
Application Sensitive Energy Management
Framework for Storage Systems

Norifumi Nishikawa, Miyuki Nakano,Member, IEEE, and Masaru Kitsuregawa, Fellow, IEEE

Abstract—Rapidly escalating energy and cooling costs, especially those related to the energy consumption of storage systems, have

become a concern for data centers, primarily because the amount of digital data that needs storage is increasing daily. In response, a

multitude of energy saving approaches that take into account storage-device-level input/output (I/O) behaviors have been proposed.

The trouble is that numerous critical applications such as database systems or web commerce applications are in constant operation at

data centers, and the conventional approaches that only utilize storage-device-level I/O behaviors do not produce sufficient energy

savings. It may be possible to dramatically reduce storage-related energy consumption without degrading application performance

levels by utilizing application-level I/O behaviors. However, such behaviors differ from one application to another, and it would be too

expensive to tailor methods to individual applications. As a way of solving this problem, we propose a universal storage energy

management framework for runtime storage energy savings that can be applied to any type of application. The results of evaluations

show that the use of this framework results in substantive energy savings compared with the traditional approaches that are used while

applications are running.

Index Terms—Application I/O behavior, logical I/O pattern, storage systems, runtime storage energy saving, universal storage energy

management framework

Ç

1 INTRODUCTION

THE amount of digital data produced by human beings is
increasing every day. According to a recent Interna-

tional Data Corporation (IDC) report [1], the amount of
information created and stored digitally will exceed
40,000 exabytes by 2020. This Big Data must be managed
and used in conjunction with data-intensive applications
such as sensor data archives, search engines, and web serv-
ices. Furthermore, since all this data must be properly
stored, the capacity of storage systems will increase as well.
It has been predicted [2] that data storage capacities in 2017
will need to be 6.5 times as large as those available in 2011.

The energy consumption of information technology (IT)
equipment at data centers is growing on a daily basis [3], and
a recent report [4] states that storage system energy con-
sumption rates, as a portion of all IT equipment, will increase
even further in the near future because the amount of digital
data requiring storage will continue to inflate. For example,
the paper [5] reports that the power required to handle data
storage in large online transaction processing systems
(OLTPs) and other data-intensive applications accounts for
more than 70 percent of the total power consumption of IT
equipment. Therefore, it is clear that storage system energy
consumption has to be reduced at large data centers.

There are numerous energy saving approaches that use
energy-efficient storage devices, such as large-capacity hard
disks (HDDs), 2.5 inch HDDs, or solid state disks (SSDs), or

that use space-efficient improvement methods such as data
compression or data de-duplication [6]. In contrast with
previous energy saving approaches, our paper focuses on
enabling dynamic storage energy savings while applica-
tions are running.

The storage energy saving methods that have been
proposed to date include the one reported in [7], [8],
which has a massive arrays of inactive disks (MAID)
function that stops HDD rotation when no I/Os are
issued to the HDDs [9].

Data centers have various applications in continuous
operation, and the I/O behaviors of those applications, such
as file servers, OLTPs, decision support systems (DSSs), and
web commerce, differ considerably. Traditional energy sav-
ing methods are typically implemented inside storage devi-
ces, which means their energy saving abilities can only be
determined from their storage-level I/O behaviors. There is
also the possibility that energy saving methods based on
such behaviors could degrade the performance of applica-
tions since storage devices have no ability to detect or deter-
mine application runtime behaviors.

Our major contribution in this paper is the proposal of a
novel energy management framework that can achieve
energy savings for storage devices even when different
applications are in continuous operation. Furthermore, we
introduce a universal framework that utilizes application
logical level I/O behaviors without the necessity of imple-
menting a tailored energy management policy for each
application. We show that our framework is applicable to a
range of systems, from concise compact multiple-HDD
systems to large enterprise storage systems, even when
various applications are in continuous operation.

Our framework statistically analyzes both application-
and storage-device-level I/O behaviors and identifies how
the I/O behaviors from each application relate to the

� The authors are with the Institute of Industrial Science, University of
Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
E-mail: {norifumi, miyuki, kitsure}@tkl.iis.u-tokyo.ac.jp.

Manuscript received 16 Nov. 2013; revised 31 Dec. 2014; accepted 5 Mar.
2015. Date of publication 26 Mar. 2015; date of current version 3 Aug. 2015.
Recommended for acceptance by C.-Y. Chan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2416737

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015 2335

1041-4347� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

storage devices. Our framework introduces a logical I/O pat-
tern in order to manage application-level I/O behaviors
regardless of the application type and to determine runtime
energy saving strategies suitable for the logical I/O pattern
dynamically. The features of our framework are as follows:

� By introducing the logical I/O patterns, our method
has a high level of applicability to all applications,
regardless of their I/O behaviors, which allows it to
achieve substantial energy savings compared with
traditional storage-device-level energy saving
methods.

� It uses the logical I/O patterns to enable the execu-
tion of more energy-efficient data placement than
traditional methods do.

In this paper, we quantitatively evaluate our framework
using typical data center applications. To accomplish this,
we run actual file server, OLTP, DSS, and web commerce
applications on multiple HDD and large storage system
environments. We compare our method with two estab-
lished storage-device-level energy saving methods, popular
data concentration (PDC) [10] and dynamic data reorgani-
zation (DDR) [11].

Section 2 presents the concepts behind our universal stor-
age energy management framework. Section 3 introduces
the logical I/O patterns. Section 4 describes the storage
device model and its power status, while Section 5 discusses
our monitoring functions. We describe the storage energy
management flow in Section 6 and the runtime energy man-
agement functions in Section 7. In Section 8, we describe the
application of our storage energy management framework
to actual systems and analyze the I/O characteristics of four
data intensive applications in Section 9. Section 10 shows
the results of an evaluation, while Section 11 presents
related work. Conclusions are given in Section 12.

2 UNIVERSAL STORAGE ENERGY MANAGEMENT

FRAMEWORK CONCEPT

Various critical applications such as OLTP or web com-
merce are in constant operation at data centers. As dis-
cussed in the previous section, the I/O behaviors of
different applications vary quite a bit. However, the cur-
rently used energy saving approaches for storage devices
do not take into consideration the differing characteristics
of each application’s I/O behaviors. If the characteristics of
an application’s I/O behaviors are known, it is reasonable
to expect that an energy saving method could be designed
without degrading the application’s performance levels.
Unfortunately, it is difficult to coordinate an application’s
level of I/O behavior with energy saving efforts by utilizing
the I/O behaviors of the storage devices alone. In response
to this difficulty, we develop a novel universal storage
energy management framework that enables the utilization
of I/O behaviors from various applications by managing
them in a uniform way.

2.1 Subjects of Runtime Storage Energy Saving

2.1.1 Problems of Previous Storage Energy Saving

Currently, a number of energy saving methods for storage
devices are in use or under consideration, most of which can

be roughly classified into two approaches. One approach
works to extend the duration of the idle period by controlling
the I/O interval to storage devices [12], [13], [14], [15], while
the other works to extend the idle period by replacing data
amongst storage devices [10], [11], [16], [17], [18], [19], [20].

These methods use fixed energy saving functions and
formulate their strategies based on the storage-device I/O
behavior levels. However, they do little to reduce energy
consumption from the standpoint of runtime application
behavior. For example, it is difficult to accurately determine
which blocks on a storage device are updated from OLTP
applications, or which are being read from E-commerce
applications. This is because such applications read or
update data blocks from the viewpoint of their databases or
files, while storage devices have no ability to take into
account such viewpoints. Thus, the traditional energy sav-
ing methods have no means of correctly determining which
blocks should be kept or pre-loaded into the buffer spaces
of storage devices. This indicates that it is necessary to con-
sider how to utilize application I/O behaviors to reduce the
energy consumption of storage devices.

