
PAID: Mining Sequential Patterns by Passed Item Deduction in Large Databases

Zhenglu Yang Masaru Kitsuregawa
Info. and Comm. Engineering Department

The University of Tokyo
Tokyo, Japan

{yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp

Yitong Wang
Computer Science Department

Fudan university
Shanghai, China

yitongw@fudan.edu.cn

Abstract

Sequential pattern mining is very important because it is
the basis of many applications. Yet how to efficiently imple-
ment the mining is difficult due to the inherent characteris-
tic of the problem - the large size of the dataset. Although
there has been a great deal of effort on sequential pattern
mining in recent years, its performance is still far from sat-
isfactory. In this paper, we have proposed a new algorithm
called PAssed Item Deduced sequential pattern mining (ab-
breviated as PAID), which can efficiently get all the frequent
sequential patterns from a large database. The main dif-
ference between our strategy and the existing works is that
other algorithms accumulate the candidate support in each
iteration from scratch, in contrast, PAID makes good use of
the temporary results (support value) of k-length frequent
patterns on discovering (k+1)-length patterns, which can
reduce the search space greatly in mining sequential pat-
terns. Our experimental results and performance studies
show that PAID outperforms the previous works by mean-
ingful margins on large datasets.

1 Introduction

Sequential pattern mining [2], which can be seen as as-
sociation rule discovery [1] with regard to time constraint,
has attracted a great deal of interest during the recent surge
in data mining research because it is the basis of many ap-
plications, such as customer behavior analysis, stock trend
prediction, and biological data analysis. Its main goal is
to extract frequent subsequences from a sequence database.
One typical example is:

From an electronic goods store’s transaction list, we
know that 70% of the people who buy a television also buy
a video camera within one month.

In the above example, we need not only know the two
purchased items that are always bought by the same cus-
tomer (association rule), the most important thing is that we
need also know the order in which those items are bought
(sequential pattern). 70% here represents the percentage of
customers who have this purchasing habit and can be used
to predict customer’s behavior in the near future.

Efficient sequential pattern mining methodologies have
been studied extensively in many related problems, includ-

ing the general sequential pattern mining [2] [13] [18] [11]
[3] [4], constraint-based sequential pattern mining [5], in-
cremental sequential pattern mining [10], frequent episode
mining [9], approximate sequential pattern mining [7], par-
tial periodic pattern mining [6], temporal pattern mining
in data stream [14], maximal and closed sequential pattern
mining [8] [16] [15].

Although there are so many problems related to sequen-
tial pattern mining explored, we realize that the general se-
quential pattern mining algorithm development is the most
basic one because all the others can benefit from the strate-
gies it employs, i.e., Apriori heuristic and projection-based
pattern growth. Hence we aim to develop an efficient gen-
eral sequential pattern mining algorithm in this paper. Much
work has been carried out on it [2] [13] [18] [11] [3] [4].
However, all of these works suffer from the problems of
having a large search space and the ineffectiveness in han-
dling long patterns on large datasets. In this work, we pro-
pose a new algorithm to reduce the space necessary to be
searched. Instead of counting the support of each candidate
sequence from scratch in every iteration, as PrefixSpan [11]
and SPADE [18] do, we get the support of (k+1)-length can-
didate sequence from already found k-length frequent pat-
tern’s support, which scans much smaller space than other
algorithms do on large datasets. Since support counting is
usually the most costly step in sequential pattern mining,
the PAssed Item Deduction (PAID) technique improves the
performance greatly by avoiding cost scanning.

1.1 Problem Definition

Let I = {i1, i2, . . . , ik} be a set of items. A subset of
I is called an itemset or an element. A sequence, s,
is denoted as 〈t1, t2, . . . , tl〉, where tj is an itemset, i.e.,
(tj ⊆ I) for 1 ≤ j ≤ l. The itemset, tj , is denoted as
(x1x2 . . . xm), where xk is an item, i.e., xk ∈ I for 1 ≤
k ≤ m. For brevity, the brackets are omitted if an itemset
has only one item. That is, itemset (x) is written as x.
The number of items in a sequence is called the length
of the sequence. A sequence with length l is called an l-
sequence. A sequence, sa = 〈a1, a2, . . . , an〉, is contained
in another sequence, sb = 〈b1, b2, . . . , bm〉, if there exists
integers 1 ≤ i1 < i2 < . . . < in ≤ m, such that a1 ⊆ bi1 ,
a2 ⊆ bi2 ,. . . , an ⊆ bin

. We denote sa as a subsequence
of sb, and sb as a supersequence of sa. Given a sequence
s = 〈s1, s2, . . . , sl〉, and an item α, s � α denotes that s

Table 1. Sequence Database
SID Sequence
10 bdbcbdabad
20 dcaabcbdab
30 cadadcadca

concatenates with α, which has two possible forms, such as
Itemset Extension (IE), s �α=〈s1, s2, . . . , sl ∪{α}〉, or
Sequence Extension (SE), s�α=〈s1, s2, . . . , sl, {α}〉. If
s′ = p � s, then p is a prefix of s′ and s is a suffix of s′.

A sequence database, S, is a set of tuples 〈sid, s〉,
where sid is a sequence id and s is a sequence. A
tuple 〈sid, s〉 is said to contain a sequence β, if β is a
subsequence of s. The support of a sequence, β, in
a sequence database, S, is the number of tuples in the
database containing β, denoted as support(β). Given a
user specified positive integer, ε, a sequence, β, is called a
frequent sequential pattern if support(β) ≥ ε. In this work,
the objective was to find the complete set of sequential
patterns of database S in an efficient manner.

