
The Journal of Systems and Software 125 (2017) 170–182

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Discovering partial periodic-frequent patterns in a transactional

database

R. Uday Kiran

a , b , ∗, J.N. Venkatesh

d , Masashi Toyoda

a , Masaru Kitsuregawa

a , c ,
P. Krishna Reddy

d

a The University of Tokyo, Japan
b National Institute of Communication Technology, Japan
c National Institute of Informatics, Japan
d International Institute of Information Technology-Hyderabad, India

a r t i c l e i n f o

Article history:

Received 24 March 2016

Revised 27 September 2016

Accepted 23 November 2016

Available online 28 November 2016

Keywords:

Data mining

Knowledge discovery in databases

Pattern mining

Partial periodicity

Algorithms

a b s t r a c t

Time and frequency are two important dimensions to determine the interestingness of a pattern in a

database. Periodic-frequent patterns are an important class of regularities that exist in a database with

respect to these two dimensions. Current studies on periodic-frequent pattern mining have focused on

discovering full periodic-frequent patterns, i.e., finding all frequent patterns that have exhibited complete

cyclic repetitions in a database. However, partial periodic-frequent patterns are more common due to the

imperfect nature of real-world. This paper proposes a flexible and generic model to find partial periodic-

frequent patterns. A new interesting measure, periodic-ratio , has been introduced to determine the peri-

odic interestingness of a frequent pattern by taking into account its proportion of cyclic repetitions in a

database. The proposed patterns do not satisfy the anti-monotonic property. A novel pruning technique

has been introduced to reduce the search space effectively. A pattern-growth algorithm to find all partial

periodic-frequent patterns has also been presented in this paper. Experimental results demonstrate that

the proposed model can discover useful information, and the algorithm is efficient.

© 2016 Published by Elsevier Inc.

a

fi

t

t

d

e

T

q

w

m

q

a
1. Introduction

Frequent patterns (or itemsets) are an important class of regu-

larities that exist in a transactional database. These patterns play

a key role in many knowledge discovery tasks such as associa-

tion rule mining (Agrawal et al., 1993; Han et al., 2007), clustering

(Zhang et al., 2010), classification (Dong and Li, 1999) and recom-

mender systems (Adomavicius and Tuzhilin, 20 01, 20 05). The pop-

ular adoption and successful industrial application of finding these

patterns has been hindered by a major obstacle: frequent pattern

mining often generates a huge number of patterns and majority of

them may be found insignificant depending on application or user

requirements. When confronted with this problem in real-world
∗ Corresponding author.

E-mail addresses: uday_rage@tkl.iis.u-tokyo.ac.jp , uday.rage@gmail.com

(R.U. Kiran), jn.venkatesh@research.iiit.ac.in (J.N. Venkatesh), toyoda@tkl.iis.u-

tokyo.ac.jp (M. Toyoda), kitsure@tkl.iis.u-tokyo.ac.jp (M. Kitsuregawa),

pkreddy@iiit.ac.in (P.K. Reddy).

URL: http://researchweb.iiit.ac.in/˜uday_rage/index.html (R.U. Ki-

ran), http://www.tkl.iis.u-tokyo.ac.jp/˜toyoda/index_e.html (M. Toyoda),

http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html (M. Kit-

suregawa), http://faculty.iiit.ac.in/˜pkreddy/index.html (P.K. Reddy)

i

p

(

H

2

t

o

p

{
http://dx.doi.org/10.1016/j.jss.2016.11.035

0164-1212/© 2016 Published by Elsevier Inc.
pplications, researchers have tried to reduce the desired set by

nding user interest-based patterns such as maximal frequent pat-

erns (Gouda and Zaki, 2001), demand driven patterns, utility pat-

erns (Yao et al., 2004), constraint-based patterns (Pei et al., 2004),

iverse-frequent patterns (Swamy et al., 2014), top- k patterns (Han

t al., 2002) and periodic-frequent patterns (Tanbeer et al., 2009).

his paper focuses on finding periodic-frequent patterns.

An important criterion to assess the interestingness of a fre-

uent pattern is its temporal occurrences in a database. That is,

hether a frequent pattern is occurring periodically, irregularly, or

ostly at specific time intervals in a database. The class of fre-

uent patterns that are occurring periodically within a database

re known as periodic-frequent patterns. Finding these patterns

s a significant task with many real-world applications. Exam-

les include improving the performance of recommender systems

 Stormer, 2007), intrusion detection in computer networks (Ma and

ellerstein, 2001) and discovering events in Twitter (Kiran et al.,

015). A classic application to illustrate the usefulness of these pat-

erns is market-basket analysis. It analyzes how regularly the set

f items are being purchased by the customers. An example of a

eriodic-frequent pattern is as follows:

 Bat, Bal l } [support = 5% , periodicity = 1 hour] .

http://dx.doi.org/10.1016/j.jss.2016.11.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.11.035&domain=pdf
mailto:uday_rage@tkl.iis.u-tokyo.ac.jp
mailto:uday.rage@gmail.com
mailto:jn.venkatesh@research.iiit.ac.in
mailto:toyoda@tkl.iis.u-tokyo.ac.jp
mailto:kitsure@tkl.iis.u-tokyo.ac.jp
mailto:pkreddy@iiit.ac.in
http://researchweb.iiit.ac.in/~uday_rage/index.html
http://www.tkl.iis.u-tokyo.ac.jp/~toyoda/index_e.html
http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html
http://faculty.iiit.ac.in/~pkreddy/index.html
http://dx.doi.org/10.1016/j.jss.2016.11.035

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 171

T

p

p

u

w

2

s

fi

h

f

f

c

f

r

m

f

c

b

m

p

b

b

n

q

s

o

m

G

s

t

fi

d

b

m

a

t

2

m

p

(

C

m

I

E

s

T

‘

e

T

2

r

c

q

t

t

a

F

i

p
he above pattern says that 5% of the customers have periodically

urchased the items ‘ Bat ’ and ‘ Ball ’ at least once in every hour. This

redictive behavior of the customers’ purchases can facilitate the

sers in product recommendation and inventory management.

The problem of finding periodic-frequent patterns has been

idely studied in the past (Tanbeer et al., 2009; Amphawan et al.,

009; Kiran and Reddy, 2010; Surana et al., 2011; Kiran and Kit-

uregawa, 2014). However, most of these studies have focused on

nding full periodic-frequent patterns, i.e., frequent patterns that

ave exhibited complete cyclic repetitions in a database. A use-

ul related type of periodic-frequent patterns is partial periodic-

requent patterns, i.e., frequent patterns that have exhibited partial

yclic repetitions in a database. These patterns are a looser kind of

ull periodic-frequent patterns, and they exist ubiquitously in the

eal-world databases. The proposed patterns can find useful infor-

ation in many real-life applications. Few examples are as follows:

• In the market-basket analysis, partial periodic-frequent patterns

provide useful information pertaining to regularly purchased

itemsets. This information can be useful for inventory manage-

ment.
• Partial periodic-frequent pattern mining on a web-log data can

find the sets of web pages that were not only visited heavily,

but also regularly by the users. This information can be useful

for the user for improved web site design or web administra-

tion.
• In an accident data set, partial periodic-frequent patterns can

discover useful information pertaining to the periodicity of reg-

ularly occurring accidents. This information can be high useful

for improving passenger safety.
• Partial periodic behavior of sets of hashtags has been exploited

to discover minor events from Twitter data (Kiran et al., 2015).

The purpose of this paper is to discover partial periodic-

requent patterns efficiently.

Finding partial periodic-frequent patterns is a non-trivial and

hallenging task. The reasons are as follows:

• The problem of finding partial periodic patterns has been

widely studied in time series data (Han et al., 1998; 1999; Yang

et al., 2003; Aref et al., 2004). Unfortunately, these studies can-

not be enhanced to find partial periodic-frequent patterns in a

transactional database. The main reason is that these studies

consider time series as a symbolic sequence, and therefore, do

not take into account the actual temporal information of the

items within a series.
• Existing full periodic-frequent pattern mining approaches as-

sess the periodic interestingness of a frequent pattern by simply

determining whether all of its periods (or inter-arrival times)

are within the user-specified maximum period threshold value.

As a result, there exists no interestingness measure to assess

the partial periodic behavior of a frequent pattern in a transac-

tional database.

With this motivation, this paper introduces a generic and flexi-

le model to find partial periodic-frequent patterns. The proposed

odel is generic because it allows the user to find both full and

artial periodically occurring frequent patterns. The model is flexi-

le as it enables every pattern to satisfy a different minimum num-

er of cyclic repetitions depending on its frequency. This flexible

ature of our model facilitates us to capture the non-uniform fre-

uencies of the items (or patterns) within a database effectively.

The contributions of this paper are as follows:

• A generic model of partial periodic-frequent patterns has been

proposed in this paper. This model employs a new measure,

periodic-ratio , to determine the partial periodic interestingness

of a frequent pattern in a database. The proposed measure de-
termines the interestingness of a pattern by taking into account

its proportion of cyclic repetitions in a database.
• The patterns discovered by the proposed model do not satisfy

the anti-monotonic property. That is, all non-empty subsets of

a partial periodic-frequent pattern may not be partial periodic-

frequent patterns. This increases the search space, which in

turn increases the computational cost of finding these patterns.

A novel pruning technique has been introduced to reduce the

search space and the computational cost of these patterns ef-

fectively.
• A pattern-growth algorithm, called Generalized Periodic-

Frequent pattern-growth (GPF-growth), has been proposed to

discover the complete set of partial periodic-frequent patterns

in a database.
• Experimental results demonstrate that the proposed model can

discover useful information, and GPF-growth is efficient.

The rest of the paper is organized as follows. Section 2 de-

cribes the related work. Section 3 describes the existing model

f periodic-frequent patterns. Section 4 introduces the proposed

odel of partial periodic-frequent patterns. Section 5 describes the

PF-growth algorithm. Section 6 reports on the experimental re-

ults. Section 7 concludes the paper with future research direc-

ions.

