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Abstract. Periodic-frequent pattern mining involves finding all fre-
quent patterns that have occurred at regular intervals in a transactional
database. The basic model considers a pattern as periodic-frequent, if it
satisfies the user-specified minimum support (minSup) and maximum
periodicity (maxPer) constraints. The usage of a single minSup and
maxPer for an entire database leads to the rare-item problem. When
confronted with this problem in real-world applications, researchers have
tried to address it using the item-specific minSup and maxPer con-
straints. It was observed that this extended model still generates a sig-
nificant number of uninteresting patterns, and moreover, suffers from
the issue of specifying item-specific minSup and maxPer constraints.
This paper proposes a novel model to address the rare-item problem in
periodic-frequent pattern mining. The proposed model considers a pat-
tern as interesting if its support and periodicity are close to that of its
individual items. The all-confidence is used as an interestingness measure
to filter out uninteresting patterns in support dimension. In addition, a
new interestingness measure, called periodic-all-confidence, is being pro-
posed to filter out uninteresting patterns in periodicity dimension. We
have proposed a model by combining both measures and proposed a
pattern-growth approach to resolve the rare-item problem and extract
interesting periodic-frequent patterns. Experimental results show that
the proposed model is efficient.

Keywords: Data mining · Rare-item problem · Periodic patterns

1 Introduction

Periodic-frequent pattern mining is an important model in data mining. It
involves finding all frequent patterns that are occurring at regular intervals
in a transactional database. The periodic-frequent patterns provide useful
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Table 1. Running example: a trans-
actional database

tid Items

1 a, b

2 a, b, d

3 c, d, g

4 c, e, f

5 a, b

6 h

tid Items

7 a, b, c, e

8 c, d

9 c, d

10 a, b, e, f

11 c, d, g

12 a, e, f
Fig. 1. Statistics on different damage types
in FAA data set.

information in many real-world applications. Examples include finding regulari-
ties in body sensor networks [14], intrusion detection in computer networks [8],
and finding minor events in twitter data [7].

The basic model of periodic-frequent patterns [13] is as follows. Let I be the
set of items, and X ⊆ I be a pattern (or an itemset). A pattern containing
β number of items is called a β-pattern. A transaction, tk = (tid, Y ) is a
tuple, where tid ∈ R represents the transaction-id (or timestamp) at which the
pattern Y has occurred. A transactional database TDB over I is a set of
transactions, TDB = {t1, · · · , tm}, m = |TDB|, where |TDB| can be defined as
the number of transactions in TDB. For a transaction tk = (tid, Y ), k ≥1, such
that X ⊆ Y , it is said that X occurs in tk and such transaction-id is denoted
as tidX . Let TIDX = {tidXj , · · · , tidXk }, j, k ∈ [1,m] and j ≤ k, be an ordered
set of transaction-ids where X has occurred in TDB. In this paper, we call
this list of transaction-ids of X as tid-list of X. The number of transactions
containing X in TDB is defined as the support of X and denoted as sup(X).
That is, sup(X) = |TIDX |. Let tidXq and tidXr , j ≤ q < r ≤ k, be the two
consecutive transaction-ids in TIDX . The time difference (or an inter-arrival
time) between tidXr and tidXq is defined as a period of X, say pXa . That is,
pXa = tidXr − tidXq . Let PX = (pX1 , pX2 , · · · , pXr ) be the set of all periods for a
pattern X. The periodicity of X denoted as per(X) = max(pX1 , pX2 , · · · , pXr ).
The pattern X is a frequent pattern if sup(X) ≥ minSup, where minSup
refers to the user-specified minimum support constraint. The frequent pattern
X is said to be periodic-frequent if per(X) ≤ maxPer, where maxPer refers
to the user-specified maximum periodicity constraint. The problem definition
of periodic-frequent pattern mining involves discovering all patterns in TDB
that satisfy the user-specified minSup and maxPer constraints.

