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ABSTRACT

The development of cloud storage and computing has facil-
itated the rise of various big data applications. As a rep-
resentative high performance computing (HPC) workload,
graph processing is becoming a part of cloud computing.
However, scalable computing on large graphs is still dom-
inated by HPC solutions, which require high performance
all-to-all collective operations over torus (or mesh) network-
ing. Implementing those torus-based algorithms on com-
modity clusters, e.g., cloud computing infrastructures, can
result in great latency due to inefficient communication.
Moreover, designing a highly scalable system for large so-
cial graphs, is far from being trivial, as intrinsic features of
social graphs, e.g., degree skewness and lacking of locality,
often profoundly limit the extent of parallelism.
To resolve the challenges, we explore the iceberg of devel-

oping a scalable system for processing large social graphs on
commodity clusters. In particular, we focus on the scale-out
capability of the system. We propose a novel separator-
combiner based query processing engine which provides na-
tive load-balancing and very low communication overhead,
such that increasinglylarger graphs can be simply addressed
by adding more computing nodes to the cluster.The pro-
posed system achieves remarkable scale-out capability in
processing large social graphs with skew degree distribu-
tions, while providing many critical features for big data
analytics, such as easy-to-use API, fault-tolerance and re-
covery. We implement the system as a portable and easily
configurable library, and conduct comprehensive experimen-
tal studies to demonstrate its effectiveness and efficiency.
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1. INTRODUCTION
In an era of information explosion, big data analytics have

become an increasingly important component of industry,
which focuses on developing special parallel computational
platforms to analyze various forms of massive data. The
widespread usage of these platforms has changed the land-
scape of scalable parallel computing, which was long domi-
nated by High Performance Computing (HPC) applications.
The big data platforms support applications, different from
those solved by HPC before in that (1) big data platforms
rely on commodity cluster-based execution and storage in-
frastructure like MapReduce; and (2) the utility computing
model introduced by cloud computing makes computing re-
sources available to the customer as needed, such that large
scale-out capability is mandatory for the systems on cloud.

As one of the most popular data-intensive applications,
the rapidly growing social networks require an efficient and
scalable graph processing platform. Unfortunately, MapRe-
duce, the de-facto big data processing model, and its asso-
ciated technologies such as Pig [19] and Hive [31] are often
ill-suited for iterative computing problems on large graphs.
As a result, several graph-parallel projects [1, 17, 18, 22, 24,
27, 30, 32, 36], have been proposed to facilitate data analysis
on large graphs. These projects can be generally classified
into two categories:

• The first category is 1D partitioning methods, which
means that the vertices of a graph are divided into
partitions along with their outgoing edges. 1D parti-
tioning is widely adopted by graph-parallel projects.
Different from its predecessor Parallel BGL [10] which
exposes a whole graph to user-code as the interface,
Pregel [18] introduces an easy-to-use interface, named
vertex-centric Bulk Synchronous Parallel (BSP) [34]
model. This model is similar to a BSP model which
consists of a sequence of supersteps separated by global
synchronization points until the algorithm terminates.
In every superstep, a user-programmable function ver-
tex.compute() is called exactly once for each vertex.
The function vertex.compute() receives messages via
the incoming edges from the previous superstep, pro-
cesses the messages such as an aggregation, and sends
messages via the outgoing edges for the next super-
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step. Pregel inspires several research and open-source
projects [1, 22, 24, 27, 30, 32, 36].

Advantage. The advantage of these projects is pro-
viding an easy-to-use infrastructure to reduce the costs
of implementing distributed graph algorithms in terms
of human time and effort, because the man-hour spent
on developing well-optimized native code is usually un-
affordable to enterprise IT infrastructure.

Disadvantage. Real-world graphs typically follow
power law degree distributions [3, 5, 8, 23]. The sys-
tems based on 1D partitioning cannot scale-out to a
large number of computing nodes when processing mas-
sive power law graphs, because the workers (i.e. the in-
stances of an algorithm running on a computing node)
in charge of the high degree vertices will take longer
query processing time than the others, and thus ex-
ceedingly slow down the overall response time. In
other words, increasing the number of computing nodes
in a cluster cannot further reduce overall response time,
because the elapsed time in which a worker processes
the vertex with the highest degree determines the over-
all response time.

• The second category is 2D partitioning methods [7, 37],
in which every vertex is managed by a group of com-
puting nodes. In each superstep, the computing nodes
in the same group communicate with one another to
aggregate the received messages, and then send mes-
sages to the other groups along outgoing edges to the
next superstep. The communication among the com-
puting nodes in the same group is implemented by ei-
ther AllReduce [37] or AllGather [7]. A scalable sys-
tem based on the 2D partitioning approach is usually
supported by special HPC hardware such as torus (or
mesh) networking. For example, a 2D torus configura-
tion places 16 computing nodes in a 4 × 4 grid. Each
of the 16 computing nodes is directly linked to its four
nearest-neighbors. Initially, the vertices of a graph is
partitioned into four non-overlapping subsets. Each
row of the computing nodes in the torus manages a
subset of the vertices. The outgoing edges from a sub-
set of the vertices are further partitioned into four edge
subsets by their targets, and each edge subset is han-
dled by a computing node. In a typical computation,
every worker communicates vertically (Fold) to send
messages along outgoing edges, and performs AllRe-
duce or AllGather horizontally (Expand) to aggregate
received messages for the same group of vertices.