2.1.2 Universal Storage Energy Management

Framework Based on Application I/O Behaviors

Because I/O behaviors differ significantly among all appli-
cations, not simply those concerned with OLTP and DSS,
any potentially useful energy saving method will need to be
applied differently in order to take those behaviors into
account. For OLTPs, continuously writing I/O master table
updates into buffers may extend the intervals between
actual I/O interactions with storage devices, while in the
case of DSS, pre-loading and maintaining the tables that are
most commonly accessed may likewise extend the read I/O
intervals with storage devices. To achieve significant reduc-
tions, the energy saving method should be carefully chosen
and applied to storage devices while taking into full consid-
eration the differences in the I/O behaviors of these applica-
tions. Our framework is designed to manage storage-device
energy consumption in a uniform way, despite I/O applica-
tion behavior differences.

2.2 Framework for Runtime Storage Energy Saving

Critical data center applications cannot be stopped once they
have entered service. This means a runtime storage energy
saving method is important. Furthermore, as discussed in
Section 2.1.1, it is difficult to reduce the energy consumption
of storage devices that are accessed frequently from applica-
tions such as OLTP or those related to web commerce.

With this in mind, we propose a universal storage energy
management framework for reducing the energy consump-
tion of storage devices while ensuring that critical applica-
tions can continue normal operations. Specifically, by
utilizing application-level I/O behaviors for conserving
storage device energy, we can introduce a middleware layer
monitoring function that works in cooperation with a moni-
toring function at the storage-device level. Here, we intro-
duce a logical I/O pattern that can easily handle a variety of
application types and can analyze the applications’ I/O
behaviors in a uniform way. By monitoring both applica-
tion- and storage-device-level I/O behaviors, we can utilize

2336 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

a buffer in a different layer, such as an application or a stor-
age device, in a uniform way.

Fig. 1 shows an overview of our framework. The left part
of the figure shows the system configuration of a database
server, or file server, that we suppose. The right part shows
the functions and storage-device energy management flow.
As can be seen in the figure, our framework has monitoring
functions for both application and storage device levels,
along with an energy management function that contains a
data placement function, a buffer-based energy saving func-
tion, and a storage device power control function.

Our framework collects application- and storage-device-
level I/O behaviors during operation by utilizing monitor-
ing functions, which it then combines and analyzes to
extract logical I/O patterns. The logical I/O patterns are
defined in Section 3.

Our framework selects an appropriate energy-reduction
function to apply to the storage devices, changes the data
placement in the storage devices, and executes the selected
strategy to control the storages energy by using a target sys-
tem buffer. Application I/O behaviors may change when
the number of users or frequency of data accesses change.
As can be seen from the flow in Fig. 1, our framework cap-
tures changes in the I/O behaviors of applications as
changes in logical I/O patterns and reselects appropriate
functions to reduce storage energy. As a result, it always
efficiently reduces energy consumed by storage devices.

3 LOGICAL I/O PATTERN

In order to identify application I/O behaviors from the stor-
age device energy reduction aspect in a uniform way, we
introduce the concepts of data items and logical I/O patterns.

3.1 Data Items

A data item is a logical unit of data suitable for efforts to
conserve energy. Data items are designed as fragments of
application data on a single storage device. These units of
data differ from each other on the basis of application type.
A unit of data may be a table or a database index in data-
base management system (DBMS) applications such as
OLTP or decision support systems. In contrast, a unit of
data may be a file in applications that run on file servers. If
various pieces of data lie across multiple storage devices,
we treat these partitions as different data items. Thus, by
splitting data into data items, we can identify the applica-
tion data I/O behaviors on the storage devices.

3.2 Logical I/O Patterns

A logical I/O pattern is a universal indicator of the energy
saving potential of a data item. It is also necessary to

consider the energy saving potential of each data item.
While there are many I/Os issued to files or tables, instance
access information is not useful when determining energy
savings. Therefore, we need to examine a certain number of
I/O access sequences in order to determine whether energy
saving efforts are worthwhile. An I/O sequence of data
item A is a sequence of I/Os issued from applications to
data item A during a sufficiently long monitoring period.
We currently classify I/O sequences into four I/O patterns,
called logical I/O patterns.

Let us introduce the concepts of a long interval and an
I/O subsequence that are used to identify logical I/O pat-
terns. A long interval is an I/O interval that is longer than
the break-even time [21] of a storage device. Here, the break-
even time is an indicator of storage power management.
Once a storage device is turned off, it requires some energy
to be turned on again. However, it consumes some energy
to maintain the idle mode when waiting for an I/O
request. An I/O subsequence consists of a sequence of
read/write I/Os to a data item and I/O interval(s) that are
shorter than the break-even time. Fig. 2 shows an example
of long intervals and I/O subsequences for data item A. As
can be seen from the figure, data item A has three long
intervals and three I/O subsequences. Long interval #3
ends at the end of the monitoring period, while I/O subse-
quence #1 starts at the beginning of the monitoring period.

Now let us describe the four logical I/O patterns. The
main storage-energy management functions of our frame-
work are: i) data placement, ii) buffer-based energy saving,
and iii) turning off storage devices, as shown in Fig. 1. That
means that considering how these three storage energy
management functions are applied to each data item should
provide sufficient information to achieve energy savings,
although detailed fine tuning will be necessary later.

The logical I/O pattern definitions are as follows:

� I/O Pattern P-I. A P-I I/O pattern is one in which no
I/O is issued to a data item during the monitoring
period. This pattern has only one long interval and
no I/O subsequence. That means there is no I/O
issued to a data item during a monitoring period. P-I
type data items are candidates for placement in stor-
age devices that are often turned off.

� I/O Pattern P-R. A P-R I/O behavior has at least one
long interval and at least one I/O subsequence, and
the total number of reads in this pattern is larger
than 50 percent of the total number of I/Os. P-R data
items are read frequently; thus, they are potential
candidates for receiving a pre-load function of the
buffer-based energy saving functions.

� I/O Pattern P-W. A P-W I/O behavior has at least one
long interval and at least one I/O subsequence, and
the total number of reads in its I/O subsequences is
less than 50 percent of the total number of I/Os in

Fig. 1. Universal storage energy management framework.

Fig. 2. Long interval and I/O sequence.

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2337

the I/O subsequences. P-W data items are candi-
dates for increasing write I/O intervals by delaying
write I/Os to the storage devices.

� I/O Pattern P-A. A P-A I/O behavior has only one
I/O subsequence. P-A data items are candidates
for relocation to storage devices that will not
receive a turn-off function because these items
have no long intervals.

The first three patterns identify the energy saving poten-
tial, while the last pattern identifies those data items that
are unsuitable for energy saving efforts.

4 STORAGE DEVICE MODEL AND ITS POWER

STATUS

Large data centers typically have a variety of storage devi-
ces. For example, large data analytic systems running
Hadoop or MapReduce are constructed from multiple serv-
ers with multiple HDDs, while large OLTP systems often
use enterprise storage devices.

We introduced a storage device model to treat both HDDs
and other enterprise storages devices as energy saving tar-
gets within a single framework. The universal storage
device model enables our framework to uniformly issue
commands, such as power on or off, to its target storage
devices. By using this storage device model, our framework
can target almost all storage devices, from HDDs to enter-
prise storage, as potential candidates for energy saving
efforts. All storage devices have three power states: active,
idle, and power off. Storage devices are powered-on in the
active state and I/Os are executed. This mode consumes the
most power of the three modes. Storage devices are pow-
ered on in the idle state, but no I/Os are executed. The
energy consumed in this mode is lower than that in the
active mode. Storage devices are turned off in the power-off
state. If an I/O is issued to a powered off storage device,
there is significant delay because it takes a long time to turn
it on, and this process also requires additional energy.

5 MONITORING FUNCTIONS

Monitoring functions are core functions for combining
application-level I/O behaviors with storage-device-level
I/O behaviors.

5.1 Application Level I/O Monitoring Function

In order to leverage the application-level I/O behaviors for
energy saving purposes, the application monitor collects
two types of information: logical address information and
logical I/O statistics.