Example 1. Table 1 shows the transactional database with the set of items I =
{a, b, c, d, e, f, g, h}. The set of items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This pattern
contains only two items. Therefore, this is a 2-pattern. In the first transaction,
t1 = {1 : ab}, 1 denotes the transaction-id at which the pattern ‘ab’ has appeared
in the database. In the entire database, this pattern appears at the transaction-
ids of 1, 2, 5, 7 and 10. Therefore, TIDab = {1, 2, 5, 7, 10}. The support of ‘ab,’ i.e.,
sup(ab) = |TIDab| = |1, 2, 5, 7, 10| = 5. If the user-specified minSup = 5, then
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‘ab’ is a frequent pattern as sup(ab) ≥ minSup. The periods for this pattern are:
pab1 = 1 (= 1−tidini), pab2 = 1 (= 2−1), pab3 = 3 (= 5−2), pab4 = 2 (= 7−5), pab5 =
3 (10−7) and pab6 = 2 (= tidfin−10), where tidini = 0 represents the transaction-
id of initial transaction and tidfin = 12 represents the transaction-id of final
transaction in the database. Therefore, P ab = (1, 1, 3, 2, 3, 2). The periodicity
of ‘ab,’ i.e., per(ab) = max(1, 1, 3, 2, 3, 2) = 3. If the user-defined maxPer = 3,
then the frequent pattern ‘ab’ is a periodic-frequent pattern because per(ab) ≤
maxPer.

The support and periodicity are two dimensions to determine the interest-
ingness of a periodic-frequent pattern. The constraints, minSup and maxPer,
determine the interestingness of a pattern with respect to these two dimensions.
Since only a single minSup and maxPer is used for the whole database, the
model works efficiently in the databases in which all the items have uniform
support and similar periodicity. However, this is often not the case as items are
non-uniformly distributed in many real-world databases. That is, some items
appear very frequently in the data, while others rarely appear. Moreover, rare
items typically have longer periods (or inter-arrival times) as compared with the
periods of the frequent items.

Example 2. Consider a case of accident database in which reports related to
the completely destroyed vehicles do not appear as frequently as the reports
related to the minor damages to a vehicle. As a result, former type of accidents
generally have less frequency and longer inter-arrival times as compared against
the latter type of accidents. The same can be observed from Figs. 1(a) and (b),
which respectively show the frequency and median of inter-arrival times of
three different damage types reported in the Federal Aviation Administration
(FAA) database [1]. For a domain expert, any information pertaining to destroyed
aircrafts may be found useful as it includes materialistic and/or human loss.

Henceforth, finding periodic-frequent patterns with a single minSup and
maxPer leads to the following problems:

– If the minSup is set too high and/or the maxPer is set too short, we will
miss the interesting periodic-frequent patterns involving rare items.

– In order to find the interesting periodic-frequent patterns involving rare items,
we have to set a low minSup and a long maxPer. However, this may result in
combinatorial explosion producing too many patterns, because frequent items
can combine with one another in all possible ways and many of them will be
meaningless.

This dilemma is known as the rare-item problem [15] (refer Example 3). In this
paper, we make an effort to address this problem in periodic-frequent pattern
mining.

Example 3. Consider the rare items ‘e’ and ‘f ’ in Table 1. If we set a high
minSup and a short maxPer, say minSup = 5 and maxPer = 3, we will miss
the periodic-frequent patterns containing these rare items. In order to discover
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the periodic-frequent patterns containing these rare items, we have to set a low
minSup and a long maxPer, say minSup = 2 and maxPer = 6. All periodic-
frequent patterns discovered at these threshold values are shown in the column
titled I in Table 2. It can be observed from this table that setting a low minSup
and a long maxPer has not only resulted in finding ‘ef ’ as a periodic-frequent
pattern, but also resulted in generating the uninteresting patterns ‘ce’ and ‘cd’
as periodic-frequent patterns. The pattern ‘ce’ is uninteresting (with respect to
support dimension), because the rare item ‘e’ is randomly occurring with a fre-
quent item ‘c’ in very few transactions. The pattern ‘cd’ is uninteresting (with
respect to periodicity dimension), because it contains the frequent items ‘c’ and
‘d’ appearing together at very long inter-arrival times (or periodicity).

Table 2. Periodic-frequent patterns discovered from Table 1. The terms Pat, s, allConf,
p and perAllConf refer to pattern, support, all-confidence, periodicity and periodic-all-
confidence, respectively. The columns titled I, II and III represent the periodic-frequent
patterns generated using basic model, extending all-confidence to the basic model and
the proposed model, respectively.