Example 1. Let our running database be the sequence
database S shown in Table 1 with min support = 2. We
will use this database throughout the paper. This database
only covers the Sequence Extension (SE) case because
we want to clearly illustrate our key idea by this simplified
example. In our implementation, we can also deal with the
Itemset Extension (IE) case, which will be explained at
the end of Section 2.

1.2 Related Work

Agrawal and Srikant first proposed the sequential pattern
mining problem in [2]. Then the same authors proposed
the GSP algorithm [13], which iteratively generates can-
didate (k+1)-length sequences from frequent k-length se-
quences based on the anti-monotone property that all the
subsequences of a frequent sequence must be frequent.

Zaki et al. proposed SPADE [18] to elucidate frequent
sequences using efficient lattice search techniques and sim-
ple join operations based on the ID-List data structure. An
ID-list of a sequence keeps a list of pairs, which indicate
the positions that it appears in the database. In a pair, the
first value stands for a customer sequence and the second
refers to an element (position) in it. For the example data-
base in Table 1, the ID-list of sequence 〈ab〉 is 〈(10,8),
(20,5), (20,7), (20,10)〉, where the pair (10,8) means that
this sequence appears in customer sequence 10 and ends in
the eighth element. SPADE computes the support count of
a candidate k-sequence generated by merging the ID-lists
of any two frequent (k-1)-sequences with the same (k-2)-
prefix. Consider the same database in Table 1. To compute
the support count of sequence 〈abc〉, the SPADE algorithm
merges the two ID-lists of sequences 〈ab〉 and 〈ac〉, which
are 〈(10,8), (20,5), (20,7), (20,10))〉 and 〈(20,6), (30,6),
(30,9)〉 respectively. As a result, the ID-list of sequence
〈abc〉 is 〈(20,6)〉, indicating that this sequence appears in
customer sequence 20 and therefore has a support count of
1. Ayres et al. proposed the SPAM algorithm [3], which
uses SPADE’s lattice concept, but represents each ID-List
as a vertical bitmap. All the above algorithms followed the
Apriori heuristic.

Table 2. 〈a〉-Projected Database
SID Sequence
10 bad
20 abcbdab
30 dadcadca

(a) Original 3-sorted database (b) Updated 3-sorted database

Figure 1. The 3-sorted database in the DISC
algorithm

On the other hand, Pei et al. proposed a projection-based
algorithm, PrefixSpan [11], which projects sequences into
different groups called projected databases. For the ex-
ample database in Table 1, assuming min support=2, the
PrefixSpan algorithm first scans the database to find the
frequent 1-sequences, i.e. 〈a〉, 〈b〉, 〈c〉, 〈d〉. Then the al-
gorithm constructs the projected database for each already
found frequent 1-sequence. For example, Table 2 shows the
projected database of 〈a〉. The PrefixSpan algorithm contin-
ues the discovery of frequent 1-sequences in Table 2 to form
the frequent 2-sequences with prefix 〈a〉. Here by scanning
Table 2 it gets 1-length sequences with their support, i.e.
〈a〉 : 3, 〈b〉 : 2, 〈c〉 : 2 and 〈d〉 : 3, indicating that the sup-
ports of 2-length sequences are 〈aa〉 : 3, 〈ab〉 : 2, 〈ac〉 : 2,
〈ad〉 : 3. Recursively, the PrefixSpan algorithm generates
the projected database for each frequent k-sequence to find
frequent (k+1)-sequences. PrefixSpan uses a lot of time be-
cause it needs to scan the entire projected database, which
can be very large.

Chiu et al. proposed the DISC strategy [4], which uses
a k-sorted database to find all the frequent k-sequences and
skips most non-frequent k-sequences by checking only the
conditional k-minimum subsequences. For the example
database in Table 1, to find frequent 3-sequence patterns,
the DISC strategy first finds the 3-minimum subsequences
of each customer sequence and then, sorts the sequences
according to the ascending order of these 3-minimum sub-
sequences, as shown in Fig. 1 (a). The k-minimum sub-
sequence at the θ-th position is denoted by αθ. Assum-
ing min support = 3, by comparing α1, i.e. 〈aaa〉, and
αmin support, i.e. 〈aad〉, it not only knows that 〈aaa〉 is non-
frequent, but also knows that all the subsequences between
〈aaa〉 and 〈aad〉 are not frequent. By this way, DISC algo-
rithm can skip many non-frequent candidate subsequences.
It continues to test the remaining 3-subsequences by updat-
ing α1 and α2 in customer sequences 20 and 30, respec-
tively, to the smallest one which is equal to or larger than
αmin support. The result is shown in Fig. 1 (b), from where
we know that 〈aad〉 is frequent. Following this strategy,
DISC continues to update the 3-minimum subsequences
for each candidate customer sequence. It terminates the
3-subsequences testing process if the largest 3-minimum
subsequence has been traversed. The updating process in
DISC, is indeed searching in the (k-1)-prefix projected data-
base, which is similar to the mining process of PrefixSpan.

We noticed that the last position of an item is very im-
portant to judge whether a k-length pattern could grow to

Table 3. Item Last Position Table
SID Last Position of Item
10 clast = 4 blast = 8 alast = 9 dlast = 10
20 clast = 6 dlast = 8 alast = 9 blast = 10
30 dlast = 8 clast = 9 alast = 10

a (k+1)-length pattern. With this finding, we proposed our
work in LAPIN [17], which could improve the efficiency
significantly by reducing search space greatly. For the ex-
ample database in Table 1, similar to the PrefixSpan algo-
rithm, LAPIN first scans the database to find the frequent
1-sequences and constructs the item last position table as
shown in Table 3. To find those 2-sequence whose common
prefix is 〈a〉, LAPIN only scans the last position of each
distinct item in 〈a〉-projected database. Here LAPIN spends
11 scanning times, while PrefixSpan requires 18 scanning
times to get the same result. However, this improvement
is at the price of much memory consuming when building
the list of item’s last position because LAPIN uses a bitmap
strategy [17]. This problem motivates the work in this pa-
per. We aim to obtain an efficient and balanced pattern min-
ing algorithm with low memory consuming.