Advantage. This approach is highly scale-out-capable
to more than sixty thousand computing nodes [2] on
HPC.

Disadvantage. This approach tackles degree-skew
and scale-out capability as a trade-off of communica-
tion cost. Indeed, the communication cost of the Fold
step is equal to 1D partitioning’s total communication
cost in terms of total message size. The communi-
cation cost of the Expand step is the price we pay
extra for load-balancing and scalability. The high-
performance implementation [6, 20] of row-wise and
column-wise collective communication includingAllRe-
duce and AllGather is critical to the scale-out capabil-
ity. Due to lacking torus networking and high-performance

implementation of AllGather operation, implementing
this approach on commodity clusters can lead to inef-
ficiency in the form of inefficient communication. In
addition, it is fairly expensive to implement 2D graph
algorithms, in terms of human time and effort, which
conflict with the “ease-of-use” concept of big data.

Briefly, the existing systems provide the following choices
to process large graphs.

1. Relying on the existing systems which are based on
vertex-centric BSP model or MapReduce platforms.
The systems, such as Apache Giraph [1] on Hadoop
[35] and GraphX [36] on Spark[38], are very easy to
use, but cannot handle large degree-skewed graphs de-
rived from massive social networks.

2. Adopting the HPC solutions which provide high per-
formance on large-scale clusters, but needs expensive
HPC clusters with torus (or mesh) networking.

3. Extending collective communication to commodity clus-
ters. These systems [9, 11] alleviate the effect of degree-
skew on small-scale clusters, but the impact of concur-
rent network transactions can be significant for collec-
tive communication on large-scale clusters, and thus
degrades the performance of these systems in process-
ing large graphs.

Degree-skew Commodity Scale-out
1D (Commodity) ✗ ✓ ✓

2D (HPC) ✓ ✗ ✓

2D (Commodity) ✓ ✓ ✗

Table 1: Existing systems against requirements

Developing a system for processing large social graphs on
large-scale commodity clusters means satisfying three re-
quirements: 1. Degree-skew: the partitioning method
is load-balanced when processing graphs with skew degree
distributions; 2. Commodity: the system does not rely on
costly networking such as torus; and 3. Scale-out: larger
graphs can be addressed by simply adding more comput-
ing nodes to the system. As shown in Table 1, none of the
existing approaches satisfy the above three requirements.

Motivated by this, we propose a novel system, named
GraphSlice. GraphSlice’s query processing is based on a
Separator-Combiner BSP model. We demonstrate that the
above three requirements can be satisfied simultaneously by
an elegantly designed query processing engine by which mas-
sive social graphs can be efficiently processed on commodity
clusters. This system provides the following features.

1. Capturing the common patterns of graph algorithms
such that API’s are sufficient to express a wide range
of graph algorithms.

2. Achieving scalable performance in processing large graphs
with skew degree distributions.

3. Synchronizing supersteps without all-collective com-
munication which elegantly fit large-scale commodity
clusters where the impact of concurrent network trans-
actions is serious.

4. Relying on one-to-one communication in a BSP model,
such that the proposed system is highly reliable and
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fault-tolerant on commodity clusters and is able to be
seamlessly integrated with existing commodity cluster-
based infrastructures such as MapReduce.

The rest of this paper is organized as follows. Section 2
introduces the background knowledge. Section 3 gives the
framework of our approach. Section 4 describes the query
processing engine. Section 5 presents API of our system.
Section 6 discusses system implementation. Section 7 re-
ports the experimental results. The related work and con-
clusion is given in Section 8 and 9, respectively.

2. PRELIMINARIES
In this section, we briefly introduce the background knowl-

edge on 1D partitioning and vertex-centric BSP model.

2.1 1D partitioning
The 1D partitioning (a.k.a. distributed adjacency list,

source-vertex partitioning and horizontal partitioning) is the
most popular partitioning method for graph processing in
distributed environments. The vertices are partitioned to
workers along with their outgoing edges. Figure 1 (a) and
(b) illustrate the partitions of an example graph and its
distributed adjacency list, respectively. In this example,
the vertices are partitioned into three partitions {A,B,C},
{D,E, F} and {G,H, I} along with their outgoing edges.

A B

C

D

E

F

G

H

I

(a) Distributed graph

A
B
C

B D
H
A B D F H

D
E
F

E
F
H

G
H
I

E

H

(b) Distributed adjacency
list

Figure 1: 1D partitioning

2.2 BSP model
In a BSP model [34], the superstep concept is used for

synchronizing the parallel execution of workers. A superstep
typically consists of three parts.

• Computation: Every worker executes computation for
the vertices it owns.

• Communication: The worker sends messages on behalf
of the vertices it owns to the neighboring vertices.