� Logical address information. Logical address informa-
tion contains information on the relationship between
a data item and the volume of the data item on a stor-
age device. Here, a volume is a partition on an HDD
or a logically separated area of a RAID group on a
disk enclosure in an enterprise storage system.

� Logical I/O statistics. The logical I/O statistics contain
the I/O read and write numbers of each data item to
each volume during each monitoring interval.

Middleware such as DBMSs and web servers manage this
logical address information while monitoring the logical I/O

statistics. Since this information can easily be obtained from
middleware logs and/or profile information, the collection
overhead of the information is negligible. Our framework
then calculates logical I/O patterns from this information.

5.2 Storage Device Level I/O Monitoring Function

Storage device level I/O monitors collect physical address
information, physical I/O statistics, and energy consump-
tion information regarding the storage devices.

� Physical address information. This information con-
tains data on the relationship between a volume and
a storage device.

� Physical I/O statistics. The physical I/O statistics con-
tain the time-stamps issuedwhen the I/O statistics are
collected, the storage device name, and the number of
read andwrite I/Os handled by the storage device.

� Energy consumption of the storage device. This informa-
tion contains the name of the storage device, the
time-stamp issued when energy-consumption infor-
mation of the storage device was collected, and the
energy consumption value of the storage device.

6 STORAGE ENERGY MANAGEMENT FLOW

6.1 Overview

Algorithm 1 shows an outline of our universal storage
energy management framework.

First, our framework monitors the application- and stor-
age-device-level I/O behaviors over a fixed period called
the monitoring period. During the monitoring period, it
attempts to reduce the energy consumption of the storage
devices by utilizing appropriate runtime energy manage-
ment functions based on the strategies determined during a
previous monitoring period. After the monitoring period is
finished, it decides a logical I/O pattern for each data item
by referring to a map showing the logical data and storage
devices. The map is generated from the obtained applica-
tion- and storage-device-level I/O behaviors.

Next, our framework determines an energy saving strat-
egy that includes the placement of each data item. Our
framework then attempts to extend the storage devices’ I/O
intervals by applying pre-load and write delay buffer-based
energy saving functions. After determining an energy sav-
ing strategy, our framework determines a method of power
control for each storage device based on the data placement.
Storage devices that only contain P-I, P-R, and P-W data
items are configured with a power-off function. In contrast,
P-A data item storage will not receive this function because
they have no potential for energy savings.

Finally, our framework determines the next monitor-
ing period on the basis of the I/O behaviors of the latest
monitoring period. Selected runtime energy management
functions are executed during the following monitoring
period. Note, however, the application behavior or
energy consumption may deviate drastically from the
estimates produced during the previous monitoring
period. If this occurs, our framework terminates monitor-
ing and re-calculates the energy saving strategy on the
basis of the I/O behaviors obtained during the latest
monitoring period.

2338 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

Algorithm 1. Storage Energy Management Flow

Start application monitor and storage monitor;
while applications are running do
Start selected runtime energy management functions;
whilemonitoring period is not finished do
if I/O interval of hot storage device > break-even time or
number of powered on cold devices > threshold then
break;

end if
end while
Extract logical I/O pattern;
Determine data placement strategy;
Determine buffer-based energy saving strategy;
Determine the power control strategy of the storage devices;
Determine the length of the next monitoring period;

end while

6.2 Extract Logical I/O Pattern

The steps to extract logical I/O patterns are as follows:

� Step 1. Find long intervals and I/O subsequences. For
each data item, find long intervals and I/O subse-
quences in the I/O sequence obtained during the
monitoring interval.

� Step 2. Determine a logical I/O pattern of a data item. If a
data item has no I/O subsequence, the logical I/O
pattern of that data item is set as P-I. If a data item
has no long intervals, the logical I/O pattern is set as
P-A. For the remaining data items, the logical I/O
pattern determination step is based on the number
counts of the read and write I/Os for each data item.
If more than half of the I/Os are read I/Os, then the
logical I/O pattern of that data item is set as P-R; oth-
erwise it is set as P-W.

� Step 3. Extract access order of data items among middle-
ware products. Some applications, such as web com-
merce, use multiple middleware products like DBMS
or HTTP server. Data items managed by these mid-
dleware might need to be accessed in a particular
order. For example, when shopping online, users
often access image files after accessing a product
database in order to obtainmore detailed information
on a particular product. In this case, there is an access
order between two data items. If we utilize this access
order when deciding buffer-based energy saving
functions, we may be able to reduce the energy con-
sumed by the storage devicemore efficiently.

For example, if we learn that the image files in a
HTTP server are accessed after a DBMS table is
accessed, our framework extracts an access order of
DBMS and HTTP server. If a logical I/O pattern of
the DBMS data item is P-R, our framework preloads
the DBMS table and the related image files into a
buffer at the same time. As a result, it may conserve
more energy than would energy saving measures
that only use data items separately.

The data item extraction steps are as follows:

Step A. Keep track of a pair of a P-R type data item and
the data item accessed just before it (these data
items aremanaged by differentmiddleware).

Step B. Count the frequency of pairs listed up in
Step A at the end of a monitoring period.

Step C. Select the top N pairs from the pairs counted
in Step B.

Step D. Use the access order of the pairs as the access
order of the data items.

Our framework preloads the data items extracted in these

steps into a buffer.

6.3 Determine Data Placement Strategy

Effective data placement is one of most important features
that enable effective energy conservation. Traditional
approachesmigrate storage blocks or files on the basis of their
physical I/O frequency. But as an energy saving metric, the
I/O intervals of logical data are more important than the I/O
frequency of the physical data. Our framework determines
data item placements on the basis of their I/O intervals.

When attempting to reduce energy consumption by turn-
ing off storage devices, at least one long interval is required
for a data item. However, we cannot determine whether a
data item has at least one long interval from the number of
I/Os. Fig. 3 compares a conventional method of data place-
ment and the approach we propose. Fig. 3a outlines the ini-
tial data placements of four data items (A, B, C, and D) in
two storage devices, along with the access timing of the
physical blocks. Here, we assume that data items have been
placed on storage devices 1 and 2 to equalize their access
frequency and size. Fig. 3b shows a conventional data place-
ment based on the block I/O frequency. Here, frequently
accessed blocks, which are those accessed more than once,
are placed on storage device 2, while all the other blocks are
placed on storage device 1. Data item B blocks are migrated
in this case to storage device 2, and data item C blocks are
migrated to storage device 1. The figure also shows a case
where no long intervals were generated by the migrating
blocks on the basis of their I/O frequency. Fig. 3c shows the
data placement performed by our method. Here, data items
that have at least one long interval are placed on storage
device 1, while all the other data items are placed on storage
device 2. Data item A is migrated to storage device 2 in this
case because there are no long intervals related to data
item A. Data item C is migrated to storage device 1 because
it has one long interval. Our approach increases the proba-
bility of long intervals being generated in storage device 1
by removing P-A data items that have no long intervals.
Thus, it is clear that proper use of application I/O behaviors

Fig. 3. Data placement comparison.

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2339

can potentially save a lot of energy. We can further classify
storage devices into two groups: hot and cold storage devi-
ces. Hot storage devices are those that handle P-A data
items and are never turned off. Cold storage devices handle
P-I, P-R, and P-W data items. Cold devices are kept turned
off in situations where no I/Os are pending or underway.

Our framework decides the placements of P-A data items
on the basis of their current placement. Our framework sorts
storage devices by the sizes of the P-A data items they store
and designates them with numbers from one to n. Here, n is
defined as the total number of storage devices in a target sys-
tem. Our framework then selects the ith cold storage device
with the smallest sum of P-A data items and checks to see if
those P-A data items could be relocated to one of the storage
devices numbered from 1st to i� 1th. Here, it selects a stor-
age device that satisfies the following conditions: (i) the free
space in the storage device is larger than that of t, and (ii) the
input/output per second (IOPS) sum of t and the current
IOPS of the storage device does not exceed the maximum
IOPS that a single storage device can serve. If two or more
storage devices satisfy these conditions, our framework
selects the storage device with the smallest IOPS of t and
whose current IOPS is minimum. If such a storage device is
found, it generates a plan to migrate t to that storage device.
If no storage device is found, our framework stops the data
placement calculation of the P-A data items.