Pat s allConf p perAllConf I II III

a 6 1 3 1 � � �
b 5 1 3 1 � � �
c 6 1 3 1 � � �
d 5 1 5 1 � � �
e 4 1 4 1 � � �

Pat s allConf p perAllConf I II III

f 3 1 6 1 � � �
ab 5 0.833 3 1 � � �
ef 3 0.75 6 1.5 � � �
ce 2 0.4 5 1.67 � × ×
cd 4 0.8 5 1.67 � � ×

In this paper, we propose a novel model to extract the interesting periodic-
frequent patterns by addressing the rare-item problem. We consider a pattern
as interesting if it satisfies the following two conditions: (i) if the support of a
pattern is close to the support of its individual items, and (ii) if the periodicity of
a pattern is close to the periodicity of its individual items. For this, we employ
two measures. To filter out patterns based on support and resolve rare-item
problem in support dimension, we employ all-confidence [9]. Similarly, to filter
out patterns based on periodicity and resolve rare-item problem in periodicity
dimension, we propose a new measure called periodic-all-confidence. These two
measures facilitate us to achieve the objective of generating interesting periodic-
frequent patterns involving rare items without causing the generation of too
many uninteresting patterns. A pattern-growth algorithm, Extended Periodic-
Frequent pattern-growth (EPF-growth), has also been proposed to extract all
interesting periodic-frequent patterns. Experimental results demonstrate that
the proposed model can discover useful information and is efficient as compared
to the existing approaches.

The rest of the paper is organized as follows. Section 2 describes the related
work of finding periodic-frequent patterns in a transactional database. Section 3
introduces the extended model of periodic-frequent patterns. Section 4 describes
the EPF-growth algorithm. Section 5 reports on the experimental results. Finally,
Sect. 6 concludes the paper with future research directions.
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2 Related Work

The problem of finding periodic patterns has been widely studied in time series
data [3,17]. These studies consider time series data as a symbolic sequence, and
therefore, do not take into account the actual temporal information of the items
within the data. Ozden et al. [10] have enhanced the transactional database by
a time attribute that describes the time when a transaction has appeared and
investigated the periodic behavior of the patterns to discover cyclic association
rules. In this study, a database needs to be fragmented into non-overlapping
subsets with respect to time. Henceforth, the drawback of this study is that
patterns (or association rules) that span multiple windows cannot be discovered.

Tanbeer et al. [13] have proposed a simplified periodic-frequent model, which
does not require data fragmentation. This model implicitly assumes all items
occur uniformly in the data, and henceforth, suffer from rare-item problem.

Kiran et al. [6] have tried to address the rare-item problem by finding
periodic-frequent patterns using multiple minSup and maxPer values. In that
model, every item in the database is specified with the minimum item support
(minIS) and the maximum item periodicity (maxIP ). Next, the minSup and
maxPer of a pattern X are specified as follows:

minSup(X) = min(minIS(ij)|∀ij ∈ X) (1)
maxPer(X) = max(maxIP (ij)|∀ij ∈ X) (2)

where, minIS(ij) and maxIP (ij) represent the minimum item support and max-
imum item periodicity of an item ij ∈ X. A pattern-growth algorithm, MCPF-
growth has been discussed to find the patterns. The periodic-frequent patterns
discovered by that model do not satisfy the anti-monotonic property. That is, all
non-empty subsets of a periodic-frequent pattern may not be periodic-frequent
patterns. Henceforth, MCPF-growth is computationally expensive or impracti-
cable in very large real-world databases.

Surana et al. [11] have proposed an alternative model to address the rare-item
problem. In that model, the minSup and maxPer of a pattern are specified as:

minSup(X) = max(minIS(ij)|∀ij ∈ X) (3)
maxPer(X) = min(maxIP (ij)|∀ij ∈ X) (4)

A pattern-growth algorithm, MaxCPF-growth has been discussed to find the
patterns. The periodic-frequent patterns discovered by that model satisfy the
anti-monotonic property. Therefore, MaxCPF-growth is computationally inex-
pensive than MCPF-growth [6], and practicable in very large real-world data-
bases.

The limitations of these two approaches and the proposed model are discussed
in next section.
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3 Extended Model of Periodic-Frequent Patterns

3.1 Limitations of Existing Approaches

An open problem that is common to above two studies [6,11] is the methodology
to specify items’ minIS and maxIP values. Kiran et al. [6] have described the
following methodology to address this problem:

minIS(ij) = max(γ × S(ij), LS)
and (5)

maxIP (ij) = max(β × S(ij) + Permax, P ermin)

where i ∈ I and S(i) is the support of the item i. In Eq. 5, LS is the user-specified
lowest minimum item support allowed and γ ∈ [0, 1] is a parameter that controls
how the minIS values for items should be related to their supports. In Eq. 5,
Permax and Permin are the user-specified maximum and minimum periodicities
such that Permax ≥ Permin and β ∈ [−1, 0] is a user-specified constant.