• Barrier: The worker waits until all other workers have
finished their computation and communication.

Then the algorithm moves to the next superstep. An algo-
rithm may involves several supersteps which are executed
one after another.
For example, a simple BFS algorithm on 1D partitions is

illustrated in Figure 2. The BFS begins at the root vertex
‘C’ which is initialized by the vertex value ‘0’ as its distance
to the root. In the Superstep 1, the worker, which owns
the vertex ‘C’ , sends the messages that contains the value

A B C D E F G H I

Superstep 1: ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞

Superstep 2: 1 1 0 1 ∞ 1 ∞ 1 ∞

Superstep 3: 1 1 0 1 2 1 ∞ 1 ∞

Superstep 4: 1 1 0 1 2 1 ∞ 1 ∞

Figure 2: A simple BFS algorithm on 1D partitions

Algorithm 1 The Vertex API foundations of Pregel

template <VertexType, EdgeType, MessageType>
class Vertex {

virtual void Compute(MessageIterator msgs);
string vertexID();
boolean isSource(string vertexID);
int superstep();
VertexType getVertexValue();
void setVertexValue(VertexType value);
OutEdgeIterator getOutEdgeIterator();
void SendMessageTo(string dest vertex, MessageType
message);
void VoteToHalt();

}

‘1’ as the distance of frontiers, along the outgoing edges.
Every vertex which has received messages from the vertex
‘C’ updates its vertex value to ‘1’, and sends the messages
that contains the value ‘2’ for the next superstep. The algo-
rithm iteratively updates vertex values if the received value
is smaller than the current vertex value, and sends messages
which contain the updated value plus ‘1’. The algorithm
terminates when there is no update in a superstep.

2.3 Vertex-centric API
Pregel [18] proposes a vertex-centric API on BSP model,

abbreviated as vertex-centric BSP. Writing a vertex-centric
BSP program usually means overriding the virtual Com-
pute() function in theVertex class as shown in Algorithm 1,
which will be executed at each active vertex in every su-
perstep. The template defines three value types which are
associated with vertices, edges and messages. The vertex-
centric BSP model exposes all outgoing edges of a vertex to
the Compute() function by providing anOutEdgeIterator.

A vertex-centric BSP implementation of Single Source
Shortest Path (SSSP) algorithm is shown in Algorithm 2.
The ShortestPathVertex class inherits from Vertex class
and implements the Compute() function. The vertex value
with each vertex is initialized to a constant INF which is
larger than any feasible distance. In each superstep, each
vertex first receives messages via its incoming edges, and
calculates the minimum value among the received messages.
If the minimum is less than the current vertex value, this
vertex updates it value and sends the updated value via the
outgoing edges, consisting of the updated vertex value added
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Algorithm 2 Single Source Shortest Path (SSSP)

class ShortestPathVertex extends Vertex <int, int, int>
{

void compute(MessageIterator msgs) {
int mindist = isSource(vertexID()) ? 0 : INF;
For (;!msgs.Done();msgs.Next())

mindist = min(mindist, msgs.Value());
If (mindist < getVertexValue()) {

setVertexValue(mindist);
OutEdgeIterator iter= getOutEdgeIterator();
For(;!iter.Done();iter.Next()) SendMessage(
iter.Target(), iter.getEdgeValue() + mindist);

}else{
VoteToHalt();

}
}

}

to the edge weight. The algorithm terminates when there is
no new updates in a superstep, after that the value of each
vertex denotes the distance from the source to that vertex.
This algorithm is amenable to optimization using a com-
biner as discussed in [18], which is omitted here due to the
interest of space.

3. FRAMEWORK
In this paper, we propose a system GraphSlice that em-

ploys novel partitioning and query processing methods to
tackle degree-skew and scale-out problems, while providing
an easy-to-use API to the users. It consists of three parts:

1. Partitioning. The partitioning is managed by Sepa-
rators which are containers of a subset of edges outgo-
ing from a same vertex.

2. Query Processing. The query processing is based
on a Separator-Combiner BSP model.

3. API. The API provides an easy Vertex-and-Edge view,
while the concept of Separator and Combiner is usually
hidden from the users.

The next three sections will introduce the system details.

4. PARTITIONING AND QUERY PROCESS-

ING
In this section, we introduce the basic idea of the par-

titioning method, followed by the query processing model.
More implementation details will be given in Section 6.

4.1 Parititioning
The vertices are firstly partitioned to workers according

to a user-defined Hash function. Then, edge parititioning is
managed by Separators which are containers of a subset of
edges outgoing from a same vertex. We provide two types
of Separators to manage the outgoing edges of every vertex:
PreSeparator and PostSeparator which are abbreviated for
pre-communication separator and post-communication sep-
arator respectively. Every vertex’s outgoing edges are man-
aged by either PreSeparator or PostSeparator. In particular,
there is an underlying degree-based mechanism which man-
ages high degree vertices by PostSeparators and low degree
vertices by PreSeparators.