6.4 Determine Buffer-Based Energy Saving Strategy

Data-intensive application systems in todays data centers
have large buffers both on their application servers and
storage devices. Our framework determines a logical I/O
pattern for each data item. Since data items contain applica-
tion and storage device level access histories, our frame-
work can utilize both sorts of buffers. As a result, it enables
the energy saving strategy to be decided in a uniform way
when both sorts of buffers are present.

Our framework utilizes its pre-load and write-delay
functions when dealing with buffer-based energy saving
functions. It gives higher priority to a write-delay function
than a pre-load function because we can control the timing
used to write updated blocks to storage devices by changing
a buffer parameter, such as the dirty page rate. However,
pre-load data targets depend on an application’s read I/O
behavior, and are outside of our control.

6.4.1 Determine Write Delay Strategy

We consider P-W data items as potential write-delay targets
because the number of write I/Os of a P-W data item is
higher than that of its read I/Os.

Traditional buffers also write updated blocks into storage
devices asynchronously when performing application block
updates. The traditional methodology calls for writing
updated blocks into storage devices at short intervals in
order to reduce potential data loss if the system shuts down
unexpectedly. For example, a UNIX system writes updated
blocks to storage devices every 30 seconds [22], which is
why it is difficult to extract a write I/O interval longer than
a long interval using traditional methods. In contrast, our
write delay function writes updated blocks with write I/O

intervals longer than a long interval, which makes it possi-
ble to turn off cold storage devices.

6.4.2 Determine Pre-Load Strategy

Since P-R data items have long intervals, and the number of
read I/Os is larger than the number of write I/Os, we have
restricted the pre-load function targets to P-R data items.
We may also extend a read I/O interval by reducing the
number of read I/Os.

A common purpose of conventional pre-load functions is
the sequential acceleration of read performance. These func-
tions read the next blocks into a buffer when they determine
that blocks are being read sequentially. We did not attempt
to determine if blocks are being read sequentially based on
information from P-R data items. Furthermore, additional
blocks are read into a buffer after a read request has been
issued. Thus, it is difficult to reduce energy consumption of
storage devices by using conventional pre-load functions.

In contrast, our pre-load function reads P-R data items into
a buffer at the end of the monitoring period, before the P-R
data items are actually read. Furthermore, it also reads any
data items that are related with the read P-R data items. As a
result, it increases the chances that a read I/O interval will be
a long interval, and it can thus be expected to have a higher
energy saving potential than the conventional approaches.

6.5 Determine Storage Device Power Control
Strategy

After determining the applicable pre-load data items, our
framework determines the power control of the storage
devices with the power-off function only applicable to cold
storage devices.

6.6 Determine Next Monitoring Period Length

Finally, our framework determines the length of the next
monitoring period on the basis of the average length of all
long intervals for each data item.

The calculation is Inew ¼ averageðIcurÞ � a, where Icur is
all the measured long intervals in the current monitoring
period, and Inew is the next monitoring period. The parame-
ter a (greater than one) is introduced in order to increase
the monitoring period when the average length of the I/O
intervals approaches the length of the monitoring period.
The reason that alpha is slightly greater than one is to extract
long intervals that are longer than the current monitoring
period. Thus, our framework extends the monitoring period
in order to reduce the CPU cycles required to calculate the
energy management strategy.

Energy savings become large if we can spin up devices at
the end of actual long intervals instead of spinning them up
at the end of amonitoring intervalwhen the read I/O interval
is longer than the monitoring period. This is why we set the
parameter a larger than 1. Our simulation results show that
a values between 1 and 2 are good for saving storage energy.

7 RUNTIME ENERGY MANAGEMENT FUNCTIONS

7.1 Data Placement Function

Our data placement function migrates data items among
storage devices on the basis of the data item placements

2340 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

described in Section 6.3. Data items are moved one at a time
in the order determined via data placement strategy
described at Section 6.3. The data placement function con-
trols the data transfer rate to ensure they do not influence
application performance. Fig. 4 shows the effects of our
data placement. It indicates that we can create long intervals
at storage devices #2 and #3 by removing the P-A data items
from them.

7.2 Pre-Load Function

Our pre-load function loads the data items described in
Section 6.4.2 into the buffer of the target system. Our pre-load
function inspects the buffers and removes data items that are
not designated pre-loaded data items if more space for pre-
loaded data items is needed, and then it loads newly selected
pre-loaded data items into the buffer. The function keeps
data items that are already pre-loaded available in the buffer.

If the total size of the pre-loaded target data items is
larger than the size of the buffer, our framework first sorts
the pre-loaded target data items in descending order of
read I/Os per unit size. Then, it pre-loads the data items
from the top of the sorted data items. If the free space of the
buffer becomes smaller than that of the next pre-loaded tar-
get data item, it skips it and tries to pre-load the next data
item. If there are no pre-loaded target data items smaller
than the free space of the buffer, our framework finishes the
pre-load operations. It removes P-R data items from the
buffer when the logical I/O patterns of the data items
become P-I, P-W, or P-A. It refines the logical I/O pattern of
data items at the end of a monitoring period. If a logical I/O
pattern of a data item on the pre-loaded buffer is no longer
P-R, it removes the data item from the buffer.

The application-level I/O monitoring function described
in Section 5.1 to determine whether targets should be
removed or not gathers the number of I/Os of data items
and keeps this number in the server’s memory. This opera-
tion is carried out at the end of every monitoring period by
the pre-load function of our framework. Our current imple-
mentation uses 50 percent of the buffer for the pre-load
function. We intend to explore techniques to determine this
value in the future.

Fig. 5 shows the effects of pre-loading and write-delaying
data items. As the figure indicates, we can extend the read
I/O intervals of storage devices #2 and #3 by pre-loading
P-R data items (and their related data items) into buffers.

7.3 Write Delay Function

Our write delay function first separates the target system
buffer into two areas: one for write-delayed data items
(a write delay buffer), the other for other data items. This

function next assigns the write-delayed data items to the
write delay area and the remaining data items to the other
area. It then assigns a dirty block rate to the write delay area
in order to extend the write I/O intervals. Here, the dirty
block rate is the maximum rate for updating blocks in the
buffer. If the number of updated blocks in the write delay
buffer area reaches the number of blocks calculated from
the dirty block rate, the target system flushes all these
updated blocks into storage devices simultaneously. As
shown in Fig. 5, we can extend the write I/O intervals of
storage devices #2 and #3 by delaying P-W data item writes
into the storage devices.

The current implementation of our framework uses 50
percent of the buffer for a write delay function. The value of
the dirty block rate is 50 percent, which is the maximum for
our enterprise storage’s dirty block rate. The dirty block rate
for the write delay buffer is a fixed value because the maxi-
mum dirty block rate maximizes the write I/O interval. As
a result, we can keep the storage in energy saving mode for
a long time.

7.4 Reassignment of Storage Energy Saving
Functions

Our storage energy management flow immediately inter-
rupts the monitoring phase and reselects the energy saving
strategy if one of the following conditions is satisfied: i) the
service level agreement (SLA) is broken, e.g., the application
performance deteriorates by more than 10 percent; ii) the
number of power ons for cold devices exceeds m from the
end of the previous monitoring period te and the current
time tc. Here, m ¼ ðtc � teÞ=lb, where lb is the length of the
break-even time. By immediately reselecting the energy sav-
ing strategy when such issues arise, our framework maxi-
mizes the potential energy conservation even if the I/O
behaviors suddenly change during the monitoring period.

8 APPLYING THE UNIVERSAL ENERGY

MANAGEMENT FRAMEWORK TO ACTUAL

SYSTEMS

Our framework reduces the energy consumption of storage
devices by utilizing the target system buffers. However,
buffer configurations vary depending on the target applica-
tion or system configuration. Accordingly, it is necessary to
carefully choose the DBMS, file system, or storage buffers
that are to be used for energy conservation and ensure they
are in accordance with the configuration of the application
or target system.