Although Eq. 5 facilitates every item to have different minIS and maxIP
values, it suffers from the following limitations: (i) This methodology requires
several input parameters from the user. (ii) Equation 5 determines the maxIP
of an item by taking into account only its support. As a result, this equation
implicitly assumes that all items having the same support will also have similar
periodicities in a transactional database. However, this is seldom the case as
items with similar support can have different periodicities. We have observed
that employing this methodology to specify items’ maxIP values in the transac-
tional databases, where items can have similar support but different periodicities
can still lead to the rare-item problem.

Example 4. Consider a hypothetical transactional database containing 100
transactions. Let ‘x’ and ‘y’ be two items in the database having the same
support (say, sup(x) = sup(y) = 40), but different periodicities (say, per(x) =
11 and per(y) = 30). Since Eq. 5 determines the maxIP values by taking into
account only the support of the items, both ‘x’ and ‘y’ will be assigned a com-
mon maxIP value although their actual periodicity is different from one another.
This can result either in missing interesting patterns or generating too many pat-
terns. For instance, if we set β = −0.5, Permin = 10 and Permax = 50, then
maxIP (x) = maxIP (y) = 20. In this case, we miss the periodic-frequent pat-
terns containing ‘y’ because per(y) �≤ maxIP (y). In order to find the periodic-
frequent patterns containing both ‘x’ and ‘y’ items, we have to set a high β value.
When β is set at −0.375, we derive maxIP (x) = maxIP (y) = 35. In this case,
we find periodic-frequent patterns containing ‘y’ because per(y) ≤ maxIP (y).
However, we may also witness too many patterns containing the item ‘x’ because
its maxIP value is three times higher than its periodicity.

We now describe the proposed model that do not suffer from this problem.
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3.2 Proposed Model

To address the rare-item problem, we need an approach that extracts interesting
periodic-frequent patterns involving both frequent and rare items yet filtering out
uninteresting patterns. After conducting the initial investigation on the nature of
interesting patterns found in various databases, we have made a key observation
that most of the interesting periodic-frequent patterns discovered in a database
have their support and periodicity close to that of its individual items. The
following example illustrates our observation.

Example 5. In a supermarket, cheap and perishable goods (e.g., bread and but-
ter) are purchased more frequently and periodically than the costly and durable
goods (e.g., bed and pillow). Among all the possible combinations of the above
four items, we normally consider {bread, butter} and {bed, pillow} as interesting
patterns, because only these two patterns generally have support and periodicity
close to the support and periodicity of its individual items. All other uninterest-
ing patterns, {bread, bed}, {bread, pillow}, {butter, bed} and {butter, pillow},
generally have support and periodicity relatively far away from the support and
periodicity of its individual items as compared against the above two patterns.

Henceforth, in this paper we consider a pattern as interesting if its support
and periodicity are close to the support and periodicity of its individual items. In
this context, we need two measures to determine the interestingness of a pattern
with respect to both support and periodicity dimensions.

In the literature, researchers have discussed several measures to address the
rare-item problem in support dimension [12,16]. Each measure has a selection
bias that justifies the significance of a knowledge pattern. As a result, there
exists no universally acceptable best measure to judge the interestingness of a
pattern for any given database. In this paper, we use all-confidence to address
the rare-item problem in frequency dimension. The reasons for choosing this
measure over other measures are as follows: (i) The all-confidence assesses the
interestingness of a pattern by determining how close is its support with respect
to the support of all of its items in a database. (ii) The all-confidence satisfies
the anti-monotonic property [9]. This property plays a key role in the practicable
ability of our model. (iii) The all-confidence satisfies the null-invariance property
[5]. This property facilitate us to discover genuine interesting patterns without
being influenced by the item co-absence in the database.

Continuing with the basic model of periodic-frequent patterns (discussed in
Sect. 1), the proposed model is as follows.

Definition 1. (All-confidence of X) The all-confidence of X, denoted as
allConf(X), is the ratio of support of X to the maximal support of an item
ij ∈ X. That is, allConf(X) = sup(X)

max(sup(ij)|∀ij∈X) .