PreSeparator is very similar to the existing 1D paritition-
ing method. It is hosted by the worker which owns the source
vertex of the PreSeparator. PostSeparator is more tricky. If
a vertex v is managed by PostSeparator, it is indeed man-
aged by at most N PostSeparators on N different workers
where N is the total number of workers in the system. Each
PostSeparator on a worker manages a subset of the outgo-
ing edges of v which emanate to the vertices owned by that
worker.

A

B

C

DE

F

<
1>

<2>

<1>

<1>

<
2
>

<2>

<2>

<1
>

<1>

Figure 3: A sample graph

For example, a weighted directed graph is shown in Fig-
ure 3. A user-defined hash function firstly divides the ver-
tices into two partitions: {A,B,C} and {D,E,F}. The sys-
tem estimates the degree of every vertex to determine the
type of Separators. In this example, the vertex ‘C’, whose
out-degree is four, is managed by PostSeparator, while the
others are managed by PreSeparator. In particular, ‘C’ is
managed by two PostSeparators, one for edges {‘CA’, ‘CB’}
and the other for {‘CD’, ‘CE’}. It is worth-noting that these
subsets are classified by the target vertex of each edge. For
instance, the edges ‘CA’ and ‘CB’ are partitioned into the
same subset, as the target vertices ‘A’ and ‘B’ are owned by
the first worker. It is similar that the edges ‘CD’ and ‘CE’
are on the second worker which owns vertices ‘D’ and ‘E’.

4.2 Query Processing
The query processing engine employs a Separator-Combiner

BSP model (SC-BSP). A Combiner is an instance of an ag-
gregation function that aggregates the messages emanating
to a same vertex. We illustrate the query processing pro-
cedure by an example of the SSSP algorithm on the graph
in the previous example. The SSSP algorithm starts with a
root at vertex ‘A’. In Superstep 1, the distance of root vertex
‘A’ is initialized to ‘0’ ; the root vertex ‘A’ sends messages to
its neighbors ‘C’, ‘E’ and ‘F’; and finally these three neigh-
bors update their distances to ‘1’, ‘2’ and ‘1’, respectively.
We omit the execution of Superstep 1, but enlarge the de-
tails of the execution of Superstep 2 in Figure 4. There are
two workers as depicted by the large gray rectangles. One of
them contains the vertices ‘A’, ‘B’ and ‘C’, while the other
contains the vertices ‘D’, ‘E’ and ‘F’. In Superstep 2, the
vertices ‘C’, ‘E’ and ‘F’ are the frontiers which are marked
in red color, as their distances have just been updated in
Superstep 1.

As shown in the example in Figure 4, the low degree ver-
tices ‘E’ and ‘F’ are managed by PreSeparators, while the
high degree vertex ‘C’ is controlled by two PostSeparators
{‘CA’, ‘CB’} and {‘CD’, ‘CE’}.

A superstep consists of three parts: pre-computation, com-
munication and post-computation. In the pre-computation
of Superstep 2, the vertex ‘C’ broadcasts its value ‘1’ to
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(E,D,2)
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PreSep

(F,D,1)
1 + 1 = 2
return 2

4 2

PreCombiner
combine min(4,2);

return 2;

1 13 2

PostSeparator

(C,A,1)
1 + 1 = 2
return 2

(C,B,2)
1 + 2 = 3
return 3

PostSeparator

(C,D,1)
1 + 1 = 2
return 2

(C,E,2)
1 + 2 = 3
return 3

3 2

PostCombiner
combine min(2,2);

return 2;

PostCombiner
combine min(3,3);

return 3;

3 22 3

0 3 1 2 2 1

Figure 4: The query processing of Separator-
Combiner BSP model: a sample superstep in the
SSSP algorithm

all the workers since it is manged by PostSeparators. In
the meanwhile, the vertices ‘E’ and ‘F’ call their PreSepa-
rators to conduct edgeCompute() function (the API will
be discussed in the next section). In the SSSP algorithm,
edgeCompute() function adds the edge weight to the ver-
tex value, and sends the sum to the target vertex of the edge.
As the two edges ‘ED’ and ‘FD’ have the same target ver-
tex ‘D’, the PreCombiner is called after the PreSeparators
to combine the two messages. For the SSSP algorithm, the
MinValueCominber merges the messages by selecting the
minimum value. Then, the communication part exchanges
the fours messages among two workers.
In the post-computation of Superstep 2, the PostSepara-

tors of vertex ‘C’ traverse the outgoing edges of ‘C’ in which
edgeCompute() function is called to add the edge weight
to the vertex value for every edge. The messages produced
by PostSeparators are combined by their destinations in the
PostCombiners. Then, these combined messages are sent to
vertices in the next superstep. In the beginning of Super-
step 3, the distances of vertices ‘B’ and ‘D’ are updated, and
these two vertices will become the new frontiers.
The degree threshold, which determines whether a ver-

tex is manged by PreSeparator or PostSeparator, is user-
configurable. By default, the threshold is the number of
workers. The default setting can minimize the total message

size in communication for most applications. We observe
that there are some existing graph algorithms which are op-
timized by degrees. The one which is similar to our proposal
is [28]. Compared with the existing algorithm, our contri-
bution is designing a degree-based mechanism in a parallel
graph processing engine, while the complexity of the design
is hidden from users. Users can use GraphSlice’s API to
develop graph algorithms without an understanding of the
underlying degree-based mechanism.