Small systems often use multiple HDDs as storage devi-
ces. However, while these HDDs also have buffers, they are
unsuitable for energy conservation strategies because it is

Fig. 4. Effect of data placement.
Fig. 5. Effects of pre-loading and write delaying data items.

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2341

difficult to control the pre-load or write delay of their buf-
fers. For such small systems, file system or DBMS applica-
tion buffers are potentially more suitable energy saving
methods. In our framework, the DBMS cache is used for
pre-loading and delaying writing of data items in the DB,
while the file system cache is used for pre-loading data
items managed by web servers. Fig. 6a shows an implemen-
tation of our framework for a system using multiple HDDs.

Large-scale enterprise storage systems use devices that can
contain from tens to thousands ofHDDs and hundreds of gig-
abytes of non-volatile buffer area. These storage systems have
several functions that can be used for energy conservation
efforts, such as pre-load or write delay functions. (For exam-
ple, the cache residency manager [23] allows administrators
to dynamically lock and unlock cache data in real time.) The
storage buffer is suitable for energy conservation purposes,
and we can implement our pre-loading and write delay func-
tions via the storage systems functions. Fig. 6b shows the
implementation of our framework for storage systems.

Memory placements for buffers differ according to the
scale of the system. In small systems, our framework uses a
main memory in the server as a buffer. In a large enterprise
storage system, it uses a cache memory as a buffer. We eval-
uated both implementations to demonstrate that our frame-
work can reduce the energy consumption of these storage
devices. As the placements of buffers differ according to the
scale of the system, we think it is difficult to apply small
configurations to large ones, and vice versa.

9 I/O CHARACTERISTICS OF DATA INTENSIVE
APPLICATIONS

Since logical I/O patterns are introduced to treat different
applications in a uniform way, we investigated the logical
I/O patterns of typical data intensive applications including
file servers, OLTP, DSS, and various web applications.

9.1 Experimental System

Fig. 7 shows an overview of the system configuration used
in the logical I/O behavior measurements.

9.2 Application Configuration and Load Generation

Table 1 shows the configuration of the applications that
were investigated for their logical I/O patterns. We
replayed a Microsoft Research I/O trace and executed TPC-
C[24], TPC-H[25], and TPC-W[26] on our experimental sys-
tem (Fig. 7) as the respective loads for file servers, OLTP,
DSS, and web commerce applications. TPC-W was created
10 years ago and, as such, contains parameters that are
unsuitable for current web services such as online gaming
or E-commerce. Therefore, we modified the item record
access pattern so that it would follow a Pareto distribution.
The distribution function is as follows: F ðxÞ ¼ 1� ðxm=xÞa;
xm ¼ 1; a ¼ 1. We also removed the administration transac-
tions from TPC-W because such transactions are rarely
issued on actual systems.

For file servers, we created 36 volumes on 12 disk enclo-
sures and assigned the volume MSR traces names in alpha-
betical order. For TPC-C, we created ten volumes on ten
disk enclosures (i.e., each disk enclosure contains one vol-
ume) with log data placed on one volume. We then divided
the tables and indexes into nine partitions using a DBMS
hash function, and placed each table or index partition into
one of the nine remaining volumes. For TPC-H, we created
nine volumes on nine disk enclosures, with log data placed
on one volume. We then divided the tables and indexes into
eight partitions using a DBMS hash function, and put each
of table or index partition into one of the eight remaining
volumes. For TPC-W, we created nine volumes on nine disk
enclosures with log data placed on one volume. We then
divided the tables and indexes into four partitions using a
DBMS hash function, and put each table or index partition
into one of the four volumes. It was possible to load the
TPC-W image files into the remaining four volumes because
the data sizes of each of the volumes are equal.

9.3 I/O Pattern of Data Items

Fig. 8 shows the measured results of the logical I/O patterns
for applications. The monitoring period is ten times longer
than the break-even time. For file servers, 81.2 percent of the
data items are P-I, 9.2 percent of the data items are P-R,
6.3 percent of the data items are P-W, and 3.3 percent of the

Fig. 6. Universal storage energy management framework applied to
actual system.

Fig. 7. Experimental system.

TABLE 1
Configuration of Applications of the

Enterprise Storage Systems’ Environment

Application Cache Size Workload Data Size

File Server 19,800,000 Replay I/O trace using 2 GB
(MSR Trace) records trace reply tool [27] (Storage)
(6 hr) Duration: 6 hr

OLTP 500 GB # of warehouse: 5,000 25 GB
(TPC-C) # of threads: 1,000 (DBMS)

Think time: 0 2 GB
Duration: 2.0 hr (Storage)

DSS 100 GB SF ¼ 100 5 GB
(TPC-H) Run Q1 to 22 sequentially (DBMS)

Duration: 6 hr 2 GB

Web commerce 500 GB # of warehouse: 5,000 25 GB
(TPC-W) # of threads: 1,000 (DBMS)

Think time: 0 2 GB
Duration: 2.0 hr (Storage)

2342 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

data items are P-A. For TPC-C, 12.4 percent of the data items
are P-I, 8.2 percent of the data items are P-R, 7.6 percent of
the data items are P-W, and 71.8 percent of the data items are
P-A. Unlike TPC-C, 83.2 percent of the TPC-H data items are
P-I, 16.6 percent of the data items are P-R, and 0.2 percent of
the data items are P-W. There are no P-A data items. For
TPC-W, 93.1 percent of the data items are P-I, 6.8 percent of
the data items are P-R, and 0.1 percent of the data items are
P-W and P-A. This indicates that there is a need to modify
the power saving strategy for each application.

The stability of the I/O patterns was also considered. It
was found that the I/O patterns of all applications were sta-
ble while the application was running.

10 EVALUATION

This section describes the evaluation of the energy-saving
effects of our framework. In this evaluation, we used one
small and one large storage device environment. Three
applications (OLTP, DSS, and a web application) were
run in the small storage device environment, while four
data intensive applications, a file server, OLTP, DSS, and
a web application, were chosen for the large storage
device environment. For the small storage device, we
used an array of five HDDs. For the large storage device,
we used a commercial enterprise storage system that con-
tains 150 HDDs.

For the file server, we replayed a Microsoft Research I/O
trace [18]. Moreover, we used major benchmark programs
for the application type, i.e., TPC-C [24] for OLTP,TPC-H
[25] for DSS, and TPC-W [26] for the web application.

10.1 Evaluation Using Multiple HDDs

10.1.1 Evaluation Methodology

1) Comparison targets. Our framework was compared
with two traditional I/O behavior-based energy sav-
ing methods.
� Popular data concentration. PDC [10] is a file sys-

tem level I/O behavior-based data migration
used for reducing power consumption of disk
enclosures. The data unit is a file, not a data item.

� Dynamic data reorganization. DDR [11] is a stor-
age-device-level I/O behavior-based data

migration used for reducing the power con-
sumption of disk enclosures.

2) Testbed. Fig. 9 outlines the experimental setup for
evaluating our framework on a multiple HDD sys-
tem. We used a Yokokawa digital power meter
WT1600 (error rate was 0.1 percent) to measure the
HDDs’ energy consumption.

3) Measurement items. The energy consumption of the
HDDs was measured. The energy consumption
figures included expenditures for data item migra-
tion, pre-loading data items, delaying the writes of
data items, and powering the HDDs on and off,
when required. We also measured performance
metrics including TPC-C transaction throughput,
TPC-H query response time, and the number of
web interactions per second (WIPS) for TPC-W.
These performance metrics included delays
caused by migrating data items, pre-loading data
items, delaying data item writes, and powering on
HDDs. We ran TPC-C, TPC-H, and TPC-W three
times in this evaluation, and assessed the average
energy consumption of multiple HDDs and their
performance.