All of the above algorithms count the support of a candi-
date sequence from scratch. Different from them, we have
found a methodology that can make good use of the sup-
ports of already found k-length frequent patterns, to count
the supports of (k+1)-length candidate sequences. Although
there are some other algorithms were also built based on
reuse strategy, such as ISM [10], its mining object is the
updated database, not the original database. To the best of
our knowledge, the proposed PAID algorithm in this paper
is the first one to make good use of not only the position
of item but also the intermediate value (support value) of
k-length pattern when fining (k+1)-length pattern.

1.3 Overview of Our Algorithm

Our algorithm follows the pattern growth strategy,
which finds (k+1)-length patterns based on k-length fre-
quent patterns. However, instead of counting candidates
support from scratch as most existing algorithms do, PAID
makes good use of the intermediate result (support value)
of k-length frequent patterns in order to count supports of
(k+1)-length candidate sequences.

Discovering (k+1)-length frequent patterns. For any
sequence database, the last position of an item is the key
used to judge whether or not the item can be appended
to a given prefix (k-length) sequence (assumed to be
s). For example, in a sequence, if the last position of
item α is smaller than, or equal to, the position of the
last item in s, then item α cannot be appended to s as a
(k+1)-length sequence extension in the same sequence.
This strategy is named LAPIN, as described in [17].
Moreover, we can deduce which items “disappear” after
growing k-length sequence to (k+1)-length sequence, based
on their last positions are larger than the (k+1)-length
sequence border position or not. Then, we can reduce the
supports of these “disappeared” items from already found
results (support value) of k-length frequent patterns to
get (k+1)-length candidate sequence’ supports, avoiding
to scan k-length frequent pattern’s projected database,
which is probably very large. Because the reuse strategy

Figure 2. Prefix sequence is 〈 〉

Figure 3. Prefix sequence is 〈 a 〉
in this algorithm is based on passed (disappeared) items,
we named this algorithm as PAID (PAssed Item Deduction).

Example 2. When scanning the database in Table 1 for
the first time, we obtain Fig. 2 (a), which is a list of the last
positions of the 1-length frequent sequences in ascending
order. “↓” means the first index whose position is larger
than the position of the last item in the corresponding prefix
sequence. The initialization value for these indices is “1”,
whose corresponding prefix is 〈 〉. We can also get 1-length
frequent sequences with their support, 〈a〉 : 3, 〈b〉 : 2, 〈c〉 :
3, and 〈d〉 : 3, as shown in Fig. 2 (b), which is indeed the
support count of each item in the 〈 〉-projected DB.

Following the Depth First Search (DFS) path, to find the
2-length frequent patterns whose common prefix is item a,
we first get item a’s positions in Table 1 are 10:7, 20:3,
30:2, where sid:eid represents the sequence ID and the el-
ement ID. Then, we check Fig. 2 (a) to obtain the first
indices whose positions are larger than 〈a〉’s, resulting in
10:2, 20:1, 30:1, i.e. (10:blast = 8, 20:clast = 6, and 30:dlast
= 8), as shown in Fig. 3 (a). From Fig. 2 (a) and Fig. 3 (a),
we can know that only the index for the first customer se-
quence changed, which indicates item c “disappeared” by
extending from 〈〉 to 〈a〉 for the customer whose SID is 10.
So we reduce the support value of item c by 1 from Fig. 2
(b) to get each candidate item’s support, resulting in 〈a〉 : 3,
〈b〉 : 2, 〈c〉 : 2, and 〈d〉 : 3, as shown in Fig. 3 (b). They
are indeed the supports of 2-length sequences, i.e. 〈aa〉 : 3,
〈ab〉 : 2, 〈ac〉 : 2, 〈ad〉 : 3. Thus we can determine that
〈aa〉, 〈ab〉, 〈ac〉 and 〈ad〉 are the 2-length frequent patterns
whose common prefix is a.

From the above example, we can show that the main dif-
ference between PAID and previous works is to make use
of the intermediate result (support value) or not. PrefixS-
pan, SPADE and LAPIN accumulate the support of each
candidate item from scratch. However, PAID can obtain
the same result by reducing the support of “disappeared”
candidate item from previously found prefix pattern’s sup-
port. In PAID, it judges an item’s disappearance by check-
ing its last position. Obviously, by making good use of
the intermediate result, PAID can scan much smaller space
than the other algorithms do. For the above example, to
find the 2-length frequent patterns whose common prefix is
a, PrefixSpan needs 18 scanning times in the projected DB
and LAPIN needs 11 scanning times. However, PAID only
needs 4 comparison times to discover the same result.

Our contributions can be summarized as follows:

• A novel pruning technique is developed to minimize
the search space. By making use of intermediate value
(support value) of k-length frequent pattern to calcu-
late the support of k+1-length candidates, we can effi-
ciently avoid the cost of scan as other algorithms do.

• By combining the techniques developed, we proposed
a new algorithm, PAID to efficiently discover frequent
patterns from large datasets. Several optimizations
were used, i.e. LAPIN [17] methodology and binary
search for vertical representation of database.

• We conducted comprehensive experiments on both
synthetic and real datasets1. Experimental results and
performance study demonstrated that PAID is much
more efficient than the state-of-the-art algorithms by
up to more than an order of magnitude for large
datasets.

The remainder of this paper is organized as follows. In
Section 2, we introduce the PAID algorithm in detail. Our
experimental results and performance analysis are reported
in Section 3. We conclude the paper in Section 4.