The problem of finding partial periodic-frequent patterns was

rst discussed in Kiran and Reddy (2011) . In this paper, we intro-

uce a novel pruning technique to tackle the predicament caused

y the violation of anti-monotonic property by the periodic-ratio

easure. We also provide theoretical correctness of GPF-growth,

nd discuss the usefulness of proposed model by conducting ex-

ensive experiments on both synthetic and real-world databases.

. Related work

Time series is a collection of events obtained from sequential

easurements over time. The problem of finding partial periodic

atterns has received a great deal of attention in time series data

 Han et al., 1998; 1999; Yang et al., 2003; Berberidis et al., 2002;

ao et al., 2004; Aref et al., 2004; Chen et al., 2011). The basic

odel used in all of these approaches, however, remains the same.

t involves the following two steps (Han et al., 1998):

1. Partition the time series into distinct subsets (or periodic-

segments) of a fixed length (or period).

2. Discover all partial periodic patterns that satisfy the user-

specified minimum support (minSup). The minSup controls the

minimum number of periodic-segments that a pattern must

cover.

xample 1. Given the time series T S = a { bc} baebace and the user-

pecified period = 3 , TS is divided into three periodic-segments:

 S 1 = a { bc} b, T S 2 = aeb and T S 3 = ace . Let a � b be a pattern, where

 � ’ denotes a wild character that can represent any single set of

vents. This pattern appears in the periodic-segments of TS 1 and

S 2 . Therefore, its support count is 2. If the user-defined minSup =
 , then a � b represents a partial periodic pattern in TS .

The major limitation of this model is that it considers time se-

ies as a symbolic sequence, and therefore, do not take into ac-

ount the actual temporal information of the events within a se-

uence.

Ma and Hellerstein (2001) have proposed an alternative par-

ial periodic pattern model by considering the temporal informa-

ion of items within a series. This model considers time series as

 time-based sequence, specifies period for each pattern using Fast

ourier Transformation (FFT), and discovers all patterns that sat-

sfy the user-defined minimum support (minSup). The discovered

atterns are known as p-patterns . Unfortunately, this model is

172 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

Table 1

Running example: a transactional

database.

ts Items ts Items

1 ac 8 cdfg

2 abg 9 ab

3 de 10 cdef

4 abcd 11 abef

6 abcd 12 abcdg

7 abe 13 cef

1 2 3 4 5 6 7 8 9 10 11 12 13
timestamp (ts)

a a a a a a a
b b b b b b

c c c c c c
d d d d d d
e e e e e

f f f f
g g g

a
b

c

Fig. 1. Temporal occurrences of the items in Table 1 .

E

T

E

t

|

t

c

t

t

t

i

t

o

D

t

s

E

f

D

f

s

E

s

s

D

a

t

{

X

t

T

p
computationally expensive to use in real-world applications. The

reason is as follows: The computational cost of FFT to find period of

a pattern is O (n log n), where n represents the number of time units.

As n can be a very large number in voluminous databases, specifying

the period for each pattern using FFT can make this model computa-

tionally expensive to use in real-life.

Kiran et al. (2015) have studied the problem of finding recurring

patterns by representing time series (Ma and Hellerstein, 2001) as

a transactional database. These patterns are distinct from the pro-

posed partial periodic-frequent patterns as the former patterns ex-

hibit full periodic behavior in distinct subsets of the data.

Özden et al. (1998) have enhanced the transactional database

by a time attribute that describes the time when a transaction

has appeared, investigated the periodic behavior of the patterns to

discover cyclic association rules. In this study, a database is frag-

mented into non-overlapping subsets with respect to time. The as-

sociation rules that are appearing in at least a certain number of

subsets are discovered as cyclic association rules. By fragmenting

the data and counting the number of subsets in which a pattern

occurs greatly simplifies the design of the mining algorithm. How-

ever, the drawback is that patterns (or association rules) that span

multiple windows cannot be discovered.

Tanbeer et al. (2009) have described a simplified model to find

periodic-frequent patterns in a transactional database. Without any

need of data fragmentation, this model discovers all frequent pat-

terns that have exhibited complete (or full) cyclic repetitions in

a database. Amphawan et al. (2009) have investigated the prob-

lem of finding top-k periodic-frequent patterns in a transactional

database. Kiran and Reddy (2010) and Surana et al. (2011) have en-

hanced the Tanbeer’s model to discover periodic-frequent patterns

involving both frequent and rare items effectively. Kiran and Kit-

suregawa (2014) ; Kiran et al. (2016) have discussed greedy search

techniques to discover periodic-frequent patterns effectively. All of

these studies have focused on finding full periodic-frequent pat-

terns, and therefore, fail to discover those interesting frequent pat-

terns that have exhibited partial cyclic repetitions in a database.

This paper focuses on finding partial periodic-frequent patterns,

and thus, generalizing the existing model of full periodic-frequent

patterns.

The problem of finding sequential patterns (Mooney and Rod-

dick, 2013) and frequent episodes (Mannila, 1997; Laxman et al.,

2007) has received a great deal of attention. However, it should be

noted that these studies do not take into account the periodicity of

a pattern.

Finding partial periodic patterns (Esling and Agon, 2012), mo-

tifs (Oates, 2002), and recurring patterns (Mohammad and Nishida,

2013) has also been studied in time series; however, the focus was

on finding numerical curve patterns rather than the symbolic pat-

terns.

Overall, the proposed model of finding partial periodic-frequent

patterns in a transactional database is novel and distinct from cur-

rent models.

3. The basic model of periodic-frequent patterns

Let I = { i 1 , i 2 , . . . , i n } , 1 ≤ n , be the set of n items. Let X ⊆ I

be a pattern (or an itemset). A pattern containing β number of

items is called a β-pattern . A transaction , t r k = (t s, Y) , 1 ≤ k , is

a tuple, where ts ∈ R represents the timestamp of Y pattern. For

a transaction t r k = (t s, Y) , such that X ⊆ Y , it is said that X oc-

curs in tr k and such timestamp is denoted as ts X . A transactional

database TDB over I is a set of transactions, T DB = { t r 1 , . . . , t r m

} ,
m = | T DB | , where | TDB | represents the total number of transac-

tions in a database. Let T S X = { t s X
j
, . . . , t s X

k
} , j, k ∈ [1, m] and j ≤

k , be an ordered set of timestamps where X has occurred in TDB .
xample 2. Consider the transactional database shown in Table 1 .

he set of all items in this database, i.e., I = { a, b, c, d, e, f, g} .
ach transaction in this database is uniquely identifiable with a

imestamp (ts). This database contains 12 transactions. Therefore,

 T DB | = 12 . This database do not contain any transaction with

imestamp 5. However, it has to be noted that this timestamp still

ontributes in determining the periodic interestingness of a pat-

ern in time dimension. Fig. 1 shows the temporal appearances of

he items in Table 1 . The set of items ‘ a ’ and ‘ b ’, i.e., ab is a pat-

ern. This pattern contains only two items. Therefore, this pattern

s referred as a 2-pattern. It can be observed that ‘ ab ’ appears at

he timestamps of 2, 4, 6, 7, 9, 11 and 12. Therefore, the ordered list

f timestamps containing ‘ ab , ’ i.e., T S ab = { 2 , 4 , 6 , 7 , 9 , 11 , 12 } .
efinition 1 (The support of X) . The number of transactions con-

aining X in TDB is defined as the support of X and denoted as

up (X). That is, sup(X) = | T S X | .
xample 3. The support of ‘ ab ’ in Table 1 is the size of TS ab . There-

ore, sup(ab) = | T S ab | = |{ 2 , 4 , 6 , 7 , 9 , 11 , 12 }| = 7 .

efinition 2 (Frequent pattern X) . The pattern X is said to be

requent if sup (X) ≥ minSup , where minSup represents the user-

pecified minimum support threshold value.

xample 4. Continuing with the previous example, if the user-

pecified minSup = 3 , then ‘ ab ’ is a frequent pattern because

up (ab) ≥ minSup .

efinition 3 (A period of X) . Given the TS X , a period of X , denoted

s p X
k
, is calculated as follows:

• p X
k

= t s X a − t s ini , k = 1 , where ts ini = 0 denotes the initial times-

tamp of all transactions in TDB .
• p X

k
= t s X q − t s X p , 1 < k < sup(X) + 1 , where ts X p and ts X q , a ≤ p ≤

q ≤ c , denote any two consecutive timestamps in TS X .
• p X

k
= t s f in − t s X c , k = sup(X) + 1 , where ts fin denotes the final

timestamp of all transactions in TDB .

The terms ‘ ts ini ’ and ‘ ts fin ’ play a key role in determining

he periodic appearance of X in the entire database. Let P X =
 p X 1 , p

X
2 , · · · , p X

k
} , k = sup(X) + 1 , denote the set of all periods of

 in TDB . The first period in P X (i.e., p X 1) provides useful informa-

ion pertaining to the time taken for initial appearance of X in TDB .

he last period in P X (i.e., p X
sup(X)+1

) provides useful information

ertaining to the time elapsed after the final appearance of X in

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 173

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 2 1 1 1

timestamp (ts)

2 2

Fig. 2. Periods of ‘ ab ’, P ab .

Table 2

Periodic-frequent patterns discovered from Table 1 . The terms P ,

S and PR represent ‘Pattern,’ ‘ support ’ and ‘ periodic - ratio , ’ re-

spectively. The columns titled ‘ I ’ and ‘ II ’ represent the periodic-

frequent patterns generated by basic model and proposed model,

respectively.