For a pattern X, allConf(X) ∈ (0, 1]. As per the all-confidence measure, a
pattern is interesting in support dimension if its support is close to the support of
all of its items. The parameter minAllConf indicates the user-specified minimum
all-confidence threshold value. Based on minSup and minAllConf thresholds, all
the interesting patterns involving rare items in support dimension are extracted.
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The usage of all-confidence alone is insufficient to completely address the
rare-item problem in periodic-frequent pattern mining. The reason is this mea-
sure does not take into account the periodicity dimension of a pattern.

Example 6. The column titled II in Table 2 shows the periodic-frequent patterns
discovered when all-confidence is used along with support and periodicity mea-
sures. The minSup, minAllConf and maxPer values used to find these patterns
are 2, 0.6 and 6, respectively. It can be observed from the discovered periodic-
frequent patterns that though all-confidence is able to prune the uninteresting
pattern ‘ce,’ it has failed to prune another uninteresting pattern ‘cd’ from the list
of periodic-frequent patterns generated by the basic model. Henceforth, the rare-
item problem has to be addressed with respect to both support and periodicity
dimensions.

As there exists no measure in the literature that determines the interesting-
ness of a pattern with respect to the periodicities of all of its items, we propose a
new measure, periodic-all-confidence , to extract interesting patterns in peri-
odicity dimension involving rare items, which is defined as follows.

Definition 2. (Periodic-all-confidence of X) The periodic-all-confidence of
X, denoted as perAllConf(X), is the ratio of periodicity of X to the minimal
periodicity of an item ij ∈ X. That is, perAllConf(X) = per(X)

min(per(ij)|∀ij∈X) .

For a pattern X, perConf(X) ∈ [1,∞). As per the periodic-all-confidence
measure, a pattern is interesting in periodicity dimension, if the periodicity of
a pattern is close to the periodicity of all of its items. The parameter max-
PerAllConf indicates the maximum periodic-all-confidence threshold set by the
user. Based on maxPer and maxPerAllConf thresholds, the interesting patterns
involving rare items in periodicity dimension are extracted.

Henceforth, the periodic-frequent pattern is defined as follows.

Definition 3. (Periodic-frequent pattern X) The pattern X is said to be
periodic-frequent if sup(X) ≥ minSup, allConf(X) ≥ minAllConf , per(X) ≤
maxPer and perAllConf(X) ≤ maxPerAllConf . The terms minSup, minAll-
Conf, maxPer and maxPerAllConf, respectively represent the user-specified min-
imum support, minimum all-confidence, maximum periodicity and maximum
periodic-all-confidence.

Example 7. If the user-specified minSup = 2, minAllConf = 0.6, maxPer = 6
and maxPerAllConf = 1.5, then the pattern ‘ab’ is said to be a periodic-
frequent pattern, because sup(ab) ≥ minSup, allConf(ab) ≥ minAllConf ,
per(ab) ≤ maxPer and perAllConf(ab) ≤ maxPerAllConf .

Example 8. The column titled III in Table 2 shows the complete set of periodic-
frequent patterns discovered from Table 1. It can be observed that the proposed
model has not only discovered the periodic-frequent patterns containing rare
items but also pruned the uninteresting patterns ‘cd’ and ‘ce.’ This clearly
demonstrates that the proposed model discovers periodic-frequent patterns con-
taining rare items without generating too many uninteresting patterns.
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Property 1. If X ⊂ Y , then TIDX ⊇ TIDY . Therefore, sup(X) ≥ sup(Y ) and
allConf(X) ≥ allConf(Y ).

Property 2. If X ⊂ Y , then per(X) ≤ per(Y ). Therefore, perAllConf(X) ≤
perAllConf(Y ) as per(X)

min(per(ij)∀ij∈X) ≤ per(Y )
min(per(ij)∀ij∈Y ) .

The discovered periodic-frequent patterns satisfy the anti-monotonic property.
The correctness is straightforward to prove from Properties 1 and 2.

Definition 4. Problem Definition: Given the database (TDB) and the user-
specified minimum support (minSup), minimum all-confidence (minAllConf),
maximum periodicity (maxPer) and maximum periodic-all-confidence (maxPer-
AllConf), the problem of finding periodic-frequent patterns involve discovering
all patterns that satisfy the minSup, minAllConf, maxPer and maxPerAllConf
thresholds. Please note, the support and periodicity of a pattern can also be
expressed in percentage of |TDB|.