2 PAssed Item Deduction Sequential Pattern
Mining

PAID follows the pattern growth strategy. To grow to
(k+1)-length sequence, we have to first get the knowledge
of its k-length prefix frequent pattern.

Definition 1 (Prefix border position set). Given two se-
quences, A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, sup-
pose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and
l ≤ n, and that C is a common prefix for A and B. We
record both positions of the last item Cl in A and B, respec-
tively, e.g., Cl=Ai and Cl=Bj . The position set, (i, j), is
called the prefix border position set of the common prefix C,
denoted as Sc. Furthermore, we denote Sc,i as the prefix
border position of the sequence, i.

For instance, if A=〈abc〉 and B=〈acde〉, then we can de-
duce that one common prefix of these two sequences is 〈ac〉,
whose prefix border position set is (3,2), which is the last
item c’s positions in A and B. To get the prefix border po-
sition, PrefixSpan needs O(D̄ × L̄) time, where D̄ is the
average number of customers and L̄ is the average sequence
length in the projected database, because it uses pseudo pro-
jection in sequential search order, while PAID applies the
binary search, whose time complexity is O(D̄ × log(L̄)).

To test (k+1)-length candidate sequences, PrefixSpan
searches in the prefix k-length frequent pattern’s projected
database. In contrast, PAID scans in the prefix k-length fre-
quent pattern’s projected item-last-position list.

Definition 2 (Item-last-position list). The list of the last po-
sitions of the different frequent 1-length items in ascending
order (or if the same, based on alphabetic order) for a se-
quences is called the item-last-position list, denoted as Ls.

1Interested readers can test PAID at http://www.tkl.iis.u-
tokyo.ac.jp/∼yangzl/software/PAID/ index.html to confirm its efficiency.

Furthermore, we denote Ls,n as the item-last-position
list of the sequence, n. Each node of Ls,n is associated
with two values, i.e., an item and an element number (de-
noted as Ds,n.item and Ds,n.num for Ds,n ∈ Ls,n)

Definition 3 (Candidate border index set). Given two se-
quences, A=〈A1A2 . . . Am〉 and B=〈B1B2 . . . Bn〉, sup-
pose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and
l ≤ n, and that C is a common prefix for A and B. Then
we have the prefix border position set SC,i and the item-
last-position list Ls,i for customer sequence i. We denote
the index CanIC,i, which points to the node Di, as the can-
didate border index of customer sequence i, and the index
set CanIC as the candidate border index set of the common
prefix C, if the following conditions hold:

(a) Di ∈ Ls,i
(b) Di.num > SC,i
(c) ∀Ei ∈ Ls,i before Di, Ei.num <= SC,i

For instance, for the example DB in Table 1, if we
have the prefix sequence which is 〈a〉, then we can get its
candidate border index set, 10:2, 20:1, 30:1, i.e. (10:blast
= 8, 20:clast = 6, and 30:dlast = 8), symbolized as “↓”, as
shown in Fig. 3 (a).

Definition 4 (Projected item-last-position list). Let C be
a sequential pattern in a sequence database S. The C-
projected item-last-position list, denoted as P |C , is the col-
lection of suffixes in the item-last-position list with regards
to prefix C.

Definition 5 (Support counting in projected item-last-posi-
tion list). Let C be a sequential pattern in sequence data-
base S, and A be a sequence with prefix C. The support
counting of A in C-projected item-last-position list P |C , de-
noted as supportP |C (A), is the number of sequences α in
P |C such that A � C ·α.

The time complexity of searching in the projected data-
base is O(D̄ × L̄), while searching in the projected item-
last-position list is O(D̄× N̄), where N̄ is the average total
number of the distinct items in the projected DB. Here we
have L̄/N̄ = m (m ≥ 1), where m denotes the distinct
item recurrence rate of the projected DB, or the density of
the projected DB. The worst case of PAID is that when there
is no duplicate item existing in the database (i.e. association
rule mining), m is equal to 1, which means that the time
used in searching the projected item-last-position list is the
same as that used in searching the projected DB. However,
for common datasets, especially for dense database such as
DNA sequence, m is probably very large. Here we have a
question that, is the result got by searching in the projected
DB the same as searching in the projected item-last-position
list? The answer can be got from the following two Lem-
mas.

Lemma 1 (Projected item-last-position list). Let A and C
be two sequential patterns in a sequence database S such
that C is a prefix of A.

1. P |A = (P |C)|A, and

2. for any sequence B with prefix C, supportP (B) =
supportP |C (B).

Proof. The proof of the Lemma 1 is similar to the proof
in [11] (Lemma 3.2). The first part of the lemma follows
the fact that, for a sequence B, the suffix of B with re-
gards to A, B/A, equals to the sequence resulted from
first doing projection of B with regards to C, i.e., B/C,
and then doing projection B/C with regards to A. That is
B/A = (B/C)/A. The second part of the lemma states
that to collect support count of a sequence B, only the se-
quences in the database sharing the same prefix should be
considered. Furthermore, only those suffixes with the prefix
being a super-sequence of B should be counted.

Lemma 2 (Support counting equivalency). Let C be a
sequential pattern in sequence database S, then support
counting in C-projected item-last-position list gets the same
result as support counting in C-projected database.

Proof. From Definition 4, we know that the only difference
between C-projected item-last-position list and C-projected
database is that the former records the last position of differ-
ent items, and the latter records all positions list of different
items. From the support definition, we know that duplicate
appearance in the same customer sequence does not con-
tribute to the support counting, which means that the addi-
tional information stored in C-projected database is useless.
Hence, support counting in C-projected item-last-position
list gets the same result as support counting in C-projected
database.