P S PR I II P S PR I II

a 8 1 .0 � � f 4 0 .8 × �

b 7 1 .0 � � ab 7 1 .0 � �

c 7 0 .88 × � cd 5 0 .83 × �

d 6 0 .86 × � ef 3 0 .75 × �

T

i

E

i

t

‘

4

1

T

{

T

t

d

D

r

i

E

m

D

i

r

m

E

q

p

p

f

a

d

S

o

t

4

b

d

4

i

a

p

o

a

g

p

i

i

E

t

s

s

f

p

e

w

P

M

4

m

t

q

d

a

p

D

b

p

m

E

a

w

O

c

p

s

t

d

D

i

t

a

T

E

i

P

o

a

f

u

f

m

f

DB . Remaining periods in P X provide information pertaining to the

nter-arrival times of X in TDB .

xample 5. The initial and final timestamps of the transactions

n Table 1 are 0 and 13, respectively. Therefore, ts ini = 0 and

s f in = 13 . Given the T S ab = { 2 , 4 , 6 , 7 , 9 , 11 , 12 } , all periods of

 ab ’ are calculated as follows: p ab
1

= t s ab
1

− t s ini = 2 − 0 = 2 , p ab
2

=
 − 2 = 2 , p ab

3
= 6 − 4 = 2 , p ab

4
= 7 − 6 = 1 , p ab

5
= 9 − 7 = 2 , p ab

6
=

1 − 9 = 2 , p ab
7

= 12 − 11 = 1 and p ab
8

= t s f in − t s ab
10

= 13 − 12 = 1 .

herefore, the complete set of periods of ‘ ab ’ in Table 1 , i.e., P ab =
 2 , 2 , 2 , 1 , 2 , 2 , 1 , 1 } . Fig. 2 shows the periods of ab in Table 1 .

he X-axis represents the timestamp. The black circles represent

he timestamps at which ‘ ab ’ has appeared in a transactional

atabase.

efinition 4 (Periodicity of pattern X) . The maximum period in P X

epresents the periodicity of X , and denoted as periodicity (X). That

s, periodicity (X) = max (p X
i
|∀ p X

i
∈ P X) .

xample 6. The periodicity of ‘ ab ’ in Table 1 , i.e., periodicity (ab) =
ax (2 , 2 , 2 , 1 , 2 , 2 , 1 , 1) = 2 .

efinition 5 (Periodic-frequent pattern X) . The frequent pattern X

s said to be a periodic-frequent pattern if periodicity (X) ≤ maxPe-

iodicity , where maxPeriodicity represents the user-specified maxi-

um periodicity.

xample 7. If the user-specified maxPeriodicity = 2 , then the fre-

uent pattern ‘ ab ’ represents a periodic-frequent pattern because

eriodicity (ab) ≤ maxPeriodicity .

The support and periodicity of a pattern can also be expressed in

ercentage of (t s f in − t s ini) . However, we use the former definitions

or ease of explanation.

The problem definition of the basic model is as follows: given

 TDB and the user-specified minSup and maxPeriodicity constraints,

iscover all patterns in TDB that have support no less than min-

up and periodicity no more than maxPeriodicity . The complete set

f periodic-frequent patterns generated from Table 1 are shown in

he column titled ‘ I ’ of Table 2 .

. Proposed model

In this section, we first describe the major obstacle encountered

y the basic model of periodic-frequent patterns. We next intro-

uce the proposed model of partial periodic-frequent patterns.

.1. The limitation of basic model

The maxPeriodicity plays a key role in the practical applicabil-

ty of periodic-frequent patterns. This constraint ensures that the
nti-monotonic property (see Property 1) of frequent patterns is still

reserved while finding periodic-frequent patterns. Since maxPeri-

dicity determines the interestingness of a pattern by taking into

ccount only its maximum period , all periodic-frequent patterns

enerated by the basic model represent only full periodic-frequent

atterns. In other words, this model fails to discover those interest-

ng frequent patterns that have exhibited partial cyclic repetitions

n a database.

xample 8. In Table 1 , the pattern ‘ cd ’ appears at the times-

amps of 4, 6, 8, 10 and 12. Therefore, T S cd = { 4 , 6 , 8 , 10 , 12 } ,
up(cd) = 5 , P cd = { 4 , 2 , 2 , 2 , 2 , 1 } and per(cd) = 4 . If the user-

pecified minSup = 3 and maxPeriodicity = 2 , then the basic model

ails to generate ‘ cd ’ as a periodic-frequent pattern because

er (cd) � maxP erio dici ty . However, this pattern may still be inter-

sting to the users as most of its periods (or reoccurrences) are

ithin the maxPeriodicity .

roperty 1. A measure M is anti-monotonic if a pattern X satisfying

 implies that every non-empty subset of X also satisfies M.

.2. Partial periodic-frequent pattern model

In the proposed model, the definition of frequent patterns re-

ains the same. However, the definition of periodic-frequent pat-

erns is changed to capture the partial periodic behavior of fre-

uent patterns. The basic intuition of the proposed model involves

etermining the periodic interestingness of a pattern by taking into

ccount its proportion of cyclic repetitions in a database. The pro-

osed model is as follows.

efinition 6 (An interesting period of X) . A period of X is said to

e interesting if it is no more than the user-specified maximum

eriod (maxPer). That is, a p X
i

∈ P X is said to be interesting if p X
i

≤
axPer.

xample 9. Consider the first and seconds periods of ‘ cd ’ (i.e., p cd
1

nd p cd
2

) in Example 8 . If the user-specified maxPer = 2 , then p cd
1

ill be considered as an uninteresting period because p cd
1

� maxP er .

n the contrary, p cd
2

will be considered as an interesting period be-

ause p cd
2

≤ maxPer.

The maxPer constraint determines whether an occurrence of a

attern is cyclic or acyclic in a database. We now define our mea-

ure that determines the partial periodic interestingness of a pat-

ern by taking into account its number of cyclic repetitions in a

atabase.

efinition 7 (Periodic-ratio of X) . Let IP X be the set of all periods

n P X that satisfy the user-specified maxPer . That is, IP X ⊆ P X such

hat if ∃ p X
k

∈ P X : p X
k

≤ maxPer, then p X
k

∈ IP X . The periodic-ratio of

 pattern X , denoted as PR (X), represents the ratio of | IP X | to | P X |.

hat is, P R (X) =

| IP X |
| P X | .

xample 10. The set of all interesting periods of ‘ cd ’ in Table 1 ,

.e., IP cd = { 2 , 2 , 2 , 2 , 1 } . Therefore, the periodic-ratio of ‘ cd , ’ i.e.,

 R (cd) =

| IP cd |
| P cd | =

5
6 = 0 . 833 (= 83 . 3%) .

The periodic-ratio , as defined above, determines the proportion

f cyclic occurrences of a pattern in a transactional database. For

 pattern X, PR (X) ∈ [0, 1]. If P R (X) = 0 , then X is an aperiodic-

requent pattern because all of its periods will be more than the

ser-specified maxPer value. If P R (X) = 1 , then X is a full periodic-

requent pattern as all of its periods will be within the user-defined

axPer value. Thus, generalizing the existing model of periodic-

requent patterns (Tanbeer et al., 2009).

174 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

E

p

{

a

n

t

1

I

p

m

fi

1

m

n

t

t

w

i

p

t

t

E

p

s

3

T

e

T

t

f

n

a

p

t

3

“

t

h

E

m

|

s

p

n

h

P

|

L

P

p

|

H

L

m

f

Definition 8 (Partial periodic-frequent pattern X) . The frequent

pattern X is said to be partial periodic-frequent if PR (X) ≥ minPR ,

where minPR represents the user-specified minimum periodic-ratio .

Example 11. If the user-defined minP R = 0 . 75 , then the frequent

pattern ‘ cd ’ represents a partial periodic-frequent pattern because

PR (cd) ≥ minPR . The complete set of partial periodic-frequent pat-

terns discovered from Table 1 are shown in the column titled II of

Table 2 . It can be observed from this table that the proposed model

has not only discovered full periodically occurring frequent pat-

terns, but also discovered those interesting frequent patterns that

have exhibited partial cyclic repetitions in the database.

If X is a partial periodic-frequent pattern, then | IP X | ≥ (minP R ×
(sup(X) + 1)) . The correctness of this statement is based on

Property 2 and shown in Lemma 1 . Thus, periodic-ratio facilitates

every pattern to satisfy a different minimum number of cyclic rep-

etitions (i.e., | IP X |) depending on its support . This flexible nature of

periodic-ratio facilitates the proposed model to capture the varied

frequencies of the patterns in a database.

Example 12. Consider the patterns ‘ ab ’ and ‘ ef ’ in Table 1 . For the

pattern ‘ ab , ’ T S ab = { 2 , 4 , 6 , 7 , 9 , 11 , 12 } and sup(ab) = 7 . For the

pattern ‘ ef , ’ T S e f = { 10 , 11 , 13 } and sup(e f) = 3 . Given the user-

defined minP R = 0 . 75 , ‘ ab ’ can be a partial periodic-frequent pat-

tern if and only if | IP ab | ≥ 6 (≈ 0 . 75 × (7 + 1)) . Similarly, ‘ ef ’ can

be a partial periodic-frequent pattern if and only if | IP e f | ≥ 3 (=
0 . 75 × (3 + 1)) . Therefore, the periodic-ratio facilitates every pat-

tern to satisfy a different number of minimum cyclic repetitions

depending upon its support .

An advantage of periodic-ratio measure is that it enables the

user to find partial periodic-frequent patterns using quartiles. For

example, given the user-specified minP R = 0 . 5 (or 50%), the pro-

posed model considers a frequent pattern as partial periodic-

frequent if the median of its periods is no more than the user-

specified maxPer value.

Property 2. For a pattern X , | P X | = sup(X) + 1 .

Lemma 1. If X is a partial periodic-frequent pattern, then | IP X | ≥
(minP R × (sup(X) + 1)) .

Proof. If X is a partial periodic-frequent pattern, then

| IP X |
| P X | ≥ minP R

=

| IP X |
sup(X) + 1

≥ minP R (∵ | P X | = sup(X) + 1)

= | IP X | ≥ minP R × (sup(X) + 1) . (1)

Hence proved. �

Definition 9 (Problem definition) . Given the transactional database

(TDB) and the user-defined minimum support (minSup), maximum

period (maxPer) and minimum periodic-ratio (minPR), discover all

partial periodic-frequent patterns that have support and periodic -

ratio no less than the minSup and minPR , respectively.