4 Proposed Algorithm

Tanbeer et al. [13] have proposed Periodic-Frequent pattern-growth (PF-growth)
to discover periodic-frequent patterns using support and periodicity measures.
Unfortunately, this algorithm cannot be directly used for finding the periodic-
frequent patterns with our model. The reason is PF-growth does not determine
the interestingness of a pattern using all-confidence and periodic-all-confidence
measures. In this paper, we extend PF-growth to determine the interesting-
ness of a pattern using these two measures. We call the proposed algorithm as
Extended Periodic-Frequent pattern-growth (EPF-growth). The proposed algo-
rithm involves two steps: (i) construction of Extended Periodic-Frequent pattern-
tree (EPF-tree), (ii) recursively mining EPF-tree to discover periodic-frequent
patterns. Before we describe these two steps, we explain the structure of EPF-
tree.

4.1 Structure of EPF-Tree

The structure of EPF-tree consists of a prefix-tree and a EPF-list. The EPF-
list consists of three fields: item name (i), support (s) and periodicity (p). The
structure of prefix-tree in EPF-tree is similar to that of the prefix-tree in FP-tree
[4]. However, to obtain both support and periodicity of the patterns, the nodes
in EPF-tree explicitly maintain the occurrence information for each transaction
by maintaining an occurrence transaction-id list, called tid-list, only at the last
node of every transaction. Complete details on prefix-tree are available in [13].

4.2 Construction of EPF-Tree

Since the periodic-frequent patterns generated by the proposed model satisfy
the anti-monotonic property, periodic-frequent items (or 1-patterns) play a key
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Fig. 2. Construction of EPF-list for
Table 1. (a) After scanning the first transac-
tion (b) After scanning the second transac-
tion (c) After scanning the last transaction
(d) Updated EPF-list (e) Final EPF-list
with sorted list of periodic-frequent items

Fig. 3. Construction of EPF-tree for
Table 1. (a) After scanning first transac-
tion (b) After scanning second transac-
tion (c) After scanning every transaction

role in efficient discovery of higher order periodic-frequent patterns. Periodic-
frequent items are discovered by populating the EPF-list (lines 1 to 13 in
Algorithm 1). Figures 2(a), (b), (c), (d) and (e) show the steps involved in finding
periodic-frequent items from EPF-list. The user-specified minSup, minAllConf ,
maxPer and maxPerAllConf values are 2, 0.6, 6 and 1.5, respectively.

Algorithm 1. Construction of EPF-tree(TDB: Transactional database,
minSup: minimum support, minAllConf : minimum all-confidence, maxPer:
maximum periodicity, maxPerAllConf : maximum periodic-all-confidence)
1: Let idl be a temporary array that records the tid of the last appearance of each item

in the TDB. Let t = {tidcur, X} denote the current transaction with tidcur and X
representing the transaction-id of the current transaction and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Insert i into the EPF-list with supi = 1, peri = tidcur and idi

l = 1.
5: else
6: supi = supi + 1.
7: if (tidcur − idi

l) > peri then
8: peri = tidcur − idi

l.
9: for each item i in EPF-list do

10: if (|TDB| − idi
l) > peri then

11: peri = |TDB| − idi
l.

12: Remove items from the EPF-list that do not satisfy minSup and maxPer.
13: Sort the remaining items in EPF-list in descending order of their support. Let this

sorted list of items be EPF .
14: Create a root node in EPF-tree, T , and label it “null.”
15: for each transaction tr ∈ TDB do
16: Sort the items in t in EPF order. Let this list of sorted periodic-frequent

items in t be [p|P ], where p is the first item and P is the remaining list. Call
insert tree([p|P ], tidcur, T ), which is the same as in [4].
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After finding periodic-frequent items, prefix-tree is constructed by perform-
ing another scan on the database (lines 14 to 16 in Algorithm1). The construc-
tion of prefix-tree in EPF-tree is similar to the construction of prefix-tree in
FP-tree [4]. However, it has to be noted that leaf nodes in EPF-tree maintain
the transaction-ids of the transactions. Figures 3(a), (b) and (c) show the con-
struction of EPF-tree after scanning first, second and every transaction in the
transactional database, respectively. In EPF-tree, an item header table is built
so that each item points to its occurrences in the tree via a chain of node-links,
to facilitate tree traversal. For simplicity, we do not show these node-links in
trees, however, they are maintained as in FP-tree.