5. GRAPHSLICE’S API
In this section, we present an overview of GraphSlice’s

API which includes the major classes and functions. The
focus of GraphSlice’s API is providing an easy Vertex-
and-Edge view to users, while the underlying degree-based
mechanism for Separator and Combiner is hidden.

5.1 Basic API
The Vertex class of GraphSlice introduces three new fea-

tures to the vertex-centric BSP model: (1) the enum Path
which describes the message-passing paths between the ver-
tices, (2) the template argument SeparationType which
defines a user-specified value type for intermediate results,
and (3) the concept of edge compute and EdgeHandler
class which handles edge compute.

As shown in Algorithm 3, users override the virtual ver-
texCompute() method, which will be executed at each ac-
tive vertex in every superstep. The SendMessage()method
allows vertexCompute() to send messages to other vertices,
and these messages will be received by the other vertices
via MessageIterator in their next superstep. SendMes-
sage() contains three arguments: (1) enum Path, which
describes the destinations of this message, either the tar-
get vertex of the outgoing edges of the current vertex or all
vertices in the graph, (2) SeparationType, which is the
value type that will be passed to EdgeHandler, and (3) a
user-defined subclass of the EdgeHandler class.

Algorithm 3 The Vertex API foundations

template <VertexType, EdgeType, MessageType,
SeparationType>
class Vertex {

virtual void vertexCompute(MessageIterator msgs);
long vertexID();
boolean isSource(long vertexID);
int superstep();
VertexType getVertexValue();
void setVertexValue(VertexType value);
enum Path {OutgoingEdges, AllVertices}
void SendMessage(Path path, SeparationType separa-
tion, Class<? extends EdgeHandler > edgeHandler);
void VoteToHalt();
int getNumofOutgoingEdges();
int getNumofIncomingEdges();
OutEdgeIterator getOutEdgeIterator();
OutEdgeIterator getInEdgeIterator();

}

The EdgeHandler class is shown in Algorithm 4. In-
stead of exposing all outgoing edges in the Vertex class,
the EdgeHandler class is responsible for edge compute.
Users override the virtual edgeCompute() method which
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receives a SeparationType value from its source vertex,
produces aMessageType value and sends theMessageType
value to its target vertex.

Algorithm 4 The Edge API foundations

template <EdgeType, MessageType, SeparationType>
class EdgeHandler {

virtual MessageType edgeCompute(SeparationType
separation);
int superstep();
EdgeType getEdgeValue();
void setEdgeValue(EdgeType value);

}

An example of implementing the SSSP algorithm by over-
riding the Vertex class and the EdgeHandler class is il-
lustrated in Algorithm 5. For representation simplicity, we
set VertexType, EdgeType, MessageType and Sepa-
rationType to int which is abbreviated for Integer. By
overriding the vertexCompute() function, the algorithm
firstly calls the isSource(long VertexID) function to get an
initial value for the distance. The distance is initialized to
zero if the vertex is the source (i.e. root) of the algorithm,
otherwise it is assigned with a constant INF which is larger
than any feasible distance. In each superstep, every vertex
processes the received messages to calculate the minimum
value among all the messages. If the minimum value is less
than the current vertex value, the vertex updates its value
and sends the updated value via the outgoing edges by spec-
ifying OutgoingEdges as the Path in the SendMessage
method. The class type ShortestPathEdge.class is also
specified to indicate the EdgeHandler of this message.
The ShortestPathEdge class is the EdgeHandler in

the SSSP algorithm. It adds the vertex distance to the edge
weight, and returns the sum. By default, the returned value
will be sent to the target vertex of the current edge as a
received message in the next superstep. The algorithm ter-
minates when there is no update to any vertex in a super-
step, at which point the value of each vertex indicates the
distance from the source to that vertex.
As shown in Algorithm 6, the Combiner class is usu-

ally used for reducing the communication of an algorithm.
A combiner combines the messages which are sent to the
same vertex. For example, in the SSSP algorithm, only the
minimum value of the messages is useful to the vertex. The
combiner has been proposed in Pregel. But the GraphSlice’s
Combiner API is different from that of Pregel’s, due to their
difference in query processing engines. In Pregel’s API, the
combiner exposes all the messages, which are sent to the
same vertex, as an iterator of messages to users. However,
GraphSlice’s API in Algorithm 6 provides a combine()
function which always combines the original message and a
newly arrived message, because its SC-BSP based query pro-
cessing engine combines messages in both pre-computation
and post-computation.
An example of the minimum value combiner for the SSSP

algorithm is shown in Algorithm 7. If the value of a newly
arrived message msgToCombine is less than the original
message originalMsg, the value of the original message will
be replaced by the value of the newly arrived message.