5. Proposed algorithm

5.1. Basic idea: candidate patterns

The space of items in a database gives rise to an itemset lattice.

This lattice is the conceptualization of search space while finding

interesting patterns. Most of the pattern mining algorithms employ

the anti-monotonic property to reduce this search space effectively.

Unfortunately, the proposed patterns do not satisfy this property

(see Example 13). Thus increasing the search space and the com-

putational cost of finding the partial periodic-frequent patterns.
xample 13. Consider the pattern ‘ e ’ in Table 1 . This pattern ap-

ears at the timestamps of 3, 7, 10, 11 and 13. Therefore, T S e =
 3 , 7 , 10 , 11 , 13 } , sup(e) = 5 , P e = { 3 , 4 , 3 , 1 , 2 , 0 } , IP e = { 1 , 2 , 0 }
nd P R (e) =

3
6 = 0 . 5 . As sup (e) ≥ minSup and P R (e)
≥ minP R, ‘ e ’ is

ot a partial periodic-frequent pattern. Let us consider another pat-

ern ‘ ef ⊃e .’ This pattern appears at the timestamps of 10, 11 and

3. Therefore, T S e f = { 10 , 11 , 13 } , sup(e f) = 3 , P e f = { 10 , 1 , 2 , 0 } ,
P e f = { 1 , 2 , 0 } and P R (e f) =

3
4 = 0 . 75 . The pattern ‘ ef ’ is a partial

eriodic-frequent pattern because sup (ef) ≥ minSup and PR (ef) ≥
inPR . The same can be observed in the column titled II in Table 2 .

A naive pruning technique to reduce the search space involves

nding partial periodic-frequent k -patterns using frequent (k −
) -patterns . The reason is that frequent patterns satisfy the anti-

onotonic property. Initially, we have applied this pruning tech-

ique in the proposed algorithm (discussed in subsequent subsec-

ion) to find partial periodic-frequent patterns. While investigating

he performance of the algorithm on many real-world databases,

e have observed that the usage of above pruning technique alone

s inefficient to reduce the search space. The reason is the above

runing technique was considering some of those frequent pat-

erns whose supersets can never be partial periodic-frequent pat-

erns.

xample 14. Consider the pattern ‘ g ’ in Table 1 . This pattern ap-

ears at the timestamps of 2, 8 and 12. Therefore, T S g = { 2 , 8 , 12 } ,
up(g) = 3 and P g = { 2 , 6 , 4 , 1 } . Given the user-specified minSup =
 , maxPer = 2 and minP R = 0 . 75 , IP g = { 2 , 1 } and P R (g) =

2
4 = 0 . 5 .

he pattern ‘ g ’ is a frequent pattern because sup (g) ≥ minSup . How-

ver, it is not a partial periodic-frequent pattern as P R (g)
≥ minP R .

he above pruning technique says that the mining algorithm has

o consider the frequent pattern ‘ g ’ to discover partial periodic-

requent patterns of higher-order. However, it can be observed that

o superset of ‘ g ’ can be a partial periodic-frequent pattern.

With this motivation, we introduce another pruning technique

s follows: “Let X and Y be the two patterns such that X ⊂ Y and X

= ∅ . If | IP X | < (minP R × (minSup + 1)) , then neither X nor Y will be

artial periodic-frequent patterns. ” The correctness of our pruning

echnique is based on the Property 3 , and shown in Lemmas 2 and

 . The basic idea behind the above pruning technique is as follows:

every partial periodic-frequent pattern will have support no less

han minSup . Therefore, every partial periodic-frequent pattern will

ave at least (minSup + 1) number of periods , and at least minP R ×
(minSup + 1) number of interesting periods .”

xample 15. Given the user-specified minSup = 3 , maxPer = 2 and

inP R = 0 . 75 , our pruning technique says that if a pattern X has

 IP X | < 3 (= minP R × (minSup + 1)) , then neither X nor its super-

ets can be partial periodic-frequent patterns. Continuing with the

revious example, | IP g | < 3. Therefore, our pruning technique do

ot consider ‘ g ’ for finding partial periodic-frequent patterns of

igher order.

roperty 3. If X ⊂ Y, then T S X ⊇T S Y . Therefore, | P X | ≥ | P Y | and | IP X | ≥
 IP Y | .

emma 2. If X is a partial periodic-frequent pattern, then | IP X | ≥
(minP R × (minSup + 1)) .

roof. Based on Lemma 1 it turns out that if X is a partial

eriodic-frequent pattern, then

 IP X | ≥ minP R × (sup(X) + 1) ≥ minP R × (minSup + 1) . (2)

ence proved. �

emma 3. Let X and Y be the two patterns such that X ⊂ Y. If | IP X | <
inP R × (minSup + 1) , then both X and Y cannot be partial periodic-

requent patterns.

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 175

P

t

t

H

c

D

p

E

T

S

c

p

s

a

L

p

L

Y

P

(

m

s

p

t

t

m

s

t

t

t

5

P

p

a

T

g

P

t

(

t

l

a

d

p

p

a

(

i

m

f

t

{}

tsi, tsj, ...

Fig. 3. Conceptual structure of prefix-tree in GPF-tree. Dotted ellipse represents or-

dinary node, while other ellipse represents tail-node of sorted transactions with

timestamps ts i , ts j ∈ R .

5

i

i

a

i

H

p

i

t

l

t

t

F

t

1

i

u

F

d

t

h

i

m

t

s

i

fi

a

d

K

t

a

5

m

i

d

P

a

p

g

b

i

v

F

t

t

t

t

2
roof. According to Property 3 if | IP X | < minP R × (minSup + 1) ,

hen | IP Y | < minP R × (minSup + 1) . Based on Lemma 2 , it turns out

hat both X and Y cannot be partial periodic-frequent patterns.

ence proved. �

Based on the above pruning technique, we introduce the con-

ept of candidate patterns.

efinition 10 (A candidate pattern X) . The pattern X is a candidate

attern if sup (X) ≥ minSup and | IP X | ≥ (minP R × (minSup + 1)) .

xample 16. Consider the aperiodic frequent items ‘ e ’ and ‘ g ’ in

able 1 (see Examples 13 and 14). For the item ‘ e , ’ sup (e) ≥ min-

up and | IP e | ≥ 3. Therefore, this aperiodic frequent item will be

onsidered as a candidate item (or 1-pattern) and used in finding

artial periodic-frequent patterns of higher order. For the item ‘ g , ’

up (g) ≥ minSup and | IP g |
≥ 3 . Therefore, g will not be considered

s a candidate item.

The candidate patterns satisfy the anti-monotonic property (see

emma 4). Therefore, the proposed algorithm uses candidate k -

atterns to find partial periodic-frequent (k + 1) -patterns, k ≥ 1.

emma 4. Let X and Y be two patterns such that X ⊂ Y and X
 = ∅ . If
 is a candidate pattern, then X is also a candidate pattern.

roof. If X ⊂ Y , then TS X ⊇ TS Y , sup (X) ≥ sup (Y) and | IP X | ≥ | IP Y |

see Property 3). Therefore, if sup (Y) ≥ minSup and | IP Y | ≥
inP R × (minSup + 1) , then sup (X) ≥ minSup and | IP X | ≥ minP R ×

(minSup + 1) . Hence proved. �

In a transactional database, the relationship between the

et of frequent patterns (FPs), candidate patterns (CPs), partial

eriodic-frequent patterns (PPFPs) and full periodic-frequent pat-

erns (FPFPs) is FPs ⊇ CPs ⊇ PPFPs ⊇ FPFPs . Henceforth, al-

hough partial periodic-frequent patterns do not satisfy the anti-

onotonic property, our pruning technique ensures that the search

pace for finding partial periodic-frequent patterns is no more than

hat of the frequent pattern mining. In other words, our pruning

echnique makes the partial periodic-frequent pattern model prac-

icable in real-world applications.

.2. Generalized periodic-frequent pattern-Growth

Traditional pattern-growth algorithms that rely on Frequent

attern tree (FP-tree) cannot be used for finding periodic-frequent

atterns. The reason is that FP-tree captures only the frequency

nd disregards the periodic behavior of the patterns in a database.

anbeer et al. (2009) have introduced an alternative pattern-

rowth algorithm that relies on an enhanced FP-tree, called

eriodic-Frequent Tree (PF-tree), to find full periodic-frequent pat-

erns. We call this algorithm as Periodic-Frequent pattern-growth

PF-growth). Unfortunately, we cannot directly apply this algorithm

o mine partial periodic-frequent patterns. The reasons are as fol-

ows: (i) The partial periodic-frequent patterns do not satisfy the

nti-monotonic property and (ii) The tree structure must capture

ifferent interestingness measures, i.e., maxPer and minPR . In this

aper, we enhance the PF-growth to discover the complete set of

artial periodic-frequent patterns. We call this enhanced algorithm

s Generalized Periodic-Frequent pattern-growth (GPF-growth).

The GPF-growth algorithm involves the following two steps:

 i) compress the database into a tree structure, called General-

zed Periodic-Frequent pattern-tree (GPF-tree) and (ii) recursively

ining GPF-tree to discover the complete set of partial periodic-

requent patterns. Before we describe the above two steps, we in-

roduce the structure of GPF-tree.
.2.1. Structure of GPF-tree

The structure of GPF-tree includes a prefix-tree and a candidate

tem list, called the GPF-list. The GPF-list consists of each distinct

tem (I) with support (S), number of interesting periods (IP), and

 pointer pointing to the first node in the prefix-tree carrying the

tem.