From Lemma 1 and Lemma 2, we can know that if we
want to get the support of (k+1)-length sequence, we can
count the support of its k-length prefix’s projected item-last-
position list. However, for large datasets, this naive support
counting in projected item-last-position list is not efficient
than making use of already found results (support value)
of k-length frequent pattern strategy. Hence, we have the
following Lemma.

Lemma 3 ((k+1)-length sequence support counting). Let C
be a k-length sequential pattern and A be a (k+1)-length
sequential pattern in sequence database S, such that C is
a prefix of A. Then we have supportP |A = supportP |C −
supportP |C−P |A .

Proof. From Definition 4, we know that the relationship be-
tween C-projected item-last-position list and A-projected
item-last-position list is P |A = P |C − (P |C − P |A).
Because item-last-position list only records each distinct
item once in every customer sequence, the relationship
of support counting between the two projected item-last-
position lists P |A and P |C is supportP |A = supportP |C −
supportP |C−P |A .

Lemma 3 illustrates the core idea of PAID, which makes
good use of the intermediate result (support value) of fre-
quent k-length sequences, to get the supports of (k+1)-
length candidate sequences by reducing the supports of
those “disappeared” items. Based on the above discussion,
the pseudo code of PAID is presented in Fig. 4.

We used a lexicographic tree [3] as the search path of our
algorithm and adopted a lexicographic order [3]. This used
the Depth First Search (DFS) strategy.

In Step 1, by scanning the DB once, we can obtain the
position list table, as in Table 4 and all the 1-length frequent
patterns. Based on the last element in each position list,

———————————————————————-
PAID Algorithm :
Input : A sequence database, and the minimum support threshold, ε
Output : The complete set of sequential patterns

Function : Gen Pattern(α, S, SupportP)
Parameters : α = length k frequent sequential pattern; S = prefix border
position set of (k-1)-length sequential pattern; SupportP = support count in
(k-1)-length sequential pattern’s projected item-last-position list
Goal : Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:

1.1 Ps← Create the position list representation of 1-length sequences
1.2 Bs← Find the frequent 1-length sequences
1.3 Ls← Obtain the item-last-position list of the 1-length sequences
1.4 SupportP |〈〉← Find the support count of 〈〉-projected item-last-

position list
2. For each frequent sequence αs in Bs

2.1 Call Gen Pattern (αs, 0, SupportP |〈〉)

Function Gen Pattern(α, S , SupportP)
3. Sα← Find the prefix border position set of α based on S
4. SupportP |α ← Obtain the support count of α-projected item-last-

position list, based on S, Sα and SupportP

5. FreItems,α ← Obtain the item list of α based on SupportP |α
6. For each item γs in FreItems,α

6.1 Combine α and γs, results in θ and output
6.2 Call Gen Pattern (θ, Sα, SupportP |α)

—————————————————————————————————–

Figure 4. PAID algorithm pseudo code
Table 4. Position List of DB

SID Item Positions
10 a : 7→ 9→ null

b : 1→ 3→ 5→ 8→ null
c : 4→ null
d : 2→ 6→ 10→ null

20 a : 3→ 4→ 9→ null
b : 5→ 7→ 10→ null
c : 2→ 6→ null
d : 1→ 8→ null

30 a : 2→ 4→ 7→ 10→ null
b : null
c : 1→ 6→ 9→ null
d : 3→ 5→ 8→ null

we can sort and construct the item-last-position list in
ascending order, as shown in Fig. 2 (a). After scanning the
DB once, we can also get the support count of 〈〉-projected
item-last-position list, which is indeed the 1-length frequent
sequences support.

In function Gen Pattern, to find the prefix border po-
sition set of k-length α (Step 3), we first obtain the position
list of the last item of α, and then perform a binary search in
the list for the (k-1)-length prefix border position. (We can
do this because the position list is in ascending order.) We
look for the first position that is larger than the (k-1)-length
prefix border position.

Step 4 and Step 5, shown in Fig. 4, are used to find
the (k+1)-length frequent pattern based on the frequent
k-length pattern and the 1-length candidate items in the
projected DB (projected item-last-position list). These two
steps are justified by Lemma 1, Lemma 2 and Lemma 3.
Commonly, support counting is the most time consuming
part in the entire mining process. Here, we test the candi-
date item in the projected DB (projected item-last-position
list), just as PrefixSpan [11] does. The correctness of the
strategy was discussed in [11]. The pseudo code of finding
(k+1)-length sequential patterns is shown in Fig. 5.

Finding (k+1)-length frequent pattern. In the item-last-
position list, i.e., Fig 2 (a), we look for the first element
whose last position is larger than the prefix border position,
as Step 4 and Step 5 in Fig. 5 do. Then, we discovery those
items, which “disappear” after growing from (k-1)-length
prefix frequent sequence to k-length prefix frequent se-
quence, and decrement these “disappeared” items support

———————————————————————-
Input : S = prefix border position set of (k-1)-length frequent sequential
pattern; Sα = prefix border position set of k-length frequent sequential pattern
α; SupportP = support count in (k-1)-length sequential pattern’s projected
item-last-position list; ε = user specified minimum support
Output : FreItems = local frequent item list

1. For each sequence, F
2. SF ← obtain prefix border position of F in S
3. Sα,F ← obtain prefix border position of F in Sα

4. M = Find the corresponding index for SF
5. N = Find the corresponding index for Sα,F

6. while (M != Null && M < N)
7. SupportP [M.item] - -;
8. M++;
9. For each item β in Suplist
10. If (SupportP [β]≥ ε)
11. FreItems.insert(β);
—————————————————————————————————–

Figure 5. Finding (k+1)-length frequent pat-
terns

from the support count of the projected item-last-position
list, as shown in Step 6 to Step 8. Finally, we can get
the frequent items in the projected item-last-position list
(projected DB), as shown in Step 9 to Step 11. Obviously,
in dense datasets, the size of “disappeared” projected item-
last-position list should be much smaller than the projected
DB, which is scanned by PrefixSpan algorithm. Moreover,
we only pass and count once for each different item in the
“disappeared” projected item-last-position list because, in
item-last-position list, we record the last position of each
item for a specific sequence. In contrast, PrefixSpan needs
to pass every item in the projected database regardless of
whether or not they are the same as before. Therefore,
PAID will save much time because our search space is
much smaller than the one used in PrefixSpan by making
good use of the intermediate result (support value). The
example has been described in Section 1.2.