5.2 Advanced API
In consideration of ease-of-use, the Separator class is

Algorithm 5 Single Source Shortest Path(SSSP)

class ShortestPathVertex extends Vertex <int, int, int,
int> {

void vertexCompute(MessageIterator msgs) {
int mindist = isSource(this.VertexID()) ? 0 : INF;
For (;!msgs.Done();msgs.Next()) {

mindist = min(mindist, msgs.Value());
}
If (superstep()==1) setVertexValue(INF);
If (mindist < getVertexValue()) {

setVertexValue(mindist);
SendMessage(OutgoingEdges, mindist, Shortest-
PathEdge.class);

}else{
VoteToHalt();

}
}

}
class ShortestPathEdge extends EdgeHandler <int, int,
int> {

MessageType edgeCompute(SeparationType source)
{

return source + getEdgeValue();
}

}

Algorithm 6 The Combiner API foundations

template <MessageType>
class Combiner {

virtual void combine(MessageType originalMsg, Mes-
sageType msgToCombine);

}

usually hidden from users. We provide in Algorithm 8 a de-
fault separate() which is usually applicable for most appli-
cations. The default separate() function iterates the edges
in the subset, calls the edgeCompute() function of each
edge, and sends the returned MessageType value to the
target of each edge.

Advanced users may override the separate() function
to implement advanced algorithms. The Separator class
provides a set of functions to users for implementing com-
plicated algorithms. We briefly introduce some important
functions. The getSourceVertexID() function returns the
VertexID of the source vertex of this subset of edges. The
isPreSeparator() function provides the type of the sepa-
rator which can be either PreSeparator (true) or PostSep-
arator (false). The getNumOfSubsets() and getSub-
setID() functions return the number of subsets which are
responsible for the same source vertex and the ID of this
subset, respectively.

6. IMPLEMENTATION
We are dedicated to implementing GraphSlice as an easy-

to-use, easily maintainable and scale-out capabile system on
commodity clusters.

Indexing of Graph Structure. GraphSlice organizes the
graph structure in the distributed memory of workers. The
vertices are distributed to workers according to a user-defined
Hash function. The distributed memory holds PreSepara-
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Figure 5: SC-BSP model vs vertex-centric BSP model

Algorithm 7 Minimum Value Combiner

class MinValueCombiner extends Combiner <int> {
void combine(int originalMsg, int msgToCombine) {

If (originalMsg > msgToCombine) {
originalMsg.setValue(msgToCombine.getValue());

}
}

}

Algorithm 8 The Separator API foundations

template <EdgeType, MessageType ,SeparationType>
class Separator {

void separate(EdgeIterator edges, SeparationType sep-
aration) {

For (;!edges.Done();edges.Next()) {
EdgeHandler edge = edges.Value();
MessageType msg=edge.edgeCompute(separation);
sendMessageToVertex(edge.target, msg);

}
}
long getSourceVertexID();
boolean isPreSeparator();
long getNumOfSubsets();
long getSubsetID();
void sendMessageToVertex(long VertexID, Mes-
sageType msg);

}

tors and PostSeparators with corresponding B-tree indexes
respectively. Iterating all vertices, iterating all PreSepara-
tors and iterating all PostSeparators on a worker are also
supported for advanced users. This capability enables users
to develop “think like a graph” algorithms [32].

Communication. There are two alternative implementa-
tions of PostSeparators. The first is indexing the workers in
which a high degree vertex has PostSeparators, and sending
SeparationType value to the indexed workers. The sec-
ond is broadcasting the SeparationType value of a high
degree vertex to all the workers. When the outgoing edges
of a high degree vertex are distributed across more workers,
the efficiency produced by such indexes will be reduced. We
implement the prototype of PostSeparators as a broadcast-
ing method in order to make the code easily readable and
easily maintainable.

Online Updating. Some graph mining algorithms may
need to change the graph’s topology in their algorithms.
Online update of graph structure is supported with some
constraints. GraphSlice supports setVertexValue, addVer-
tex, removeVertex, addEdge and removeEdge functions in
Vertex class. It also supports setEdgeValue function in
EdgeHandler class.

Persistent Storage. GraphSlice accesses persistent stor-
age only for input, output and checkpoints. Either gen-
eral graph formats or a specific partitioned graph format
can be used as an input. General graph formats are user-
configurable, which include adjacency lists, edge lists and
etc. When general graph formats are used as the input,
GraphSlice needs to estimate the degree of every vertex to
determine the type of separators. The estimation is typically
calculated by randomly sampling of edges. After the esti-
mation step, the graph structure are loaded into distributed
memory, while the corresponding in-memory indexes are
built on the fly.

GraphSlice is able to write the graph structure on disk in
either general graph formats or the specific partitioned graph
format. The specific partitioned graph format organizes the
graph structure into two parts: vertices and separators. It
directly writes the separators on each worker’s local disk.
This format is used as the format in checkpointing for fault
tolerance and recovery.

Fault Tolerance and Recovery. As the query processing
of GraphSlice uses a BSP model, the mechanism of fault tol-
erance and recovery is based on checkpointing, which is sim-
ilar to Pregel’s. According to a user-defined parameter TCP,
we make check points every TCP supersteps. In these check
points, the modified graph data and the buffered messages
are written to the persistent file system for failure recovery.
The persistent file system adopts the hadoop distributed file
system (HDFS) with a configurable replication factor; that
is, the file content is replicated on the storage of multiple
computing nodes for reliability.