The prefix-tree in GPF-tree resembles the prefix-tree in FP-tree.

owever, in order to obtain both support and periodic - ratio of a

attern, the nodes in GPF-tree explicitly maintain the occurrence

nformation of each transaction by keeping an occurrence times-

amp list, called a ts -list . To achieve memory efficiency, only the

ast node of every transaction maintains the ts -list. Hence, two

ypes of nodes are maintained in a GPF-tree: ordinary node and

ail-node . The former is a type of node similar to that used in an

P-tree, whereas the latter represents the last item of any sorted

ransaction. Therefore, the structure of a tail -node is i [t s p , . . . , t s r] ,

 ≤ p ≤ r ≤ m , where i is the node’s item name and ts i
k
, k ∈ [1, m],

s the timestamp of a transaction containing the items from root

p to the node i . The conceptual structure of GPF-tree is shown in

ig. 3 . Like FP-tree, each node in GPF-tree maintains parent, chil-

ren, and node traversal pointers. Please note that no node in GPF-

ree maintains the support count as in a FP-tree. To facilitate a

igh degree of compactness, items in the prefix-tree are arranged

n support-descending order.

One can assume that the structure of prefix-tree in GPF-tree

ay not be memory efficient since it explicitly maintains the

imestamps of each transaction. However, it has been argued that

uch a tree can achieve memory efficiency by keeping transaction

nformation only at the tail -nodes and avoiding the support count

eld at each node (Tanbeer et al., 2009). Furthermore, GPF-tree

voids the complicated combinatorial explosion problem of candi-

ate generation as in Apriori-like algorithms (Agrawal et al., 1993).

eeping the information pertaining to transactional-identifiers in a

ree can also be found in efficient frequent pattern mining (Zaki

nd Hsiao, 2005).

.2.2. Construction of GPF-tree

Since partial periodic-frequent patterns do not satisfy the anti-

onotonic property , candidate 1-patterns (or items) will play an

mportant role in finding these patterns effectively. The set of can-

idate items CI in a database for the user-defined minSup, max-

er and minPR can be discovered by populating the GPF-list with

 scan on the database. The procedure for constructing GPF-list is

rovided in Algorithm 1 . Before we explain the steps of this al-

orithm, please note that minSup, maxPer and minPR values have

een set to 3, 2 and 0.75, respectively.

The scan on the first transaction, “1: ac ”, with ts cur = 1 initial-

zes items ‘ a ’ and ‘ c ’ in the GPF-list by setting their S, IP and ts l
alues to 1, 1 and 1, respectively (lines 3 to 10 in Algorithm 1).

ig. 4 (a) shows the GPF-list generated after scanning the first

ransaction. The scan on the second transaction, “2: abg ”, with

s cur = 2 initializes the items ‘ b ’ and ‘ g ’ in the GPF-list and sets

heir S, IP and ts l values to 1, 1 and 2, respectively. Simultaneously,

he S, IP and ts l values of an already existing item ‘ a ’ are updated to

, 2 and 2, respectively (lines 11 to 16 in Algorithm 1). Similar pro-

176 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

I S IP
a 1 1

tsl

1
c 1 1 1

I S IP
a 2 2

tsl

2
c 1 1 1
b 1 1 2
g 1 1 2

I S IP
a 8 8

tsl

12
c 7 6 13
b 7 7 12
g 3 0 12
d 6 5 12
e 5 2 13
f 4 3 13

I S IP
a 8 9
c 7 7
b 7 8
g 3 1
d 6 6
e 5 3
f 4 4

I S IP
a 8 9
c 7 7
b 7 8
d 6 6
e 5 3
f 4 4

(a) (b) (c) (d) (e)

Fig. 4. Construction of GPF-list. (a) After scanning first transaction (b) After scanning second transaction (c) After scanning entire database (d) Updating the number of

interesting periods of all items in the database and (e) Sorted list of candidate items.

Algorithm 1 GPF-List(TDB : Transactional database, I : Set of items,

minSup : minimum support, maxPer : maximum period, minPR : min-

imum periodic-ratio).

1: Let ts l be a temporary array that records the timestamp of the

last appearance of each item in the T DB . Let ip be another

temporary array that records the number of interesting periods

of an item in a database. Let t = { ts cur , X} denote the current

transaction with ts cur and X representing the timestamp of the

current transaction and pattern, respectively.

2: for each transaction t ∈ T DB do

3: if an item i occurs for the first time then

4: Add i to the GPF-list and set s i = 1 and t s i
l
= t s cur .

5: if ts cur ≤ maxPer then

6: Set ip i = 1 ;

7: else

8: Set ip i = 0 ;

9: end if

10: else

11: if (t s cur − t s i
l
) ≤ maxPer then

12: Update ip i + + .

13: end if

14: Update s i + + , ip i + + and t s i
l
= t s cur .

15: end if

16: end for

17: for each item i in GPF-list do

18: if t s cur − t s i
l
≤ maxPer then

19: Update ip i + + ;

20: end if

21: end for

22: for each item i in GPF-list do

23: if s i ≤ minSup or ip i < (minP R × (minSup + 1)) then

24: Remove i from the GPF-list.

25: end if

26: end for

27: Sort the remaining items in GPF-list in support descending or-

der of items. Consider this sorted list of items as candidate

items (CI).

Algorithm 2 GPF-Tree(TDB , GPF-list).

1: Create the root of GPF-tree, T , and label it “nul l ”.

2: for each transaction t ∈ T DB do

3: Set the timestamp of the corresponding transaction as ts cur .

4: Select and sort the candidate items in t according to the or-

der of CI. Let the sorted candidate item list in t be [p| P] ,
where p is the first item and P is the remaining list.

5: Call insert _ t ree ([p| P] , t s cur , T) .

6: end for

7: call GPF-growth (T ree , nul l);

Algorithm 3 insert_tree([p | P], t cur , T).

1: while P is non-empty do

2: if T has a child N such that p.itemName
 = N.itemName then

3: Create a new node N. Let its parent link be linked to T . Let

its node-link be linked to nodes with the same itemName

via the node-link structure. Remove p from P .

4: end if

5: end while

6: Add t cur to the leaf node.

k

c

s

s

H

t

f

S

e

d

a

t

fi

l

i

1

t

i

w

b

t

fi

s

〈

i
cess is carried out for the remaining transactions in the database,

and the GPF-list is updated accordingly. Fig. 4 (c) shows the GPF-list

generated after scanning every transaction in the database. The IP

value of all items in the GPF-list is once again computed to reflect

the correctness (lines 17 to 21 in Algorithm 1). Fig. 4 (d) shows the

updated PS value for all items in the GPF-list. Based the proposed

pruning technique, the item ‘ g ’ will be removed from the GPF-list

as IP (g)
≥ minP R × (minSup + 1) (lines 22 to 26 in Algorithm 1).

The remaining items are sorted in descending order of their sup-

port values (line 27 in Algorithm 1). This sorted list of items are
nown as candidate items, and denoted as CI . Fig. 4 (e) shows the

omplete list of all candidate items in the GPF-list.

After finding candidate items, prefix-tree of GPF-tree is con-

tructed using the Algorithms 2 and 3 . These two procedures are

imilar to those of the FP-tree construction (Han et al., 2004).

owever, the key difference is that no node in GPF-tree maintains

he support count as in FP-tree. The prefix-tree is constructed as

ollows.

First, create the ‘ root ’ node of the tree and labeled it with ‘ null .’

can the transactional database TDB a second time. The items in

ach transaction are processed in CI order (i.e., sorted list of can-

idate items), and a branch is created for each transaction. For ex-

mple, the scan on the first transaction, ‘1: ac , ’ which contains

wo items (a and c in CI order), leads to the construction of the

rst branch of the tree with two nodes 〈 a 〉 and 〈 c : 1 〉 , where a is

inked as a child of the root and c is linked as a child of ‘ a .’ As ‘ c ’

s the leaf node of this branch, this node carries the timestamp of

. Fig. 5 (a) shows the prefix-tree generated after scanning the first

ransaction. The scan on the second transaction, ‘2: abg , ’ contain-

ng the items ‘ a ’ and ‘ b ’ in CI order will result in another branch

ith two nodes 〈 a 〉 and 〈 b : 2 〉 , where a is linked to the root and

 is linked to ‘ a .’ The leaf node of this branch, i.e., ‘ b ’ carries the

imestamp of 2. However, this branch would share a common pre-

x, ‘ a , ’ with the existing path of first transaction. Therefore, we in-

tead create a new node 〈 b : 2 〉 and connect it to the existing node

 a 〉 . The resultant prefix-tree is shown in Fig. 5 (b). Similar process

s repeated for the remaining transactions and the prefix-tree is

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 177

{}

a

c:1

{}

a

c:1 b:2

{}

a

c:1 b:2,9

e:7

f:11

b

d:4,6,
 12

d

e:3

c

d e

f:13f:8 e

f:10

I S PS
a 8 9
c 7 7
b 7 8
d 6 6
e 5 3
f 4 4

(a) (b) (c)

Fig. 5. Construction of GPF-Tree. (a) After scanning first transaction (b) After scanning second transaction and (c) After scanning entire database.

u

e

t

t

s

w

t

i

P

p

L

t

m

P

t

t

t

n

L

�

P

e

|

t

u

t

5

t

F

t

b

p

(

s

s

i

t

a

P

m

a

L

i

u

t

t

P

f

T

a

t

a

G

l

i

i

b

Algorithm 4 GPF-growth(Tree, α).

1: for each a i in the header of Tree do

2: Generate pattern β = a i ∪ α. Collect all of the a ′
i
s ts-lists into

a temporary array, T S β , and calculate P S(β) .

3: if P S(β) ≥ (minP R × (minSup + 1)) then

4: Construct β ’s conditional pattern base then β ’s conditional

GPF-tree T ree β by calling getPeriodicRatio(β , T S β).

5: if T ree β
 = ∅ then

6: call GPF-growth(T ree β , β);

7: end if

8: end if

9: Remove a i from the T ree and push the a i ’s ts-list to its parent

nodes.