I-Step of PAID. As Ayres et al. did in [3], the whole process
of sequential pattern mining should includes two steps:
a sequence-extension step (S-Step) and a itemset-
extension step (I-Step). We have already described the
S-Step of PAID. The I-Step is similar to the S-Step. One
difference is that in I-Step, the basic unit is 2-length item-
set extension sequence, i.e., (ab), (bc), instead of 1-length
sequence, i.e., a, b, in S-Step. Another difference is that
when patterns grow, I-Step should guarantee that the pre-
fix sequences of the tested candidates are the same. We deal
with it by joining the position list of each candidate IE item
after current prefix position, which is similar to the method
used in SPADE [18].

3 Performance Study

In this section, we describe our experimentation and
evaluations conducted on both synthetic and real datasets
by comparing four algorithms PrefixSpan, SPADE, LAPIN
and PAID2. We performed the experiments using a 1.6GHz
Intel Pentium(R)M PC with a 1G memory, running Mi-
crosoft Windows XP. All the four algorithms were written
in C++. The output of the programs was turned off to make
the comparison equitable. Detailed algorithm implementa-
tion of the four algorithms is described as follows:

2There are many algorithm implementations existing. We choose Pre-
fixSpan and SPADE as our competitors because they are the state-of-the-art
algorithms and have shown superior performance compared to others [11]
[18].

Table 5. Parameters used in data generation
Symb. Meaning

D Number of customers in the dataset (×1K)
C Average number of transactions per customer
T Average number of items per transaction
S Average length of maximum sequences
I Average length of transactions within maximum sequences
N Number of different items in the dataset (×1K)

1. PrefixSpan. PrefixSpan was tested with the implemen-
tation provided by the algorithm inventor [11]3.

2. SPADE. SPADE was tested with the implementation
provided by the algorithm inventor [18]4.

3. LAPIN. LAPIN was tested with the implementation
provided by the algorithm inventor [17] (LAPIN LCI
was tested here because it is the fastest one among the
LAPIN family for large datasets).

4. PAID. PAID was implemented as described in this pa-
per.

3.1 Experimental Results

For the datasets used in our performance study, we used
two kinds of datasets: a group of synthetic datasets and two
real datasets. It showed that PAID outperformed PrefixSpan
and SPADE by up to more than an order of magnitude on
these datasets and had a good scalability. Compared with
LAPIN, PAID is faster and consumes much less memory
than LAPIN.

Synthetic Data. The synthetic datasets were generated by
an IBM data generator, as described in [2]. The meaning
of the different parameters used to generate the datasets is
shown in Table 5.

The first test of the four algorithms is on the dataset
C100T20S10I10N1D5. The average number of items in a
transaction is 20 and the average number of transactions in
a sequence is set to 100. So it is a dataset with very long
sequences. Fig. 6 (a) shows the distribution of frequent se-
quences of the dataset. The number of frequent sequences is
in logarithm scale (i.e., log10L for sequence length L). Fig.
6 (b) shows the processing time of the four algorithms at
different support thresholds. We can see that PAID is much
more efficient than PrefixSpan, SPADE and LAPIN. When
min support = 0.95, PAID (runtime = 595 seconds) is more
than an order of magnitude faster than PrefixSpan (runtime
= 8161 seconds) and SPADE (runtime = 4980 seconds). The
running time of LAPIN is 1013 seconds.

The second test is performed on the dataset
C40T20S20I20N0.2D100, which is much larger than
the first synthetic dataset since it contains 100k customer
sequences. Because the number of items is 200 and the av-
erage length of sequences is 800 (i.e., 20× 40), it is denser
than the first dataset. Fig. 7 (a) shows the distribution of
frequent sequences of the dataset. Fig. 7 (b) shows the
processing time of the four algorithms at different support
thresholds. The result mirrors that of the first test closely.

3http://illimine.cs.uiuc.edu/
4http://www.cs.rpi.edu/ zaki/software/

(a) Distribution of frequent sequences (c) Memory usage comparison(b) Performance comparison

0

50

100

150

0.95 0.96 0.97 0.98 0.99
Minimum support

M
em

or
y

us
ag

e
(in

M
Bs

)

PrefixSpan
PAID
LAPIN

0

3000

6000

9000

0.95 0.96 0.97 0.98 0.99
Minimum support

Ru
nn

in
g

tim
e

(s
)

PrefixSpan
PAID
LAPIN
SPADE

0

1

2

3

4

5

1 2 3 4 5
Length of frequent k-sequences

Nu
m

be
r o

f f
re

qu
en

t s
eq

ue
nc

es
 (l

og
ar

ith
m

sc
al

e)

0.99
0.98
0.97
0.96
0.95

SPADE

Figure 6. Dataset (C100T20S10I10N1D5)

(a) Distribution of frequent sequences (b) Performance comparison (c) Memory usage comparison

500

650

800

950

0.97 0.972 0.974 0.976 0.978 0.98
Minimum support

M
em

or
y

us
ag

e
(in

M
Bs

)