7. EXPERIMENTS
We conduct comprehensive experiments to evaluate the

performance of the proposed SC-BSP model against the
vertex-centric BSP model on massive degree-skewed graphs.
We implement both two models as an in-memory system
based on Hadoop, Netty and Giraph on an existing HDFS
cluster with 128 physical machines each of which is con-
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figured with two Intel Xeon E5530 2.4GHz CPUs, 24GB
memory and four 500GB SSDs. In the default settings, the
number of workers is fixed to 512 such that each physical
machine runs four instances of an SSSP algorithm.
We adopt the HPC benchmark Graph500 [2] with default

settings to generate graphs with skewed distributions. The
graph generator is a Kronecker generator [5]. The generated
graphs are highly degree-skewed. For example, when the
graph contains one billion vertices, the maximum out-degree
of a vertex will be more than half billion.

Scale-Out Capability. The experiments in Figure 5 (a) eval-
uate the scale-out capability on degree-skewed social graphs.
Scale-out capability means that larger graphs can be ad-
dressed by simply adding more workers to a system.
Both SC-BSP model and vertex-centric BSP model are

initially allocated with 32 workers with 4GB memory on
each worker. With 32 workers, SC-BSP can process graphs
up to 0.5 billion edges. In contrast, vertex-centric BSP
model only can process graphs up to 0.1 billion edges. Al-
though both of the two systems own the same amount 32×
4GB = 128GB of distributed memory, SC-BSP model can
process larger graph than vertex-centric BSP model because
of its native load-balancing technique. As the maximum de-
gree vertex emanates more than 10% of edges, the vertex-
centric BSP model needs to keep these edges in a single
worker’s memory due to its vertex-centric property. SC-BSP
model deploys PostSeparators as a container of edges,
such that edges emanating from the maximum degree vertex
are managed by the PostSeparators on different workers.
We increase the number of workers to examine if the sys-

tem can address larger graphs. Vertex-centric BSP model
fails to process any larger graph, as the maximum degree
vertex consumes too much memory on a single worker. On
the contrary, SC-BSP model can address larger graphs by
simply adding more workers to the system. With 512 work-
ers, SC-BSP model can process a graph with up to 2.1 billion
edges.

Response Time. The response time is illustrated in Fig-
ure 5 (b). Because vertex-centric BSP model cannot process
any graph larger than 0.13 billion edges, we only report its
performance until this graph size. Within graph size they
can address, both two systems shows scalable response time
with respect to the number of edges.

Communication. The communication is measured by the
average message size produced by each worker. Figure 5 (c)
reports the comparison between two BSP models. It is not
surprising that performance gap is up to 40 times, even when
the graph size is relatively small. The PreSeparators of
the SC-BSP model produce the same amount of messages
as the vertex-centric BSP model. However, the PostSepa-
rators exceedingly reduce the amount of messages that are
produced by high degree vertices, because only the Seper-
ationType value will be transfered in communication and
all messages along with outgoing edges will be processed by
PostSeparators in a same worker. In power law graphs,
when increasing the size of graph, more and more edges will
be connected to the existing high degree vertices. These in-
creased edges do not produce extra messages in the SC-BSP
model, thus the performance gap drastically increases with
the graph size. We observe that the message size increases
sublinearly with the graph size in the SC-BSP model.

Dynamic SC-BSP. When graphs are relatively small, allo-
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Figure 6: Dynamic worker allocation

cating a large amount of workers may introduce cost over-
head. We propose a simple optimization to reduce the cost
overhead. This optimization dynamically determines the
number of workers according to the graph size. In this ex-
periment, we intuitively set this ratio to 2 million edges per
worker. Therefore, we allocate 16 workers to the graph with
0.03 billion edges and 512 worker to the graph with 1.07
billion edges. For the graph with 2.14 billion edges, we still
allocate 512 workers due to reaching the constraint on the
maximal number of workers. Figure 6 shows Dynamic SC-
BSP can reduce up to three-fourth of the response time on
relatively small graphs.
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Figure 7: Varying threshold

Degree threshold. The experiments in Figure 7 verify the
choice of the threshold to determine whether a vertex is
managed by PreSeparator or PostSeparator. The result
shows that the minimum message size is achieved when the
threshold is equal to the number of workers, which is the
default setting in our system.

8. RELATED WORK
This section discusses existing literature on graph-parallel

computing systems, with a focus on partitioning methods of
graphs and corresponding communication models of mes-
sages. As real-life graphs are often too huge to be loaded
into the memory of single machines, graph-parallel comput-
ing systems divide the graph into partitions. Every worker
loads a partition of the graph into its own memory, and
communicates with the other workers to execute a parallel
graph algorithm. Next, we organize the related work into
two categories according to their partitioning methods.

8.1 1D Partitioning
Parallel BGL [10] is a generic C++ library for research.