10: end for

Algorithm 5 IP(TS β).

1: Let ts i = 0 and ts f = ts m

represent the initial and final times-

tamps of all transactions in T DB .

2: if T S β [0] − ts i ≤ maxPer then

3: ps β + + ;

4: end if

5: for i = 0 ; i < T S β .length − 1 ;+ + i do

6: if T S β [i + 1] − T S β [i] ≤ maxPer then

7: ps β + +

8: end if

9: end for

10: if T S β [T S β .length − 1] − ts f ≤ maxPer then

11: ps β + + .

12: end if

13: return ps β .
pdated accordingly. The final GPF-tree generated after scanning

very transaction in the database is shown in Fig. 5 (c). Please note

hat every node in GPF-tree maintains parent, children, and node

raversal pointers. For brevity, we are not showing the node traver-

al pointers, however, they are maintained as in FP-tree.

Based on the GPF-list population technique as discussed above,

e have the following property and lemmas of a GPF-tree. For each

ransaction t in TDB, CI (t) be the set of all candidate items in t , and

s called the candidate item projection of t .

roperty 4. A GPF-tree maintains a complete set of candidate item

rojection for each transaction in a TDB only once.

emma 5. The complete set of all candidate item projections of all

ransactions in a TDB can derived from GPF-tree for the user-defined

inSup, maxPeriodicity and minPR.

roof. Based on Property 4 , CI (t) of each transaction t is mapped

o only one path in the tree and any path from the root up to a

ail-node maintains the complete projection for exactly n transac-

ions (where n is the total number of entries in ts-list of the tail-

ode). �

emma 6. Size of GPF-tree excluding the root node is bound by

t ∈ TDB | CI (t)| .

roof. As per the GPF-tree construction technique and Lemma 5 ,

very transaction t contributes at most only one path of the size

 CI (t)| to a GPF-tree. Therefore, the overall size contribution of all

ransactions can be �t ∈ TDB | CI (t)| at best. However, since there are

sually a lot of common prefix patterns among the transactions,

he size of GPF-tree is typically smaller than �t ∈ TDB | CI (t)|. �

.3. Mining partial periodic-frequent patterns

Due to the structural differences between the FP-tree and GPF-

ree, we cannot directly apply the pattern-growth technique of

P-growth to mine partial periodic-frequent patterns from GPF-

ree. Henceforth, we propose an alternative pattern-growth-based

ottom-up mining technique to discover partial periodic-frequent

atterns from GPF-tree. The steps involved in mining GPF-tree are

 i) finding partial periodic-frequent items (or 1-patterns), (ii) con-

tructing the prefix-tree for each candidate pattern, and (iii) con-

tructing the conditional tree from each prefix-tree. The periodic

tems are discovered from GPF-list. Before discussing the prefix-

ree mining process we explore the following important property

nd lemma of GPF-tree.

roperty 5. A tail-node in a GPF-tree maintains the occurrence infor-

ation for all the nodes in the path (from that tail-node to the root)

t least in the transactions in its ts-list.

emma 7. Let B = { b 1 , b 2 , . . . , b n } be a branch in GPF-tree where b n
s a tail-node carrying the ts-list of the branch. If the ts-list is pushed-
p to node b n −1 , then b n −1 maintains the occurrence information of

he path B ′ = { b 1 , b 2 , · · · , b n −1 } for the same set of transactions in the

s-list without any loss.

roof. According to Property 5 , b n maintains the occurrence in-

ormation of the path B ′ at least in the transactions of its ts-list.

herefore, the same ts-list at node b n −1 maintains the same trans-

ction information for B ′ without any lose. �

Algorithms 4 , 5 and 6 describe the procedure of finding par-

ial periodic-frequent patterns in a GPF-tree. The working of these

lgorithms is as follows. Considering the bottom-most item i in

PF-list, we construct its prefix-tree with prefix sub-paths of nodes

abeled i in GPF-tree. We call this prefix-tree of i as PT i . Since

 is the bottom-most item in the GPF-list, each node labeled i

n the GPF-tree must be a tail-node. While constructing the PT i ,

ased on Property 5 , we map the ts-list of every node of i to all

178 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

{}

a

b

e:11

c

I S IP
a 1 1
c 3 2
b 1 1
d 2 1
e 3 3

d:8 e:13

e:10

I S IP
e 3 3

{}

e:10,11,
 13

{}

a

c:1 b:2,9

e:7,11b

d:4,6,12

d

e:3

c

d:8 e:13

e:10

I S IP
a 8 9
c 7 7
b 7 8
d 6 6
e 5 3

)c()b()a(

Fig. 6. Recursive mining of GPF-Tree. (a) Prefix-tree for ‘ f ’ (b) Conditional-tree for ‘ f ’ and (c) GPF-tree after removing the item ‘ f ’.

Algorithm 6 getPeriodicRatio(β , TS β).

1: if T S β [0] − ts i ≤ maxPer then

2: ps β + + ;

3: end if

4: for i = 0 ; i < T S β .length − 1 ;+ + i do

5: if T S β [i + 1] − T S β [i] ≤ maxPer then

6: ps β + +

7: end if

8: end for

9: if T S β [T S β .length − 1] − ts f ≤ maxPer then

10: ps β + + .

11: end if

12: return

ps β

| T S β | +1
.

Table 3

Mining GPF-tree using conditional pattern bases. The terms ‘SI’ and ‘PPFP’ repre-

sent ‘suffix item’ and ‘partial periodic-frequent pattern,’ respectively.

SI Conditional pattern base Conditional GPF-tree PPFP

f { abc : 11}, { cd : 8}, { cde : 10} 〈 e : 10, 11, 13 〉 { ef : 3, 0 .75 }

{ ce : 13}

e { ab : 7, 11}, { cd : 10}, { d : 3} - -

{ c : 13}

d { acb : 4, 6, 12}, { c : 8} 〈 c : 4, 6, 7, 10, 12 〉 { cd : 5, 0 .83}

b { ac : 4, 6, 12}, { a : 2, 7, 9, 11} 〈 a : 2, 4, 6, 7, 9, 11, 12 〉 { ab : 7, 1}

c { a : 4, 6, 12} - -

t

i

a

u

c

f

s

i

m

g

L

m

m

t

c

a

p

P

c

t

B

α

a

T

p

6

m

s

t

t

fi

items in the respective path explicitly in a temporary array (one

for each item). It facilitates the calculation of support and periodic -

ratio for each item in PT i . Using our pruning technique, the condi-

tional tree CT i for PT i is constructed by removing all those items

from PT i that have number of interesting periods (i.e., IP) less than

minP R × (minSup + 1) . If the deleted node is a tail node, its ts -list

is pushed-up to its parent node. The contents of the temporary ar-

ray for the bottom item j in the GPF-list of CT i represent TS ij (i.e.,

the set of all timestamps where items i and j have appeared to-

gether in the database). Therefore, using Algorithm 6 , the periodic -

ratio of “ij ” is computed to determine the periodic interestingness

of “ij .”. The same process of creating a prefix-tree and its corre-

sponding conditional tree is repeated for the further extensions of

“ij ”. The whole process of mining for each item is repeated until

GPF - list
 = ∅ . Moreover, to enable the construction of the prefix-tree

for the next item in the GPF-list, based on Lemma 7 the ts-lists

are pushed-up to respective parent nodes in the original GPF-tree

as well. All nodes of i in the GPF-tree and i ’s entry in the original

GPF-tree are deleted thereafter.

Consider item ‘ f ’, which is the last item in the GPF-list of

Fig. 5 (c). Collect all timestamps of ‘ f in GPF-tree, construct TS f and

calculate IP of f , i.e., IP (f) (line 2 in Algorithm 4). The IP (f) is calcu-

lated using the Algorithm 5 . This item is a periodic item because
IP(f)

sup(f)+1
≥ minP R (line 3 in Algorithm 4). Therefore, we construct

the prefix-tree for ‘ f ’, i.e., PT f as shown in Fig. 6 (a). There are five

items ‘ a, b, c, d ’ and ‘ e ’ in PT f . Among them only the item ‘ e ’ has

IP value greater than or equal to minP R × (minSup + 1) threshold.

Therefore, the conditional tree CT f from PT f is constructed with

only one item ‘ e ’, as shown in Fig. 6 (b). The ts -list of ‘ e ’ in CT f gen-

erates TS ef . The periodic-ratio of ‘ ef ’ is measured using Algorithm 6 .

As sup (ef) ≥ minSup and PR (ef) ≥ minPR , ‘ ef ’ will be generated as

a partial periodic-frequent pattern (lines 4 to 8 in Algorithm 4). A

similar process is repeated for the other items in the GPF-list. Next,

‘ f ’ is pruned from the original GPF-tree and its ts -lists are pushed
o its parent nodes (line 9 in Algorithm 4). Fig. 6 (c) shows the orig-

nal GPF-tree after removing the item ‘ f ’. All the above processes

re once again repeated until the GPF-list
 = ∅ .
Table 3 shows the complete steps involved in mining GPF-tree

sing conditional pattern bases. The formats used to represent

onditional pattern base, conditional GPF-tree and partial periodic-

requent patterns are { nodes : ts - list }, 〈 nodes : ts - list 〉 and { pattern :

upport , periodic - ratio }, respectively.