PrefixSpan
PAID
LAPIN

0

500

1000

1500

2000

2500

0.97 0.972 0.974 0.976 0.978 0.98
Minimum support

Ru
nn

in
g

tim
e

(s
)

PrefixSpan
PAID
LAPIN
SPADE

0

1

2

3

4

1 2 3 4
Length of frequent k-sequences

Nu
m

be
r o

f f
re

qu
en

t s
eq

ue
nc

es
 (l

og
ar

ith
m

sc
al

e)

0.98
0.978
0.976
0.974
0.972
0.97

SPADE

Figure 7. Dataset (C40T20S20I20N0.2D100)

Memory Usage. We compare the memory usage among
the four algorithms, using the two datasets shown above.
Fig. 6 (c) shows the results for C100T20S10I10N1D5
dataset, from which we can see that PAID is efficient in
memory usage. It consumes almost half memory of that
used in PrefixSpan, SPADE and LAPIN. For example, at
support 0.95, PrefixSpan consumes about 112 MB mem-
ory, SPADE consumes about 122 MB memory, LAPIN
consumes about 119 MB memory, while PAID only uses
about 64 MB memory. Fig. 7 (c) shows the memory usage
for dataset C40T20S20I20N0.2D100. At support 0.97,
PrefixSpan consumes about 809 MB memory, SPADE
consumes about 853 MB memory, LAPIN consumes about
866 MB memory, while PAID uses 707 MB memory.

Scalability Test. We study how PAID performs with in-
creasing number of customer sequences (D), average num-
ber of events per customer sequence (C) and average num-
ber of items per event (T), respectively. Note that for the left
experiments, we only compare the performance of the four
algorithms because of the limited space. The memory usage
comparison mirrors the result in the above section closely.

Fig. 8 (a) shows how PAID scales up as the number of
customer sequences is increased, from 10K to 50K, whose
corresponding database size ranging from 40M to 200M.
The experiment was performed on the C50T20S50I20N0.3
with minimum support is 0.98. It can be observed that
PAID scales almost linearly and is much faster than the
other three algorithms. For example, in Fig. 8 (a), when
D = 50, PAID (runtime = 544 seconds) is about 8 times
faster than PrefixSpan (runtime = 4329 seconds), five times
faster than SPADE (runtime = 2903 seconds) and two
times faster than LAPIN (runtime = 1292 seconds). Fig. 8
(b) and 8 (c) show the other two scalability experimental
results. For both the graphs, we used S30I30N0.8D1. In
Fig. 8 (b) we set T to 40, and varied C from 35 to 40,
and Fig. 8 (c) we set C to 40, varied T from 35 to 40. It
can be easily observed PAID scales linearly with the two
varying parameters and is always faster than the other three
algorithms.

Real Data. We consider that results from real data will be

(a) Dataset(C50T20S50I20N0.3) (b) Dataset(T40S30I30N0.8D1) (c) Dataset(C40S30I30N0.8D1)

0

200

400

600

800

1000

35 36 37 38 39 40
Average number of transactions per

customer (sup=0.9)

Ru
nn

in
g

tim
e

(s
)

PrefixSpan
PAID
LAPIN
SPADE

0

200

400

600

800

1000

35 36 37 38 39 40
Average number of items per

transaction (sup=0.9)

Ru
nn

in
g

tim
e

(s
)

PrefixSpan
PAID
LAPIN

0

1500

3000

4500

10 20 30 40 50
Number of customer sequence s

(*1K) (sup=0.98)

Ru
nn

in
g

tim
e

(s
)

PrefixSpan
PAID
LAPIN
SPADE SPADE

Figure 8. Scalability test

(a) Distribution of frequent sequences (b) Performance comparison

0

2

4

6

8

0 10 20 30
Length of frequent k-sequence s

0.00062

0.0006

0.00058

0.00057

0.00055

N
u

m
b
e

r
o

f
fr

e
q
u
e
n

t
s
e

q
u

e
n

c
e

s
 (

lo
g

a
ri
th

m
 s

c
a
le

)

Figure 9. Dataset (Gazelle)

more convincing in demonstrating the efficiency of our pro-
posed algorithm. In this section, we discuss tests on two
real datasets.

The first real dataset, Gazelle, was obtained from Blue
Martini company, which was also used in KDD-Cup 2000.
This dataset contains 59602 sequences (i.e., customers),
149639 sessions, and 497 distinct page views. The average
sequence length is 2.5 and the maximum sequence length
is 267. More detailed information about this dataset can be
found in [12]. Fig. 9 (a) shows the distribution of frequent
sequences of Gazelle dataset for different support thresh-
olds. We can see that this dataset is a sparse dataset com-
pared with Rat because, only when the support threshold
is very low are there some long frequent sequences (i.e.,
when min sup=0.00062, total frequent sequences number
= 207168). Fig. 9 (b) shows the performance comparison
between PrefixSpan, SPADE and PAID for Gazelle dataset.
We can see that PAID is more efficient than PrefixSpan and
SPADE. For example, at support 0.00055, PAID (runtime =
583 seconds) is near five times faster than PrefixSpan (run-
time = 2642 seconds) and four times faster than SPADE
(runtime = 1857 seconds). The running time of LAPIN is
677 seconds.

We have obtained the second dataset, MSNBC, from the
UCI KDD Archive5. This dataset comes from Web server
logs for msnbc.com and news-related portions of msn.com
on Sep. 28, 1999. There are 989,818 users and only 17 dis-
tinct items, because these items are recorded at the level of
URL category, not at page level, which greatly reduces the
dimensionality. The average sequence length is 6 and the
maximum sequence length is 14,795. Fig. 10 (a) shows the
distribution of frequent sequences of Rat dataset for differ-
ent support thresholds, from 0.00011 to 0.00015. When the
support threshold is 0.00011, there are many frequent se-
quences (total number = 45,541,248). Fig. 10 (b) shows the
performance comparison among PrefixSpan, SPADE and
PAID for MSNBC dataset. The result mirrors that of the
Gazelle dataset closely.