It implements 1D partitioning method on Boost Graph Li-
brary, and uses MPI for communication in a BSP model.

260



Pregel [18] is currently the most popular large graph pro-
cessing framework. In Pregel, master is primarily respon-
sible for coordinating workers, and also participates in the
computation of aggregators, which is a mechanism for global
communication. GPS [24] extended aggregator to a master
compute mechanism, which was later adopted by Giraph
[1]. In Giraph’s API, the MasterCompute class has a
compute() function, in which users are able to read and
change aggregated values from the previous superstep; ad-
ditionally, each aggregator is assigned to one of the workers
such that master does not have to perform any aggregation.
[25] proposed to monitor the size of the subgraph of active
vertices. When the active subgraph becomes small enough,
it is sent to the master to perform the remaining computa-
tion serially. [25] also discusses the optimization techniques
including merging vertices to supervertices, cleaning edges
on demand, etc.
It has been noted that the vertex-centric BSP model is

unsuitable for the graph applications that require coordina-
tion, e.g., graph coloring. Lately, Giraphx [30] presented a
modification to the BSP model to meet the aforementioned
requirement by categorizing vertices as border and internal
vertices. The modification allows the direct read to worker’s
memory for internal vertices. For border vertices, additional
synchronization is implemented by adopting two alternative
coordination mechanisms, e.g., dinning philosophers and to-
ken ring.
The vertex-centric BSP model is easy to program, but

sacrifices the flexibility of a vertex being able to access the
other vertices in the same worker. Two recent studies, Gi-
raph++ [32] and VB-Partitioner [14], exploited the idea of
sharing information in the same worker to improve efficiency.
In particular, vertices in the same worker are processed in
a compute() function together. Remarkable performance
improvements can be achieved by carefully designing the al-
gorithms, with, however, a trade-off of the ease-of-use.
High-degree vertices in a single worker are likely impose

a bottleneck when processing power-law graphs, which are
commonly seen in real world. The PowerGraph [9, 16] pro-
posed to use a randomized edge partitioning approach to
balance workloads. As the outgoing edges of each vertex are
stored across workers, a synchronization mechanism aggre-
gates the vertex values across all workers for all vertices in
the graph. Since the aggregation is an all-to-all collective
communication and the size of aggregators is proportional
to the number of vertices, the scale-out capability to the
number of computing nodes is hence limited.
Among others, Trinity [29] and Facebook’s TAO [4] are

data models for serving online queries on a large-scale graph.
These systems answer graph queries with low read latency
and high read availability. The applications of Trinity and
TAO are quite different from the other systems which focus
on high throughput offline processing. In contrast to the
BSP models, [12] proposed an asynchronous model for graph
processing. A comprehensive performance comparison and
analysis can be found in [26].

8.2 2D Partitioning
2D partitioning was first proposed in [37] and adopted

by [7, 33]. In 2D partitioning, the outgoing edges of a set of
vertices are collectively owned by all the computing nodes in
a row of mesh networking. We employ a level-synchronous
BFS algorithm to describe how graph algorithms run on 2D

partitioning. A 2D-BFS algorithm contains two steps in each
superstep: (1) Expand: Every computing node sends the
current frontier of vertices that it owns to other computing
nodes in the same column as an AllGather operation, and
inspects the outgoing edges of vertices which belong to the
gathered frontier set; and (2) Fold: Every computing node
exchanges newly-discovered vertices with the other comput-
ing nodes in the same row, and constructs the new frontiers
for the next superstep.

The 2D solution handles load-balancing and scalability
with a trade-off of communication cost. Indeed, the com-
munication cost of the Fold step is equal to 1D partition-
ing’s total communication cost in terms of total number of
messages. The communication cost of the Expand step
is the price we pay extra for load-balancing and scalability.
Due to lacking torus networking and the a high-performance
implementation of AllGather operation, deploying these al-
gorithms on commodity clusters and cloud computing in-
frastructures can lead to inefficiency in the form of expen-
sive communication. Moreover, implementing 2D graph al-
gorithms requires great human effort, conflicting with the
“ease-of-use” concept of big data analytics.

Note that there is another line of research on graph com-
putation on MapReduce. This category of systems, such
as Pegasus [13], Cloud9 [15], Pig Latin [19], Hive [31] and
SGC [21], rely on Map and Reduce tasks for graph process-
ing. MapReduce is often ill-suited for graph computation
problems [18], and consequently can lead to suboptimal per-
formance and usability issues. Therefore, MapReduce-based
systems are beyond the scope of this paper.

9. CONCLUSION
We introduce a parallel system called GraphSlice for large-

scale graph processing on commodity clusters and cloud
computing infrastructures. The major contribution of this
system is enabling high parallelism and scale-out capabil-
ity for graph processing in real-world applications, where
graphs typically have power law degree distributions. The
other usability aspects such as the easy-to-use API, fault-
tolenrance, recovery and portability make GraphSlice easily
configurable and usable on an existing Hadoop cluster. The
performance, scalability and scale-out capability of Graph-
Slice have been experimentally demonstrated, which is able
to meet the requirements of large-scale graph processing.
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