The above bottom-up mining technique on a support descend-

ng GPF-tree is efficient, because it shrinks the search space dra-

atically as the mining process progresses. The correctness of GPF-

rowth is shown in Lemma 8 .

emma 8. Let α be a pattern in GPF-tree. Let minSup, maxPer and

inPR be the user-defined minimum support, maximum period and

inimum periodic-ratio, respectively. Let B be the α-conditional pat-

ern base, and β be an item in B. Let TS β be an array of timestamps

ontaining β in B. If α is a candidate pattern, TS β .length ≥ minSup

nd PR (TS β) ≥ minPR, then < αβ > is a partial periodic-frequent

attern.

roof. According to the definition of conditional pattern base and

ompact GPF-tree, each subset in B occurs under the condition of

he occurrence of α in the transactional database. If an item β in

 has the timestamps of ts i , ts j and so on, then β appears with

at the timestamps of ts i , ts j and so on. Thus, TS β in B is same

s TS αβ . From the definition of partial periodic-frequent pattern, if

S β .length ≥ minSup and PR (TS β) ≥ minPR , then < αβ > is a partial

eriodic-frequent pattern. Hence proved. �

. Experimental results

This section evaluates the proposed model against the basic

odel of periodic-frequent patterns (Tanbeer et al., 2009). We

how that the proposed model discovers useful information per-

aining to both full and partial periodically occurring frequent pat-

erns. We also show that the proposed GPF-growth is runtime ef-

cient and highly scalable as well.

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 179

Fig. 7. Number of partial periodic-frequent patterns generated from T10I4D100K database at different minSup, maxPrd and minPR values.

Table 4

Database statistics. The terms, T min , T avg and T max , represent the

minimum, average and maximum number of items within a

transaction, respectively.

Database T min T avg T max Size Items

T10I4D100K 1 10 .1 29 100 ,0 0 0 870

T10I4D10 0 0K 1 10 .1 31 983 ,155 30 ,387

T25I6D10 0 0K 1 24 .9 55 999 ,960 1007

Retail 1 10 .3 76 88 ,162 16 ,470

FAA-accidents 3 8 .9 9 98 ,864 9290

Kosarak 1 8 .1 2498 990 ,002 41 ,270

6

C

8

b

r

d

t

w

T

l

T

o

a

F

d

1

b

o

n

‘

m

p

t

t

6

f

a

t

d

t

p

w

d

f

a

p

f

b

F

m
.1. Experimental setup

The algorithms, PF-growth and GPF-growth, are written in GNU

 ++ and run with Ubuntu 14.4 on a 2.66 GHz machine with

 GB of memory. The experiments have been conducted using

oth synthetic (T10I4D100K, T10I4D10 0 0K , and T25I6D10 0 0K) and

eal-world (Retail and FAA-accidents) databases. The synthetic

atabases that are used in our experiments are generated by using

he IBM data generator (Agrawal et al., 1993). This data generator is

idely used for evaluating the association rule mining algorithms.

he Retail database contains 5 months of market basket data col-

ected from an anonymous Belgian retail store (Brijs et al., 20 0 0).

he Kosarak database contains click-stream data of a Hungarian

n-line news portal. The Retail and Kosarak databases are avail-

ble at Frequent Itemset Mining repository (Goethals, 2005). The

AA-accidents database is constructed from the aircrafts accidents

ata recorded by Federal Aviation Authority (FAA) from 1-January-

978 to 31-December-2014 (FAA, 2015). The raw data collected

y FAA contains both numerical and categorical attributes. For

ur experiments, we have considered only categorical attributes,

amely ‘local event date,’ ‘event city,’ ‘event state,’ ‘event airport,’

event type,’ ‘aircraft damage,’ ‘flight phase,’ ‘aircraft make,’ ‘aircraft

odel,’ ‘operator,’ ‘primary flight type,’ ‘flight conduct code,’ ‘flight

lan filed code’ and ‘PIC certificate type.’ The missing values for

hese attributes are ignored while creating this database. The sta-

istical details of these databases are shown in Table 4 .

.2. Generation of partial periodic-frequent patterns

Figs. 7 , 8 and 9 show the number of partial periodic-

requent patterns generated in T10I4D100K, Retail and FAA-

ccidents databases, respectively. The partial periodic-frequent pat-

erns generated at minP R = 0 represent the frequent patterns (in-

ependent of the maxPer values). The partial periodic-frequent pat-

erns generated at minP R = 1 represent the full periodic-frequent

atterns generated from the basic model (Tanbeer et al., 2009)
hen maxPeriodicity = maxPer. The following observations can be

rawn from these figures:

• The increase in minSup has decreased the number of partial

periodic-frequent patterns. The reason is increase in minSup has

increased the number of transactions in which a pattern has to

appear to be a frequent pattern.
• The increase in minPR has decreased the number of partial

periodic-frequent patterns. It is because the increase in minPR

has increased the number of cyclic repetitions necessary for a

pattern to be a partial periodic-frequent pattern.
• The increase in maxPer has increased the number of partial

periodic-frequent patterns. The reason is increase in maxPer has

increased the inter-arrival time within which a pattern has to

appear in a database.
• Very few full periodic-frequent patterns are being generated at

minP R = 1 . The reason is that it is difficult for the patterns to

exhibit complete cyclic repetitions in the entire database. Most

of the full periodic-frequent patterns discovered in all of these

databases are singleton patterns (or items). Setting a very long

maxPer value has enabled us to discover full periodic-frequent

patterns containing more than one item. However, this long

maxPer value has also generated many sporadically appearing

frequent patterns as periodic-frequent patterns.

Fig. 10 (a), (b) and (c) show the distribution of partial periodic-

requent patterns with respect to their itemset lengths. The minSup

nd maxPer values are set at 0.1% and 0.2%, respectively. The partial

eriodic-frequent patterns generated at minP R = 1 represent the

ull periodic-frequent patterns. The following two observations can

e drawn from these figures:

• A strict constraint that a pattern must exhibit complete cyclic

repetitions in the entire database often results in generating

very few periodic-frequent patterns, and most of them are sin-

gleton patterns. Relaxing this constraint may facilitate the user

in finding ample number of frequent patterns that have exhib-

ited partial cyclic repetitions in the data.
• When we relax the strict constraint that a pattern must exhibit

complete cyclic repetitions in the entire database too much (i.e.,

very low minPR values), we will discovering almost all frequent

patterns as periodic-frequent patterns. Thus, it is necessary not

to relax the constraint too much. We recommend minPR val-

ues greater than or equal to 50%. The reason is it is difficult to

call those frequent patterns that have less than 50% of periods

within maxPer as partial periodic-frequent patterns.

Table 5 shows some of the interesting patterns discovered in

AA-accidents at minSup = 0 . 3% , maxPer = 0 . 6% (= 81 days) and

inP R = 0 . 8% . The first pattern reveals the useful information that

180 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

Fig. 8. Number of partial periodic-frequent patterns generated from Retail database at different minSup, maxPrd and minPR values.

Fig. 9. Number of partial periodic-frequent patterns generated from FAA-accidents database at different minSup, maxPrd and minPR values.

Fig. 10. Number of partial periodic-frequent patterns generated from FAA-accidents database at different minSup, maxPrd and minPR values.

6

t

T

m

d

s

s

o

6

with an inter-arrival time of 81 days, 515 (= 537 ∗0.964) personal

aircrafts driven by private pilots have gone through substantial

damages while performing general operating rules. The second

pattern provides the information that 290 (= 316 ∗0.92) aircrafts

have witnessed substantial damages when following general op-

erating rules and flight phase is level-off touchdown. The third

pattern provides the information that at least once in every 81

days, 290 (= 323 ∗.91) aircrafts have gone through minor damages

while following instrument flight rules. The final patterns pro-

vides the information that at least once in every 81 days, 298

(= 304 ∗0.9) Cessna personal aircrafts driven by a private pilot have

gone through minor damages when following general operating
rules.

t
.3. Runtime requirements of GPF-growth

Fig. 11 (a), (b) and (c) show the graph of minPR versus run-

ime requirements of GPF-growth at different minPer values in

10I4D100K, Retail and FAA-accidents databases, respectively. The

inSup values used in T10I4D100K, Retail and FAA-accidents

atabases are 0.01%, 0.01% and 0.03%, respectively. It can be ob-

erved from these figures that changes in maxPer and minPR values

how a similar effect on runtime requirements as in the generation

f partial periodic-frequent patterns.

.4. Scalability results

We study the scalability of GPF-growth on memory and run-

ime requirements by varying the number of transactions in

R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182 181

Fig. 11. Runtime requirements of GPF-growth at various maxPer and minPR values.

Fig. 12. Memory requirements of GPF-growth with increase in database size.

Table 5

Some of the interesting patterns discovered in FAA-accidents database.

S. No. Pattern Support Periodic - ratio

1 {GENERAL-OPERATING-RULES, 537 0 .964

PERSONAL, PRIVATE-PILOT,

SUBSTANTIAL}

2 {GENERAL-OPERATING-RULES, 316 0 .92

LEVEL-OFF-TOUCHDOWN,

SUBSTANTIAL}

3 {MINOR, INSTRUMENT-FLIGHT- 323 0 .91

RULES, AIRLINE-TRANSPORT,

ROLL-OUT-(FIXED-WING),

AIR-CARRIER/COMMERCIAL}

4 {GENERAL-OPERATING-RULES, 304 0 .90

MINOR, PERSONAL,

PRIVATE-PILOT, CESSNA,

INSTRUMENT-FLIGHT-RULES}

a

d

d

t

a

p

t

v

T

t

g

I

Table 6

The minSup, maxPer and minPR values used in

scalability experiment.

Database minSup maxPer minPR

Kosarak 0 .2% 10% 0 .3%

T10I4D10 0 0K 0 .1% 10% 0 .3%

T25I6D10 0 0K 0 .2% 10% 0 .3%

t

c

l

t

b

p

a

7

f

A

t

t

h

t

d

d

t

p
 database. We use Kosarak, T10I4D10 0 0K and T25I6D10 0 0K

atabases for this experiment. We have divided each of these

atabases into five portions with 20% of transactions in each por-

ion. Then we investigated the performance of GPF-growth after

ccumulating each portion with previous parts with performing

artial periodic-frequent pattern mining each time. Table 6 shows

he minSup, maxPer and minPR values used in various databases.

