DEIM2017 G2-1

Predicting Influential Cross-lingual Information Cascades on Twitter

Hongshan Jin* and Masashi Toyoda* ▲Univ. of Tokyo ▲IIS, Univ. of Tokyo

• Information can be easily and quickly shared, and some of which can spread over different regions and languages on SNSs

Predicting Cascades

Problem Formulization:

Influential Cross-lingual Cascade Prediction: a classification task

- This is the first study on cross-lingual information cascade on a large scale Twitter data (2 billion tweets and 1.5 million users)
 - ✓ Define cross-lingual information cascades
 - ✓ Observe the cross-lingual characteristics of cascades
 - ✓ Analyze the factors behind influential cross-lingual cascades
 - ✓ Build a feature-based model to detect them in an early stage
- Applications: Breaking world news tracking; global marketing

Analysis of Cascades

Definition of Information Cascades:

- **1. Information cascade:** A set of <u>all subsequent reshares</u> (retweets/mentions) starting from the root node that originally create the content
- 2. Cross-lingual information cascades: A cascade contains a resharer whose main language differs from that of the root user

Final cascade size *f(k) > nk* & final cross-lingual ratio *f(r)*> *r*

first k resharers

Final cascade size *f(k)* <= *nk* or final cross-lingual ratio f(r) <= r

Proposed approach: feature-based approach

- 1. Language features
 - * Main language of the users

* Usage rate of main language

* Multilingual neighbors (followers/followees) of the users

0.4

- **Cascade size** (*k*): number of reshares 3.
- 4. Cross-lingual ratio (*r*): proportion of cross-lingual resharers in a cascade

Properties of Information Cascades:

1. Final cascade size f(k) of cascades (cascades from 6/1 to 7/5, 2014)

- neighbors of a user Multilingual ratio of root user's neighbors 2. Content features: language; topics; length etc. Multilingual LDA topic model
- **3.** User features: is_verified; #followers; #followees; #friends; #tweets etc.
- **4. Resharer features:** ave(#followers); max(#followers) etc.
- 5. Structural features: in-degree; out-degree; graph depth etc.
- 6. Temporal features: time intervals etc.

Evaluation: Linear-SVM

1. Data

* Train-set: 300,000 cascades (the root tweets appeared $6/1 \sim 6/21$) * Test-set: 100,000 cascades (the root tweets appeared $6/22 \sim 6/28$)

2. Results

* Influential cross-lingual prediction task after observing 10 resharers

f(k)	f(r)	model	Precision	Recall	F-score
>median	-	baseline	0.51	1	0.67
		our model	0.68	0.78	0.73
-	>r	baseline	0.17	1	0.29

3. Relation between cascade size and cross-lingual ratio

	our model	0.29	0.71	0.41
>median $>r$	baseline	0.13	1	0.23
	our model	0.27	0.58	0.37

* Feature importance

Future work

- 1. Improve topic-based language models
- 2. Extract structural properties of cascades of differing levels of crosslingualism

Contact jhs@tkl.iis.u-tokyo.ac.jp for more information.