4) Parameter setting. Table 2 summarizes the parame-
ter values for the proposed method. The break-
even time is an actual HDD testbed value. The
wait time for powering off an HDD (spin-down
time-out) is equal to the break-even time. We
used the parameter values from the original
articles [10], [11] in order to compare PDC and
DDR. We used parameter values for our frame-
work based on the length of the break-even time
of the storage devices.

We used a 50 percent as a dirty block rate in
this experiment. Fifty percent is the maximum
value for the enterprise storage we used. We
believe that it is possible to maximize the energy
saving effect by using this value. We selected the
value of the monitoring period coefficient, alpha,
to be slightly larger than the one to extend a long
interval if its length was longer than the monitor-
ing period. The length of the initial monitoring
period was fixed at 10 times that of the device’s
break-even time. As described in Section 6.6, how-
ever, as the monitoring interval was changed by
the logical I/O patterns of data items, an

Fig. 8. Logical I/O patterns for data intensive applications.

Fig. 9. Multiple HDD system testbed.

TABLE 2
Parameter Values for Evaluation (Multiple HDD Environment)

Parameter Value

Break-even Time 24 sec
Spin down Time-out 24 sec

(Equal to Break-even Time)
Size of Hard Disk Drive 750 GB
Coefficient of Monitoring
Period (a)

1.2

Initial monitoring period for
our method

240 sec

Monitoring period for PDC 30 min
TargetTH of DDR 60 IOPS

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2343

appropriate length was automatically set for the
monitoring intervals.

5) Workload. Table 4 shows the configuration of data-
intensive applications that were investigated for
their logical I/O patterns.

6) Initial data placement. For TPC-C and TPC-H, we
loaded log data into one HDD, and spread the DB
tables and indexes as equally as possible across the
other four HDDs. For TPC-W, we loaded log and DB
data on two HDDs and distributed the image files
onto two other HDDs. Both the DB data and image
files were distributed as equally as possible on their
assigned HDDs.

7) Data item definition. The definitions of the data items
are in Table 3.

10.1.2 Evaluation Results

Figs. 10a, 10b, and 10c show the total energy consumption of
five HDDs used by the TPC-C, TPC-H, and TPC-W applica-
tions, respectively. As shown in these figures, our frame-
work was able to reduce HDD energy consumption more
than could be accomplished with traditional approaches. At
approximately 53 percent, the energy savings rate of TPC-H
was especially high. Our framework decreased the HDD
energy consumption for TPC-C and TPC-W by 21.3, and
19.6 percent, respectively.

Figs. 10d, 10e, and 10f show the transactions per minute
of TPC-C, the total query response time of TPC-H, and web
interactions per second of TPC-W, respectively. For TPC-C
and TPC-W, our framework achieved almost the same
application throughput as devices without our framework.
On the other hand, a minor query response time degrada-
tion was recorded for TPC-H. Despite this, our framework
resulted in less application performance degradation in
comparison with PDC or DDR, while still providing signifi-
cant energy savings.

10.2 Evaluation Using an Enterprise Storage
System

10.2.1 Evaluation Methodology

1) Comparison targets. Our framework was compared
with traditional I/O behavior-based energy saving
methods as those in the storage system environment.

2) Test bed. The experimental system described in Fig. 7
was used as the testbed. We chose the number of
HDDs to be 150 on the basis of our experience. A
power meter was attached to the controller and disk
enclosures to measure the actual power consump-
tion by the storage unit. We used a Hioki 2300 series
remote measurement and monitoring system (error
rate was 0.3 percent) to measure the energy con-
sumed by the enterprise storage system.

3) Measurement items. The total energy consumption
and application performance levels were measured.
The power consumption included expenditures for
migrating data items, pre-loading data items, delay-
ing the writes of data items, and powering the disk
enclosures on and off. The application performance
metrics were the same as those described in
Section 10.1.1. We ran file server, TPC-C, TPC-H,
and TPC-W three times in this evaluation, and
assessed the average energy consumption of the stor-
age system and its performance.

4) Parameter setting. Table 5 shows the parameter values
of the proposed method. The break-even time, maxi-
mum IOPS, size of disk enclosures, and storage
cache size were the actual values of the storage of
the testbed. The wait time for powering off a disk
enclosure (spin-down time-out) was equal to the
break-even time.

We selected the values of the dirty block rate,
monitoring period coefficient alpha and initial moni-
toring period shown in Table 5 for the same reasons
as described in Section 10.1.1 4).

5) Workload. During the evaluation process, we ran each
application on our testbed. The application settings
are described in Table 1.

6) Initial data placement. The initial data placement of
each application was the same as described in
Section 9.2.

7) Data item definition. The definitions of the data items
are shown in Table 6.

TABLE 3
Data Item Definitions of Multiple HDD Environment

Application Definition of Data Item

OLTP (TPC-C) Table and index
DSS (TPC-H) Table and index
Web Application Table, index and image file

TABLE 4
Configuration of Data Intensive Applications in

Multiple HDD Environment

Application Data Size Workload Cache Size

OLTP 4 GB # of warehouse: 10 2 GB
(TPC-C) # of threads: 5 (DBMS)

Think time: 0
Duration: 2 hr

DSS 5 GB SF ¼ 3 825 MB
(TPC-H) Run Q1 to 22 sequentially (DBMS)

Web 1.2 GB # of item: 10,000 600 MB
Application (DB) # of threads: 5 (DBMS)
(TPC-W) 2.7 GB Think time: 0 2 GB

Fig. 10. Energy consumption and performance of multiple HDD
environment.

2344 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

10.2.2 Evaluation Results

Figs. 11a, 11b, 11c, and 11d correspond to the total energy
consumption of the storage system used by the file server,
TPC-C, TPC-H, and TPC-W applications, wherein our
framework reduced the energy consumed by a storage
system more than the conventional approaches. The energy
savings for TPC-W were especially high, at 66.5 percent.
Our framework decreased the storage system’s energy
consumption by 25.8 percent for the file server application.
It decreased the storage system’s energy consumption by
14.1 percent for TPC-C, and 48.4 percent for TPC-H.

Figs. 11e, 11f, 11g and 11h show the I/O response time of
the file server application, the transactions per minute for
TPC-C, the total query response time for TPC-H, and the web
interactions per second of TPC-W, respectively. As shown in
these figures, for TPC-C and TPC-W, the proposed method
imposed only aminor penalty in application throughput rela-
tive to that of theHDDswithout the energy saving functions.

For the file server application, the I/O response time of
our framework was the shortest because of the efficiency
provided by our pre-load function. For TPC-H, we found
that the query response times of all methods increased, but
that the increase imposed by our framework was less than
that imposed by PDC or DDR.

These two results show that our framework enables sig-
nificant reductions in storage device energy consumption at
the expense of only a minor application performance
degradation.

10.3 Analysis

As shown above, the our framework can achieve runtime
power savings without sacrificing performance. However,
the effects of the four logical I/O patterns require further
clarification because the proposed method places data items
into storage devices based on them. The key points are the
storage device I/O intervals, total storage device spin up/
down numbers, and data migration costs.

10.3.1 Storage Device Level I/O Interval Lengths

First, we compared I/O interval trends. Fig. 12 shows the
relationship between I/O intervals and the total lengths of
I/O intervals longer than one second for the file server,
TPC-C, TPC-H, and TPC-W applications. The x-axis shows
the length of the I/O intervals, while the y-axis shows the
cumulative length of the I/O intervals.

As shown in these figures, the I/O intervals of our frame-
work (except for TPC-H) are longer than those of PDC or

TABLE 5
Parameter Values for Evaluation of
Enterprise Storage Environment

Parameter Value

Break-even Time 52 sec
Spin down Time-out 52 sec

(Equal to Break-even Time)

Maximum IOPS of Disk
Enclosure

900 (Random I/O)

2,800 (Sequential I/O)
Size of Volumes on Disk
Enclosure

1.7 TB

Storage Cache Size 2 GB
Cache Size for Write Delay 500 MB
Cache Size for Preload 500 MB
Dirty Block Rate for Write
Delay Cache

50%

Monitoring Period
Coefficient (a)

1.2

Initial monitoring period for
our method

520 sec

Monitoring period for PDC 30 min [10]

TargetTH of DDR 450 IOPS [11]

Fig. 11. Energy consumption and performance of a storage system environment.

