industry-standard benchmark data set.



392 C. Kato et al.

Table 1. Experimental setup

Server model Dell PowerEdge R720xd

Processor 2x Intel Xeon E5-2690 v2

Main memory 64 GB DRAM

Storage devices 1x 900 GB HDD dedicate for database

1x 900 GB HDD dedicate for operating system

Operating system CentOS release 5.8 (64 bit)

Database system PostgreSQL 9.4.0 (buffer size 128 MB)

Data set and schema TPC-H, dbgen 2.17.0

3.1 Experimental Setup

Table 1 summarizes the laboratory environment that we built. PostgreSQL was
configured with default configuration parameters unless specially noted.

First, we generated an initial data set by executing dbgen with a scale factor
100 and loaded the data set into the PostgreSQL database. After loading the
data set, we executed the VACUUM command because this is well-known as a
best practice to obtain the maximum performance. Following this, we performed
a measurement; we executed a query and measured execution information, such
as the taken execution time and deployed query execution plan. Note that, every
time we started execution of a query, we cleaned up Linux disk buffer and Post-
greSQL database buffer to measure cold-start performance by preventing some
data from being cached there.

After we completed a measurement in the initial status, we iterated a bulk
update on the database and took another measurement on the updated data-
base. We performed the bulk update by executing refresh functions generated by
dbgen. Logically, the database size does not change even as we update the data-
base. To ensure fair measurement, we also ran the VACUUM command every
time we completed a refresh function. By iterating database refreshing and per-
formance measurement, we observed how query execution behavior would change
as we incrementally updated the database.

SELECT SUM(l_extendedprice) FROM lineitem

WHERE l_orderkey < x AND l_orderkey > y 1

SELECT SUM(l_extendedprice) FROM lineitem

WHERE l_partkey < x AND l_partkey > y 2

Fig. 1. Test queries (Example)



Aging Locality Awareness in Cost Estimation for Query Optimization 393

SELECT SUM(l_extendedprice) FROM lineitem, part

WHERE p_partkey < x AND l_orderkey > a AND l_orderkey < b

AND l_partkey = p_partkey (A)

Fig. 2. Validation queries

3.2 Cost Estimation Accuracy

This section presents the experimental results that validate the benefits of the
proposed cost estimation.

We performed a measurement for the initial (non-aged) status and the
refreshed (aged) status in the same database for each table and each access
method. The refreshed status meant that the refresh function (updating the
10 % of the storage space) had been performed four times. For each measure-
ment, we first performed each test query (example is depicted in Fig. 1) to
measure aging degrees throughout the database. For example, regarding the
test queries (1)–(2), we performed the query for different combinations of x
and y so that the series of query executions would eventually cover the whole
database space. Specifically, we divided the key space described by l orderkey
into ten pieces. In the first query trial for the test query (1), we set (x,
y) to (min(l orderkey),min(l orderkey) × 9/10 + max(l orderkey) × 1/10). As
well, in the second query trial, we set (x, y) to (min(l orderkey) × 9/10 +
max(l orderkey)×1/10),min(l orderkey)×8/10+max(l orderkey)×2/10). And
we execute the same query with different (x, y) until we could cover the whole
key space to obtain aging degrees over the space.

Based on the measured aging degrees, we estimated the query cost for the
validation query (depicted in Fig. 2) in accordance with the estimation method
introduced in Sect. 2. We also actually performed the validation query and com-
pared the estimated cost and actual execution time to investigate how accurately
the proposed method could estimate the query execution costs.

For comparison, we also measured the estimated cost reported by the
EXPLAIN command in PostgreSQL to execute the validation query. This esti-
mated cost is an internal value that is used for query optimization in PostgreSQL.

Figure 3(a) and (b) present aging degrees that we measured over the key space
described by l orderkey for the initial status and aged status, respectively, of the
same database. As is clearly illustrated, access cost were uniformly distributed
with the initial status, but in the aged status, access cost in the first 10 % region
dramatically increased. In other words, aging phenomena were incurred in this
region.

Figure 4(a) shows how query optimization was performed for query (A) with
x = 1000 in the aged status. Aging was incurred in a limited portion in the
database. To investigate the aging locality, we set a = 60, 000, 000 and b =
120, 000, 000 so that the query could fall in the non-aged region and we set
a = 0 and b = 60, 000, 000 so that it could go into the aged region. The graph
summarized the EXPLAIN cost and actual execution time for two different query



394 C. Kato et al.

(a) Non-aged (b) Aged

Fig. 3. Aging degrees of l orderkey

(a) PostgreSQL optimizer (b) Proposed method

Fig. 4. Compare estimated cost with execution time about query (A) (selectivity of
part table is 0.005 %)

execution plans; nested-loop join and hash join. In both regions, PostgreSQL
estimated much smaller cost for nested loop join rather than hash join. In terms
of the actual execution time, however, hash join outperformed nested loop join
for the non-aged region but vice versa for the aged-region. This experiment
confirmed that the current implementation in PostgreSQL cannot accurately
estimate aging phenomena that were incurred in the database storage.

In contrast, Fig. 4(b) presents the estimated cost with the proposed method
for the same query configuration. As is clearly shown, the proposed method
successfully obtained a lower cost for hash join in the non-aged region but for
nested loop join in the aged region.

4 Related Work

4.1 Aging and Database Reorganization

Performance degradation due to aging phenomenon has been a big headache for
database administrators. Besides a mathematical analysis of performance degra-
dation [1], database reorganization has been studied as a practical solution. In



Aging Locality Awareness in Cost Estimation for Query Optimization 395

the ‘70s, the size of the database was generally small. Off-line reorganization
was an reasonable approach [2], and arbitration between performance degrada-
tion and reorganization cost was the main concern at that time [3,4].