4.3 Mining EPF-Tree

Algorithm 2 describes the procedure for mining periodic-frequent patterns from
EPF-tree. The EPF-tree is mined by calling EPF-growth as (EPF-tree, null).
This algorithm resembles FP-growth. However, the key difference is that once
the pattern-growth is achieved for a suffix 1-pattern (or item), it is completely
pruned from the EPF-tree by pushing its tid-list to respective parent nodes.

Table 3 summarizes the working of this algorithm. First, we consider item ‘f ,’
which is the bottom-most item in the EPF-list, as a suffix pattern. This item
appears in three branches of the EPF-tree (refer Fig. 3(c)). The paths formed
by these branches are {cef : 4}, {abef : 10} and {aef : 12} (format of these
branches is {nodes : time-stamps}). Therefore, considering ‘f ’ as a suffix item,
its corresponding three prefix paths are {ce : 4}, {abe : 10} and {ae : 12}, which
form its conditional pattern base (refer Fig. 4(a)). Its conditional EPF-tree con-
tains only a single path, 〈e : 4, 10, 12〉; ‘a,’ ‘b’ and ‘c’ are not included because
their all-confidence and periodic-all-confidence do not satisfy the minAllConf
and maxPerAllConf respectively. Figure 4(b) shows the conditional EPF-tree of
‘f .’ The single path generates the pattern {ef : 3, 0.75, 6, 1.5} (format is {pattern:
support, all-confidence, periodicity, periodic-all-confidence}). The same process
of creating prefix-tree and its corresponding conditional tree is repeated for fur-
ther extensions of ‘ef .’ Next, ‘f ’ is pruned from the original EPF-tree and its
tid-lists are pushed to its parent nodes, as shown in Fig. 4(c). All the above
processes are once again repeated until EPF-list = ∅.

5 Experimental Results

In this section, we show that the proposed model discovers interesting patterns
pertaining to both frequent and rare items by pruning uninteresting patterns.
We also evaluate the proposed model against the existing models of periodic-
frequent patterns [6,11,13].

The algorithms, PF-growth, MCPF-growth, MaxCPF-growth and EPF-
growth are written in C++ and run with Fedora 22 on a 2.66 GHz machine
with 8 GB of memory. We have conducted experiments using both synthetic
(T10I4D100K) and real-world (Retail and FAA-accidents) databases. The
T10I4D100K data-base is generated using the IBM data generator [2]. This
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Algorithm 2. EPF-growth(Tree, α)
1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪ α. Construct an array TIDβ , which represents the

set of transaction-ids at which β has appeared in TDB. Next, compute from
TIDβ , sup(β), allConf(β), per(β) and perAllConf(β) and compare them with
minSup, minAllConf , maxPer and maxPerAllConf , respectively.

3: if sup(β) ≥ minSup, allConf(β) ≥ minAllConf , per(β) ≤ maxPer and
perAllConf(β) ≤ maxPerAllConf then

4: Output β as a periodic-frequent pattern as {β: sup, allConf, per, perAllConf}.
5: Traverse Tree using the node-links of β, and construct β’s conditional pattern

base and β’s conditional EPF-tree Treeβ .
6: if Treeβ �= ∅ then
7: call EPF-growth(Treeβ , β);
8: Remove ai from the Tree and push ai’s tid-list to its parent nodes.

database contains 878 items with 100,000 transactions. The Retail database
contains the market basket data from a Belgian retail store. This database con-
tains 16,471 items with 88,162 transactions. The FAA-accidents database is
constructed from the accidents data recorded by FAA from 1-January-1978 to
31-December-2014. This database contains 9,290 items with 98,864 transactions.

5.1 Patterns Generated by the Proposed Model

Figure 5 shows the number of patterns generated at different minAllConf and
maxPerAllConf values. The minSup and maxPer are set at 0.01% and 40%.
The following observations can be drawn: (i) The increase in minAllConf results
in decrease of periodic-frequent patterns. The reason is that as minAllConf
increases, the support threshold value of a pattern increases. (ii) The increase
in maxPerAllConf results in increase of patterns. The reason is that as max-
PerAllConf increases, the periodicity threshold value of a pattern increases.