TABLE 6
Data Item Definitions of

Enterprise Storage Environment

Application Definition of Data Item

File Server Continuous blocks broken
by non-accessed blocks

OLTP (TPC-C) Partition of
table and index

DSS (TPC-H) Partition
of table and index

Web Application Partition of
table and index, image file

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2345

DDR in multiple HDDs environments. It is evident that the
PDC I/O intervals lengthened because the wait count for
spinning up PDC HDDs is much higher than other meth-
ods, and it prevented PDC from reducing total HDD energy
consumption despite the long I/O intervals.

10.3.2 Data Migration Costs

We compared the total sizes of data migrated during the
measurement period (Table 7).

As shown in this table, the migrated data size of our
framework is the smallest for the multiple HDD environ-
ment. For the enterprise storage environment, the
migrated data size of our framework was smaller than
that of PDC. This is because our framework migrates
only P-A data items. The migrated data size of DDR in
the enterprise storage system environment was smaller

than that of our method because the IOPS of the disk
enclosures is higher than the LowTH.1 of DDR (225, half
of the TargetTH). Therefore, as is shown in Fig. 11d,
DDR could not reduce the energy consumption of the
enterprise storage.

10.4 Effect of Data Items

We calculated the logical I/O patterns of physical blocks to
demonstrate the advantages of our approach. Fig. 13a
presents the results.

The logical I/O patterns of blocks are similar for different
applications, as can be seen in Fig. 13a. The block-based
method could not find the P-A data items of logical I/O pat-
terns that were are not suitable for energy savings, espe-
cially in the case of TPC-C. The block-based method
selected blocks that had little effect on the pre-load function
as P-R in TPC-H. This means that it is difficult for block-
based monitoring methods to save energy by using the I/O
behaviors of applications.

We also conducted simulations comparing the energy
consumed by block-level buffer management with the
energy consumed by our method. The results are presented
in Fig. 13b. The parameters for the simulation are listed in
Table 8.

Fig. 13b compares the energy consumed by our approach
and by block-based buffer management. The energy con-
sumed by block-based buffer management is 100 percent.
As we can see from the graph, our method reduced energy
consumption by 10 percent for the file server and TPC-H, 13
percent for TPC-W, and 45 percent for TPC-C. These results
indicate that data items are a suitable way of establishing a
universal energy saving framework for storage.

10.5 Effect of Each Energy Saving Strategy Used by
Our Framework

We compared energy consumed by our approach and that
of the buffer-only and migration-only energy saving strate-
gies by using actual I/O traces captured during our experi-
ments. Energy consumption of a buffer-only storage energy
saving for File Server, TPC-C, TPC-H and TPC-W are 110.9,
182.9, 100.0 and 115.4 percent respectively compared with
our framework. Energy consumption of a migration-only
storage energy saving for File Server, TPC-C, TPC-H and
TPC-W are 100.1, 110.3, 109.2 and 100,1 percent respectively
compared with our framework. These results demonstrate

Fig. 12. I/O Intervals of file server, TPC-C, TPC-H, and TPC-W.

TABLE 7
Migrated Data Size (GB)

Appl. Env. PDC DDR Proposed Method

File Server Storage 3,238 1 23

TPC-C HDD 1.1 4.8 0.1
Storage 1,082 1 30

TPC-H HDD 7.6 36.8 4.8
Storage 100 2 61

TPC-W HDD 9.5 2.34 1.4
Storage 97 2 12

Fig. 13. Effect of data items compared with physical block-based
emthod.

1. LowTH is an indicator of the disk enclosures in DDR. LowTH
means the minimum IOPS of the disk enclosures that are considered to
be cold in DDR.

2346 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

that a combination of buffer-based and migration strategies
is useful for saving energy.

11 RELATED WORK

There are numerous energy saving methods for storage
devices.

1) I/O Interval Control using cache memory. I/O Inter-
val Control controls the I/O timing of an applica-
tion by using a cache memory in order to increase
the probability that storage devices are in an
energy saving mode [12], [13], [14], [28], [29], [30].
Our method extracts application level logical I/O
patterns that are deemed suitable for storage
energy conservation and then selects appropriate
energy conservation methods, such as data place-
ment control or cache-based I/O interval exten-
sions. Therefore, our method is more capable of
reducing storage energy consumption than the tra-
ditional methods used only device level I/O pat-
terns are.

2) Data placement control. Data placement control
seeks to reduce HDD power consumption by con-
trolling the data placement in these drives [10],
[11], [16], [17], [18], [19], [20], [31], [32], [33]. These
physical I/O behavior-based approaches are
unable to find energy saving potentials obtained
by combining physical and logical I/O behaviors.
Furthermore, a logical I/O behavior-based
approach cannot recognize disk enclosures (units
of power on and off) in large storage environments
because these storage units are highly virtualized.
Therefore, logical I/O-based data placement may
not work well.

3) Application-level energy saving. Another paper in the
literature [34] describes traditional hardware-based
energy saving methods as part of the solution and
notes that data management software is important
for power conservation for large data centers.This
paper [34] did not discuss energy saving efficiency
or the impact on DBMS performance. Some papers
[35], [36], [37], [38] show the energy efficiency of
data warehouse systems. These reports identify a
number of points for energy proportion of data
warehouse systems. However, they avoid discussion
of energy saving after the data center is imple-
mented, or in relation to other applications such as
OLTP or web commerce.

12 CONCLUSION

In this paper, we proposed a universal framework for
reducing storage device energy consumption while critical
applications are running. We introduced a logical I/O pat-
tern in order to easily handle a variety of application types,
and analyzed the I/O behaviors of each application in a uni-
form way. Furthermore, we measured the I/O behaviors
and energy consumption of multiple HDDs and an enter-
prise storage system with applications such as a file server,
OLTP, DSS, and web commerce. We then compared the
method based on our framework with those of conventional
PDC and DDR storage energy saving methods. For all appli-
cations, we found that the energy savings of our method
were equal to or greater than those of PDC and DDR. Addi-
tionally, application performance levels when using our
method did not degrade significantly in comparison with
devices without energy saving functions. The results of our
evaluations show that our universal storage energy saving
framework can make significant contributions to data center
energy conservation efforts.

ACKNOWLEDGMENTS

Norifumi Nishikawa is the corresponding author.

REFERENCES

[1] J. Gantz and D. Reinsel. (2012). The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east
[Online]. Available: http://www.emc.com/collateral/analyst-
reports/idc-the-digital-universe-in-2020.pdf

[2] J. Chang, R. W. Cox, S. Deshpande, A. Kros, M. Suzuki, S. Low,
A. Munglani, and A. Kim, “Forecast: External controller-based
disk storage, worldwide, all countries, 2011-1027, 1q13 update,”
2013.

[3] A. G. Yoder, “Green storage technologies, CAPEX and OPEX,” in
Proc. Conf. SNW Fall, [Online]. Available: http://www.snia.org/
sites/default/education/tutorials/2010/fall/green/AlanYoder_
Green_Storage_Technologies-2.pdf, 2010.

[4] S. Worth. (2012). Green storage—the big picture [Online]. Avail-
able: http://www.snia.org/sites/default/education/tutorials/
2012/fall/green/SW_ Green Storage_Big_Picture_9-12.pdf

[5] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of
today’s data centers: A power consumption analysis of TPC-C
results,” Proc. VLDB Endowment, 2008, vol. 1, no. 2, pp. 1229–1240.

[6] M. Kitsuregawa, Storage Networking. Ohmsha, 2011.
[7] F. Moore and A. Guha, “Introducing COPAN systems’ MAID

architecture,” 2004.
[8] “Hitachi adaptable modular storage 2500,”HITACHI, Ltd., 2011.
[9] D. Colarelli, D. Grunwald, and M. Neufeld, “The case for massive

arrays of idle disks (MAID),” in Proc. Conf. File Storage Technol.,
2002, pp. 1–6.