Fig. 12 (a) (b) and (c) show the graphs of memory requirements

ersus database size of GPF-growth in Kosarak, T10I4D10 0 0K and

25I6D10 0 0K databases, respectively. Fig. 13 (a) (b) and (c) show

he graphs of runtime requirements versus database size of GPF-

rowth in T10I4D10 0 0K and T25I6D10 0 0K databases, respectively.

t is clear from both the graphs that as the database size increases,
he memory and runtime requirements of GPF-growth also gets in-

reased. However, GPF-growth shows stable performance of about

inear increase of memory and runtime consumption with respect

o the database size. Therefore, it can be observed from the scala-

ility test that GPF-growth can mine the partial periodic-frequent

atterns over large datasets and distinct items with considerable

mount of memory and runtime.

. Conclusions and future work

This paper proposes a model to discover partial periodic-

requent patterns in a temporally ordered transactional database.

 new interestingness measure, periodic-ratio , has been introduced

o determine the partial periodic interestingness of a pattern in

ime dimension. A pruning technique to reduce the search space

as been discussed to discover the partial periodic-frequent pat-

erns effectively. A pattern-growth algorithm has been proposed to

iscover all partial periodic-frequent patterns. Experimental results

emonstrate that the proposed model can discover useful informa-

ion and GPF-growth is efficient.

In this paper, we have not taken into account the change in

eriodic behavior of a pattern due to the affect of noise. As a

182 R.U. Kiran et al. / The Journal of Systems and Software 125 (2017) 170–182

Fig. 13. Runtime requirements of GPF-growth with increase in database size.

H

H

K

K

L

M

M

M

M

Ö

P

S

S

S

T

Y

Y

Z

Z
part of future work, it is interesting to investigate methodolo-

gies to discover partial periodic-frequent patterns in noisy real-

world databases. The existing state-of-the-art association rule min-

ing classifiers take into account only the frequency dimension of a

pattern. It is interesting to investigate how the information discov-

ered by the proposed patterns can be used in developing efficient

classifiers.

References

Adomavicius, G. , Tuzhilin, A. , 2001. Expert-driven validation of rule-based user mod-

els in personalization applications. Data Min. Knowl. Discov. 5 (1–2), 33–58 .

Adomavicius, G. , Tuzhilin, A. , 2005. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE Trans.

Knowl. Data Eng. 17 (6), 734–749 .
Agrawal, R. , Imieli ́nski, T. , Swami, A. , 1993. Mining association rules between sets of

items in large databases. In: SIGMOD, pp. 207–216 .
Amphawan, K. , Lenca, P. , Surarerks, A. , 2009. Mining top-k periodic-frequent pat-

tern from transactional databases without support threshold. In: Advances in
Information Technology, pp. 18–29 .

Aref, W.G. , Elfeky, M.G. , Elmagarmid, A.K. , 2004. Incremental, online, and merge

mining of partial periodic patterns in time-series databases. IEEE TKDE 16 (3),
332–342 .

Berberidis, C. , Vlahavas, I. , Aref, W. , Atallah, M. , Elmagarmid, A. , 2002. On the dis-
covery of weak periodicities in large time series. In: PKDD, pp. 51–61 .

Brijs, T. , Goethals, B. , Swinnen, G. , Vanhoof, K. , Wets, G. , 20 0 0. A data mining frame-
work for optimal product selection in retail supermarket data: the generalized

profset model. In: KDD, pp. 300–304 .

Cao, H. , Cheung, D. , Mamoulis, N. , 2004. Discovering partial periodic patterns in
discrete data sequences. In: Advances in Knowledge Discovery and Data Mining,

3056, pp. 653–658 .
Chen, S.-S. , Huang, T.C.-K. , Lin, Z.-M. , 2011. New and efficient knowledge discovery

of partial periodic patterns with multiple minimum supports. J. Syst. Softw. 84
(10), 1638–1651 .

Dong, G. , Li, J. , 1999. Efficient mining of emerging patterns: Discovering trends and

differences. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 43–52 .

Esling, P. , Agon, C. , 2012. Time-series data mining. ACM Comput. Surv. 45 (1),
12:1–12:34 .

FAA, 2015. Federal Aviation Authority. Available at http://www.asias.faa.gov/pls/
apex/f?p=100:1:7565565412795 .

Goethals, B., 2005. Frequent Itemset Mining repository. Available at http://fimi.ua.

ac.be/data/ .
Gouda, K. , Zaki, M.J. , 2001. Efficiently mining maximal frequent itemsets. In:

Proceedings of the 2001 IEEE International Conference on Data Mining,
pp. 163–170 .

Han, J. , Cheng, H. , Xin, D. , Yan, X. , 2007. Frequent pattern mining: current status and
future directions. DMKD 14 (1) .

Han, J. , Dong, G. , Yin, Y. , 1999. Efficient mining of partial periodic patterns in time

series database. In: ICDE, pp. 106–115 .
Han, J. , Gong, W. , Yin, Y. , 1998. Mining segment-wise periodic patterns in time-re-

lated databases. In: KDD, pp. 214–218 .
an, J. , Pei, J. , Yin, Y. , Mao, R. , 2004. Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8 (1),

53–87 .
an, J. , Wang, J. , Lu, Y. , Tzvetkov, P. , 2002. Mining top.k frequent closed patterns

without minimum support. In: Proceedings of the 2002 IEEE International Con-

ference on Data Mining, pp. 211–218 .
Kiran, R.U. , Kitsuregawa, M. , 2014. Novel techniques to reduce search space in peri-

odic-frequent pattern mining. In: DASFAA (2), pp. 377–391 .
Kiran, R.U. , Kitsuregawa, M. , Reddy, P.K. , 2016. Efficient discovery of periodic-fre-

quent patterns in very large databases. J. Syst. Soft. 112, 110–121 .
iran, R.U. , Reddy, P.K. , 2010. Towards efficient mining of periodic-frequent patterns

in transactional databases. In: DEXA (2), pp. 194–208 .

Kiran, R.U. , Reddy, P.K. , 2011. An alternative interestingness measure for mining pe-
riodic-frequent patterns. In: DASFAA (1), pp. 183–192 .

iran, R.U. , Shang, H. , Toyoda, M. , Kitsuregawa, M. , 2015. Discovering recurring pat-
terns in time series. EDBT, pp. 97–108 .

axman, S. , Sastry, P.S. , Unnikrishnan, K.P. , 2007. A fast algorithm for finding fre-
quent episodes in event streams. In: KDD. Association for Computing Machin-

ery, Inc., pp. 410–419 .

a, S. , Hellerstein, J. , 2001. Mining partially periodic event patterns with unknown
periods. In: ICDE, pp. 205–214 .

annila, H. , 1997. Methods and problems in data mining. In: The International Con-
ference on Database Theory, pp. 41–55 .

ohammad, Y.F.O. , Nishida, T. , 2013. Approximately recurring motif discovery using
shift density estimation. In: IEA/AIE, pp. 141–150 .

ooney, C.H. , Roddick, J.F. , 2013. Sequential pattern mining – approaches and algo-

rithms. ACM Comput. Surv. 45 (2), 19:1–19:39 .
Oates, T. , 2002. Peruse: an unsupervised algorithm for finding recurrig patterns in

time series. In: ICDM, pp. 330–337 .
zden, B. , Ramaswamy, S. , Silberschatz, A. , 1998. Cyclic association rules. In: ICDE,

pp. 412–421 .
ei, J. , Han, J. , Lakshmanan, L.V. , 2004. Pushing convertible constraints in frequent

itemset mining. Data Min. Knowl. Discov. 8, 227–252 .

tormer, H. , 2007. Improving e-commerce recommender systems by the identifica-
tion of seasonal products. In: Twenty second Conference on Artificial Intelli-

gence, pp. 92–99 .
urana, A. , Kiran, R.U. , Reddy, P.K. , 2011. An efficient approach to mine periodic-fre-

quent patterns in transactional databases. In: PAKDD Workshops, pp. 254–266 .
wamy, M.K. , Reddy, P.K. , Srivastava, S. , 2014. Extracting diverse patterns with un-

balanced concept hierarchy. In: Advances in Knowledge Discovery and Data
Mining - 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13–16,

2014. Proceedings, Part I, pp. 15–27 .

anbeer, S.K. , Ahmed, C.F. , Jeong, B.S. , Lee, Y.K. , 2009. Discovering periodic-frequent
patterns in transactional databases. In: PAKDD, pp. 242–253 .

ang, J. , Wang, W. , Yu, P.S. , 2003. Mining asynchronous periodic patterns in time
series data. IEEE Trans. Knowl. Data Eng. 613–628 .

ao, H. , Hamilton, H.J. , Butz, C.J. , 2004. A foundational approach to mining itemset
utilities from databases. In: SDM. SIAM, pp. 4 82–4 86 .

aki, M.J. , Hsiao, C.-J. , 2005. Efficient algorithms for mining closed itemsets and

their lattice structure. IEEE Trans. Knowl. Data Eng. 17 (4), 462–478 .
hang, W. , Yoshida, T. , Tang, X. , Wang, Q. , 2010. Text clustering using frequent item-

sets. Knowl. Based Syst. 23 (5), 379–388 .

http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0006
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0010
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0011
http://www.asias.faa.gov/pls/apex/f?p=100:1:7565565412795
http://fimi.ua.ac.be/data/
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0027
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0031
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30238-2/sbref0038

	Discovering partial periodic-frequent patterns in a transactional database
	1 Introduction
	2 Related work
	3 The basic model of periodic-frequent patterns
	4 Proposed model
	4.1 The limitation of basic model
	4.2 Partial periodic-frequent pattern model

	5 Proposed algorithm
	5.1 Basic idea: candidate patterns
	5.2 Generalized periodic-frequent pattern-Growth
	5.2.1 Structure of GPF-tree
	5.2.2 Construction of GPF-tree

	5.3 Mining partial periodic-frequent patterns

	6 Experimental results
	6.1 Experimental setup
	6.2 Generation of partial periodic-frequent patterns
	6.3 Runtime requirements of GPF-growth
	6.4 Scalability results

	7 Conclusions and future work
	 References