As the size of databases in operation grew rapidly, online reorganization
became mainstream. Online reorganization technologies are largely placed into
two categories: replicating a database and writing back the result afterwards
[5], and incrementally reorganizing a database in place avoiding conflict with
running queries by users [6]. Starting from the ‘80s, online reorganization has
remained an active field of research [7,8] to the present.

However, despite intensive studies on database reorganization, these
approaches still require too many resources to be executed frequently enough
for keeping databases from being aged. In realistic situations, a certain level of
aging phenomenon is unavoidable. In this paper, we propose a novel method
of aging-aware cost estimation for query optimization. The proposed method
can accurately estimate the cost of query execution even in the existence of
non-uniform aging phenomenon, while conventional methods cannot.

4.2 Query Optimization

A query optimizer is a key component of database systems that converts an
incoming query into an optimal query execution plan [9]. It has been studied
intensively and extensively [10,11], such as parallelization of query optimization
for utilizing the increasing number of CPU cores [12], caching results for future
query optimization [13], and so on. In recent years, query optimization for emerg-
ing parallel query engine has been actively studied, such as using intermediate
results for query optimization [14]. I/O cost modeling is a centerpiece of cost-
based optimization. Storage systems were mostly based on magnetic disks before
the 2000s [15], but in recent years Flash-based SSDs have increased its adoption
rapidly in enterprise systems, and revisiting the I/O cost modeling has gained
momentum [16]. In this paper, we focus on I/O cost modeling in the presence of
non-uniform aging phenomenon.

5 Conclusion

We proposed a novel technology of query cost estimation that has the key capa-
bility of figuring out aging phenomena accurately even though the aging phenom-
ena are non-uniformly incurred on the storage space. Our experiments confirmed
that the proposed technology can improve the accuracy of query cost estimation
as aging is incurred in the database.

As a first step, this paper has focused on a careful but fundamental inves-
tigation of our purposed approach. Many open problems still remain. First, we
would like to extend our technical investigation toward database queries of higher
complexity. Second, we would like to extend our experiments by using different
real-world data sets and queries in order to validate the benefits for a wide spec-
trum of applications. Finally, we also plan to work on implementation of the



396 C. Kato et al.

proposed framework into PostgreSQL so as to share our knowledge among the
community.

References

1. Heyman, D.P.: Mathematical models of database degradation. ACM Trans. Data-
base Syst. (TODS) 7(4), 615–631 (1982)

2. Sockut, G.H., Goldberg, R.P.: Database reorganization-principles and practice.
ACM Comput. Surv. (CSUR) 11(4), 371–395 (1979)

3. Shneiderman, B.: Optimum data base reorganization points. Commun. ACM
16(6), 362–365 (1973)

4. Bing Yao, S., Sundar Das, K., Teorey, T.J.: A dynamic database reorganization
algorithm. ACM Trans. Database Syst. (TODS) 1(2), 159–174 (1976)

5. Sockut, G.H., Beavin, T.A., Chang, C.-C.: A method for on-line reorganization of
a database. IBM Syst. J. 36(3), 411–436 (1997)

6. Omiecinski, E., Scheuermann, P.: A global approach to record clustering and file
reorganization. In: Proceedings of the Seventh Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 201–219.
British Computer Society (1984)

7. Kitsuregawa, M., Goda, K., Hoshino, T.: Storage fusion. In: Proceedings of the
2nd International Conference on Ubiquitous Information Management and Com-
munication (ICUIMC2008), pp. 270–277. ACM (2008)

8. Ghandeharizadeh, S., Gao, S., Gahagan, C., Krauss, R.: An on-line reorganization
framework for SAN file systems. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K.
(eds.) ADBIS 2006. LNCS, vol. 4152, pp. 399–414. Springer, Heidelberg (2006)

9. Chaudhuri, S.: An overview of query optimization in relational systems. In: Pro-
ceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 34–43. ACM (1998)

10. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv.
(CsUR) 16(2), 111–152 (1984)

11. Graefe, G.: The cascades framework for query optimization. Data Eng. Bull. 18(3),
19–29 (1995)

12. Waas, F.M., Hellerstein, J.M.: Parallelizing extensible query optimizers. In: Pro-
ceedings of the 2009 ACM SIGMOD International Conference on Management of
Data, pp. 871–878. ACM (2009)

13. Chen, C.M., Roussopoulos, N.: The implementation and performance evaluation
of the ADMS query optimizer: Integrating query result caching and matching.
Springer, Heidelberg (1994)

14. Perez, L.L., Jermaine, C.M.: History-aware query optimization with materialized
intermediate views. In: 2014 IEEE 30th International Conference on Data Engi-
neering (ICDE), pp. 520–531. IEEE (2014)

15. Haas, L.M., Carey, M.J., Livny, M., Shukla, A.: Seeking the truth about ad hoc
join costs. The VLDB J. 6(3), 241–256 (1997)

16. Ghodsnia, P., Bowman, I.T., Nica, A.: Parallel I/O aware query optimization. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, pp. 349–360. ACM (2014)


	Aging Locality Awareness in Cost Estimation for Database Query Optimization
	1 Introduction
	2 Aging Locality Aware Cost Estimation
	2.1 Influence of Aging and Its Locality on Query Optimization
	2.2 I/O Cost Models with Aging Locality

	3 Experiment
	3.1 Experimental Setup
	3.2 Cost Estimation Accuracy

	4 Related Work
	4.1 Aging and Database Reorganization
	4.2 Query Optimization

	5 Conclusion
	References