[10] E. Pinheiro and R. Bianchini, “Energy conservation techniques for
disk array-based servers,” in Proc. 18th Annu. Int. Conf. Supercom-
put., 2004, pp. 68–78.

[11] E. Otoo, D. Rotem, and S.-C. Tsao, “Dynamic data reorganization
for energy savings,” in Proc. 22nd Intl. Conf. Sci. Statist. Database
Manage., 2010, pp. 322–341.

[12] A. E. Papathanasiou and M. L. Scott, “Energy efficient prefetching
and caching,” in Proc. USENIX Annu. Tech. Conf., 2004, p. 22.

[13] D. Li and J. Wang, “EERAID: Energy efficient redundant and
inexpensive disk array,” in Proc. 11th ACM SIGOPS Eur. Workshop,
article 29, 2004.

[14] X. Yao and J. Wang, “RIMAC: A novel redundancy-based hierar-
chical cache architecture for energy efficient , high performance
storage system,” in Proc. 1st ACM SIGOPS/EuroSys, 2006, pp. 249–
262.

[15] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini,
“Application transformations for energy and performance-aware
device management,” in Proc. Int. Conf. Parallel Archit. Compilation
Tech., 2002, pp. 121–130.

TABLE 8
Simulation Parameters

Item Value

Monitoring Interval 520 (s)
Break Even Time 52 (s)
Power off time out 104 (s)
Power consumption of active/idle state 287.5 (W)
Power consumption of power off state 0.0 (W)
Energy consumption of spin up 1,4950.0 (J)

NISHIKAWA ET AL.: APPLICATION SENSITIVE ENERGY MANAGEMENT FRAMEWORK FOR STORAGE SYSTEMS 2347

[16] D. Colarelli and D. Grunwald, “Massive arrays of idle disks for
storage archives,” in Proc. ACM/IEEE Conf. Supercomput., 2002,
p. 47.

[17] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and
G. Kuenning, “PARAID: A gear-shifting power-aware raid,” in
Proc. 5th USENIX Conf. FAST, Oct. 2007, vol. 3, no. 3, pp. 245–260.

[18] A. Donnelly and A. Rowstron, “Write off-loading: Practical power
management for enterprise storage,” in Proc. 6th USENIX Conf.
6th USENIX Conf. File Storage Technol., 2008, pp. 253–267.

[19] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap:
Energy proportional storage using dynamic consolidation,” in
Proc. 8th USENIX Conf. File Storage Technol., 2010, p. 20.

[20] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami,
“Cost effective storage using extent based dynamic tiering multi-
tiering: Design choices,” in Proc. 9th USENIX Conf. File Storage
Technol., 2011, pp. 1–14.

[21] G. De Micheli, “Comparing system level power management
policies,” IEEE Des. Test Comput., vol. 18, no. 2, pp. 10–19,
Mar. 2001.

[22] S. Carson and S. Setia, “Analysis of the periodic update write pol-
icy for disk cache,” IEEE Trans. Softw. Eng., vol. 18, no. 1, pp. 44–
54, Jan. 1992.

[23] Hitachi virtual storage platform architecture guide. (2011)
[Online]. Available: http://www.hds.com/assets/pdf/hitachi-
architecture-guide-virtual-storage-platform.pdf

[24] TPC benchmark C standard specification revision 5.11, Trans. Pro-
cess. Perform. Council, 2010.

[25] TPC benchmark H (decision support) standard specification revi-
sion 2.14.2, Trans. Process. Perform. Council, 2011.

[26] TPC benchmark W (web commerce) specification version 1.8,
Trans. Process. Performance Council, 2002.

[27] A. Brunelle, “Btrecord and btreplay user guide,” 2010.
[28] D. Li, H. Cai, and X. Yao, “Exploiting redundancy to construct

energy-efficient, high-performance RAIDs,” Comput. Sci. Eng.
Dept., Univ. Nebraska Lincoln, Lincoln, NE, USA, Tech. Rep. TR-
05-07-04, pp. 1–20, 2005.

[29] Q. Zhu and Y. Zhou, “Power-aware storage cache management,”
IEEE Trans. Comput., vol. 54, no. 5, pp. 587–602, May 2005.

[30] F. David and C. Devaraj, “Reducing energy consumption of disk
storage using power-aware cache management,” in Proc. 10th Int.
Symp. High Perform. Comput. Archit., 2008, pp. 118–118.

[31] E. Otoo, D. Rotem, and S.-C. Tsao, “Workload-adaptive manage-
ment of energy-smart disk storage systems,” in Proc. IEEE Int.
Conf. Cluster Comput. Workshops, 2009, pp. 1–11.

[32] J. Guerra, W. Belluomini, J. Glider, K. Gupta, and H. Pucha,
“Energy proportionality for storage: Impact and feasibility,” ACM
SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 35–39, 2010.

[33] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and flexible power-proportional storage,” in
Proc. 1st ACM Symp. Cloud Comput., 2010, p. 217.

[34] M. A. Shah, S. Harizopoulos, and J. Meza, “Energy efficiency: The
new holy grail of data management systems research,” in Proc. 4th
Biennial Conf. Innovative Data Syst. Res., [Online]. Avairable:
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf, 2009.

[35] J. Meza, M. A. Shah, P. Ranganathan, M. Fitzner, and J. Veazey,
“Tracking the power in an enterprise decision support system,” in
Proc. 14th ACM/IEEE Int. Symp. Low Power Electron. Des., 2009,
p. 261.

[36] M. Poess and R. Nambiar, “Tuning servers, storage and database
for power efficient data warehouse,” in Proc. 26th IEEE Int. Conf.
Data Eng., 2010, pp. 1006–1017.

[37] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in Proc. Int. Conf. Manage.
Data, 2010, pp. 231–242.

[38] W. Lang and S. Harizopoulos, “Towards energy-efficient database
cluster design,” Proc. VLDB Endowment, vol. 5, no. 11, pp. 1684–
1695, Jul. 2012.

Norifumi Nishikawa received the BFA degree
from the Department of Measurement Engineer-
ing, KobeUniversity, in 1989, and theMFA degree
from the Department of Instrumental Engineering,
Graduate School of Engineering, Kobe University,
in 1991. He received the PhD degree from the
Department of Electronics and Information, Grad-
uate School of Information Science and Technol-
ogy, University of Tokyo, in 2012. He joined
Hitachi, Ltd., in 1991. He is a member of IPSJ and
the Database Society of Japan.

Miyuki Nakano received the BS and PhD
degrees from the University of Tokyo, respec-
tively. In 1981, she was at Fujitsu Corporation
and in 1985, she began working at the University
of Tokyo. In 2004, she became an associate
researcher at the Institute of Industrial Science,
University of Tokyo. In 2009, she became an
associate professor at the same institute. She is
currently a professor at the Shibaura Institute of
Technology. Her interests include the study of
database systems and storage systems. She is

currently engaged in engineering data research. She is a member of the
IEEE, IEICE, IPSJ, ACM, and the Database Society of Japan.

Masaru Kitsuregawa received the BS, MS, and
PhD degrees from the University of Tokyo,
respectively. He is currently the director general
at National Institute of Informatics (NII) in Japan
and is also a professor and the director in the
Center for Information Fusion, Institute of
Industrial Science, and the executive director in
the Earth Observation Data Integration and
Fusion Research Initiative (EDI-TORIA), Uni-
versity of Tokyo. His research interests include
high-performance database engineering, and

big data system. He is running earth environmental digital earth of
more than 10PB. He serves as a chair of the steering committee of
International Conference on Data Engineering, and served as a
trustee of the VLDB Endowment. He received the ACM SIGMOD E.F.
Codd Innovation Award in 2009. He was serving as a science advisor
to the Ministry of Education, Culture, Sports, Science and Technology
in Japan. He is a fellow of the ACM and the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