5http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

(a) Distribution of frequent sequences (b) Performance comparison

0

1

2

3

4

5

6

7

0 20 40 60 80

Length of frequent k-sequneces
N

um
be

r o
f f

re
qu

en
t s

eq
ue

nc
es

(lo
ga

rit
hm

 s
ca

le
s)

0.00015
0.00014
0.00013
0.00012
0.00011

Figure 10. Dataset (MSNBC)
3.2 Analysis

With the above thorough performance study, we are con-
vinced that PAID is much more effective than PrefixSpan,
SPADE and LAPIN. There are several reasons:

• PAID reuses already found results (support value) of
k-length frequent sequences to count the supports of
(k+1)-length candidate sequences. Thus, PAID avoids
to count from scratch, as done in the other algorithms.

• PAID applies the Last Position Induction strategy
(LAPIN) [17], which scans only a small part of pro-
jected database. However, the other algorithms need to
scan the whole (projected) database to count the can-
didate support.

• By using a vertical representation format of the orig-
inal database, PAID can apply binary search in each
iteration to find the corresponding frequent prefix se-
quence position. In contrast, the other algorithms ap-
ply sequential search, which is obviously much slower
than PAID for long pattern large datasets.

• PAID consumes less and stable memory space because
it does not need to construct the S-Matrix dynami-
cally to store the candidate sequences support infor-
mation, as done in PrefixSpan, or the bitmap repre-
sentation of item-last-position list, as done in LAPIN
(LAPIN LCI).

4 Conclusions

In this work, we have proposed a new algorithm, PAID,
for efficient sequential pattern mining. Our main idea is
to make good use of the intermediate result of k-length se-
quence pattern, to discovery the (k+1)-length frequent pat-
tern. By combining some other optimizations, PAID can re-
duce searching significantly and thus, to improve the perfor-
mance. By thorough experiments and evaluations, we have
demonstrated that PAID outperforms the previous works by
up to more than an order of magnitude with low memory
consuming. Our experimental results also show that PAID
is very efficient at using synthetic data and real-world data.
In the future, we will investigate some related problems,
i.e., closed sequential pattern mining and pattern summa-
rization.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Min-
ing Association Rules. In VLDB, pages 487-499,
1994.

[2] R. Agrawal and R. Srikant. Mining Sequential Pat-
terns. In ICDE, pages 3-14, 1995.

[3] J. Ayres, J. Gehrke, T. Yiu and J. Flannick. Sequen-
tial Pattern Mining using A Bitmap Representation. In
KDD, pages 429-435, 2002.

[4] D. Chiu, Y. Wu and A.L.P. Chen. An Efficient Algo-
rithm for Mining Frequent Sequences by a New Strat-
egy without Support Counting. In ICDE, pages 375-
386, 2004.

[5] M.N. Garofalakis, R. Rastogi and K. Shim. SPIRIT:
Sequential PAttern Mining with Regular Expression
Constraints. In VLDB, pages 223-234, 1999.

[6] J. Han, G. Dong and Y. Yin. Efficient Mining of Partial
Periodic Patterns in Time Series Database. In ICDE,
pages 106-115, 1999.

[7] H.C. Kum, J. Pei, W. Wang and D. Duncan. Approx-
MAP: Approximate Mining of Consensus Sequential
Patterns. In SDM, pages 311-315, 2003.

[8] C. Luo and S.M. Chung. Efficient Mining of Maximal
Sequential Patterns Using Multiple Samples. In SDM,
pages 64-72, 2005.

[9] H. Mannila, H. Toivonen and A.I. Verkamo. Discov-
ering Frequent Episodes in Sequences. In KDD, pages
210-215, 1995.

[10] S. Parthasarathy, M.J. Zaki, M. Ogihara and S.
Dwarkadas. Incremental and Interactive Sequence
Mining. In CIKM, pages 251-258, 1999.

[11] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto,
Q. Chen, U. Dayal, and M.C. Hsu. Mining Sequen-
tial Patterns by Pattern-growth: The PrefixSpan Ap-
proach. TKDE, 16(11): pages 1424-1440, 2004.

[12] R. Kohavi, C. Brodley, B. Frasca, L. Mason and Z.
Zheng. KDD-Cup 2000 Organizers’ Report: Peeling
the Onion. SIGKDD Explorations, (2)2: pages 86-98,
2000.

[13] R. Srikant and R. Agrawal. Mining Sequential Pat-
terns: Generalizations and Performance Improve-
ments. In EDBT, pages 3-17, 1996.

[14] W.G. Teng, M.S. Chen and P.S. Yu. A Regression-
Based Temporal Pattern Mining Scheme for Data
Streams. In VLDB, pages 93-104, 2003.

[15] P. Tzvetkov, X. Yan and J. Han. TSP: Mining Top-k
Closed Sequential Patterns. In ICDM, pages 347-358,
2003.

[16] X. Yan, J. Han and R. Afshar. CloSpan: Mining
Closed Sequential Patterns in Large Datasets. In SDM,
pages 166-177, 2003.

[17] Z. Yang, Y. Wang and M. Kitsuregawa. LAPIN:
Effective Sequential Pattern Mining Algorithms
by Last Position Induction. Technical Report,
Tokyo University, 2005. http://www.tkl.iis.u-
tokyo.ac.jp/∼yangzl/Document/LAPIN.pdf

[18] M.J. Zaki. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Machine Learning, 42(1): pages
31-60, 2001.