Table 4 shows some of the interesting patterns discovered in FAA database.
The minSup, minAllConf , maxPer and maxPerConf values used are 0.01%,
0.01, 40% and 9, respectively. It can be observed from their support values that

Table 3. Mining EPF-tree by creating conditional (sub -) pattern bases

Item sup per Cond. Pattern Base Cond. EPF-tree Per. Freq. Patterns

f 3 6 {ce : 4}, {abe : 10}, 〈e : 4, 10, 12〉 {ef : 3, 0.75, 6, 1.5}
{ae : 12}

e 4 4 {c : 4}, {abc : 7}, − −
{ab : 10}, {a : 12}

d 5 5 {ab : 2}, {c : 3, 8, 9, 11} − −
b 5 3 {a : 1, 2, 5, 10}, {ac : 7} 〈a : 1, 2, 5, 7, 10〉 {ab: 5, 0.833, 3, 1}
c 6 3 {a : 7} − −
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Fig. 4. Mining of EPF-tree for Table 1. (a) Prefix-tree of suffix item ‘f,’ i.e., PTf (b)
Conditional tree of suffix item ‘f,’ i.e., CTf (c) EPF-tree after pruning item ‘f.’

Fig. 5. Periodic-frequent patterns discovered in various databases

our model has discovered interesting patterns involving both frequent and rare
items effectively. Please note that the periodicity (per) is expressed in days.

Table 4. Some of the interesting patterns discovered in FAA-accidents database

S. No. Patterns sup allConf per perAllConf

1 {Ultralight Vehicles, Destroyed} 18 0.12 4904 8.01

2 {Starting engines, Destroyed} 13 0.06 4756 7.77

3 {General Operating Rules, Commercial 10,399 0.15 32 6.4
Pilot, Minor}

5.2 Comparison of Proposed Model Against the Existing Models

For MCPF-growth and MaxCPF-growth, we use Eq. 5 to specify items’ minIS
and maxIP values. Setting the α and β values in this equation has been a
non-trivial task as the patterns discovered by these algorithms can be dif-
ferent from the patterns discovered by EPF-growth. After conducting several
experiments, we have empirically set the following values for MCPF-growth
and MaxCPF-growth algorithms, such that both algorithms discover almost all
periodic-frequent patterns discovered by EPF-growth.
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Figure 6 shows the number of periodic-frequent patterns generated at differ-
ent minSup values (Y -axis is plotted on logscale). For EPF-growth, we have
fixed minAllConf = 0.01, maxPer = 40% and maxPerAllConf = 9 and vary
minSup values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = minSup, β = −0.4, Permax = 40% and Permin = 10%. For PF-growth,
we have set maxPer = 40% and vary minSup values.

Fig. 6. Periodic-frequent patterns generated at different minSup values

Figure 7 shows the number of periodic-frequent patterns generated at dif-
ferent maxPer values (Y -axis is plotted on logscale). For EPF-growth, we have
fixed minSup = 0.01%, minAllConf = 0.01 and maxPerAllConf = 9 and vary
maxPer values. For MCPF-growth and MaxCPF-growth, we have set γ = 0.01,
LS = 0.01%, β = −0.4, Permax = maxPer and Permin = 10%. For PF-growth,
we have set minSup = 0.01% and vary maxPer values.

Fig. 7. Periodic-frequent patterns generated at different maxPer values

From Figs. 6 and 7, it can be observed that the proposed model has generated
lesser number of periodic-frequent patterns than the other models, because the
existing models have suffered from the rare-item problem.

Figure 8 shows the runtime taken by various models at different maxPer
values (Y -axis is plotted on logscale). It can be observed that, in all the data-
bases the proposed model takes lesser runtime to find periodic-frequent patterns
than PF-growth and MCPF-growth. But the proposed model takes slightly more
runtime than MaxCPF-growth. So the proposed model is not adding any signifi-
cant overhead in mining periodic frequent patterns. Similar observations can be
drawn when minSup is varied. Due to space restrictions, we are not reporting it.
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Fig. 8. Runtime requirements of various models at different maxPer values

6 Conclusions and Future Work

This paper introduces a model to address the rare item problem in both sup-
port and periodicity dimensions. A new interestingness measure, periodic-all-
confidence, is proposed to address the problem in periodicity dimension. An
efficient pattern-growth algorithm has been proposed to discover all periodic-
frequent patterns in a database. Experimental results demonstrate that the pro-
posed model is efficient. As a part of future work, we would like to study the
change in periodic behavior of rare items due to noise.
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