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Abstract

We propose a method that learns a cross-
lingual projection of word representations
from one language into another. Our
method utilizes translatable context pairs
as bonus terms of the objective function.
In the experiments, our method outper-
formed existing methods in three language
pairs, (English, Spanish), (Japanese, Chi-
nese) and (English, Japanese), without us-
ing any additional supervisions.

1 Introduction

Vector-based representations of word meanings,
hereafter word vectors, have been widely used in
a variety of NLP applications including synonym
detection (Baroni et al., 2014), paraphrase detec-
tion (Erk and Padó, 2008), and dialogue analy-
sis (Kalchbrenner and Blunsom, 2013). The ba-
sic idea behind those representation methods is
the distributional hypothesis (Harris, 1954; Firth,
1957) that similar words are likely to co-occur
with similar context words.

A problem with the word vectors is that they
are not meant for capturing the similarity between
words in different languages, i.e., translation pairs
such as “gato” and “cat.” The meaning represen-
tations of such word pairs are usually dissimilar,
because the vast majority of the context words are
from the same language as the target words (e.g.,
Spanish for “gato” and English for “cat”). This
prevents using word vectors in multi-lingual appli-
cations such as cross-lingual information retrieval
and machine translation.

Several approaches have been made so far to
address this problem (Fung, 1998; Klementiev et

al., 2012; Mikolov et al., 2013b). In particular,
Mikolov et al. (2013b) recently explored learning
a linear transformation between word vectors of
different languages from a small amount of train-
ing data, i.e., a set of bilingual word pairs.

This study explores incorporating prior knowl-
edge about the correspondence between dimen-
sions of word vectors to learn more accurate trans-
formation, when using count-based word vectors
(Baroni et al., 2014). Since the dimensions of
count-based word vectors are explicitly associated
with context words, we can partially be aware of
the cross-lingual correspondence between the di-
mensions of word vectors by diverting the training
data. Also, word surface forms present noisy yet
useful clues on the correspondence when targeting
the language pairs that have exchanged their vo-
cabulary (e.g., “cocktail” in English and “cóctel”
in Spanish). Although apparently useful, how to
exploit such knowledge within the learning frame-
work has not been addressed so far.

We evaluated the proposed method in three lan-
guage pairs. Compared with baselines including
a method that uses vectors learned by neural net-
works, our method gave better results.

2 Related Work

Neural networks (Mikolov et al., 2013a; Bengio
et al., 2003) have recently gained much attention
as a way of inducing word vectors. Although the
scope of our study is currently limited to the count-
based word vectors, our experiment demonstrated
that the proposed method performs significantly
better than strong baselines including neural net-
works. This suggests that count-based word vec-
tors have a great advantage when learning a cross-
lingual projection. As a future work, we are also



interested in extending the method presented here
to apply word vectors learned by neural networks.

There are also methods that directly inducing
meaning representations shared by different lan-
guages (Klementiev et al., 2012; Lauly et al.,
2014; Xiao and Guo, 2014; Hermann and Blun-
som, 2014; Faruqui and Dyer, 2014; Gouws and
Søgaard, 2015), rather than learning transforma-
tion between different languages (Fung, 1998;
Mikolov et al., 2013b; Dinu and Baroni, 2014).
However, the former approach is unable to handle
words not appearing in the training data, unlike the
latter approach.

3 Proposed Method

3.1 Learning cross-lingual projection

We begin by introducing the previous method of
learning a linear transformation from word vectors
in one language into another, which are hereafter
referred to as source and target language.

Suppose we have a training data of n examples
{(x1, z1), (x2, z2), . . . (xn, zn)}, where xi is the
count-based vector representation of a word in the
source language (e.g., “gato”), and zi is the word
vector of its translation in the target language (e.g.,
“cat”). Then, we seek for a translation matrix, W ,
such that Wxi approximates zi, by solving the
following optimization problem.

W ?=argmin
W

n∑
i=1

‖Wxi − zi‖2 +
λ

2
‖W ‖2.(1)

The second term is the L2 regularizer. Although
the regularization term does not appear in the orig-
inal formalization (Mikolov et al., 2013b), we take
this as a starting point of our investigation because
the regularizer can prevent over-fitting and gener-
ally helps learn better models.

3.2 Exploiting translatable context pairs

Within the learning framework above, we propose
exploiting the fact that dimensions of count-based
word vectors are associated with context words,
and some dimensions in the source language are
translations of those in the target language.

For illustration purpose, suppose count-based
word vectors of Spanish and English. The Span-
ish word vectors would have dimensions associ-
ated with context words such as “amigo,” “comer,”
“importante,” while the dimensions of the English
word vectors are associated with “eat,” “run,”

“small” and “importance,” and so on. Since,
for example, “friend” is a English translation of
“amigo,” the Spanish dimension associated with
“amigo” is likely to be mapped to the English di-
mension associated with “friend.” Such knowl-
edge about the cross-lingual correspondence be-
tween dimensions is considered beneficial for
learning accurate translation matrix.

We take two approaches to obtaining such cor-
respondence. Firstly, since we have already as-
sumed that a small amount of training data is avail-
able for training the translation matrix, it can also
be used for finding the correspondence between
dimensions (referred to as Dtrain). Note that it is
natural that some words in a language have many
translations in another language. Thus, for ex-
ample, Dtrain may include (“amigo”, “friend”),
(“amigo”, “fan”) and (“amigo”, “supporter”).

Secondly, since languages have evolved over
the years while often deriving or borrowing words
(or concepts) from those in other languages, those
words have similar or even the same spelling.
We take advantage of this to find the correspon-
dence between dimensions. We specifically define
function DIST(r, s) that measures the surface-level
similarity, and regard all context word pairs (r, s)
having smaller distance than a threshold1 as trans-
latable ones (referred to as Dsim).

DIST(r, s)=
Levenshtein(r, s)

min(len(r), len(s))

where function Levenshtein(r, s) represents the
Levenshtein distance between the two words, and
len(r) represents the length of the word.

3.3 New objective function
We incorporate the knowledge about the corre-
spondence between the dimensions into the learn-
ing framework. Since the correspondence ob-
tained by the methods presented above can be
noisy, we want to treat it as a soft constraint. This
consideration leads us to develop the following
new objective function:

W ?=argmin
W

n∑
i=1

‖Wxi − zi‖2 +
λ

2
‖W ‖2

−βtrain
∑

(j,k)∈Dtrain

wjk − βsim
∑

(j,k)∈Dsim

wjk.

The third and fourth terms are newly added to
guide the learning process to strengthen wjk when

1The threshold was fixed to 0.5.



k-th dimension in the source language corre-
sponds to j-th dimension in the target language.
Dtrain andDsim are sets of dimension pairs found
by the two methods. βtrain and βsim are param-
eters representing the strength of the new terms,
and are tuned on held-out development data.

3.4 Optimization
We use Pegasos algorithm (Shalev-Shwartz et al.,
2011), an instance of the stochastic gradient de-
scent (Bottou, 2004), to optimize the new objec-
tive. Given τ -th learning sample (xτ , zτ ), we up-
date translation matrix W as follows:

W←W − ητ∇Eτ (W )

where ητ represents the learning rate and is set to
ητ = 1

λτ , and ∇Eτ (W ) is the gradient which is
calculated from τ -th sample (xτ , zτ ):

2(Wxτ − zτ )x
T
τ − βtrainA− βsimB + λW .

A and B are gradients corresponding to the two
new terms. A is a matrix in which ajk = 1 if
(j, k) ∈ Dtrain otherwise 0. B is defined simi-
larly.

4 Experiments

We evaluate our method on translation among
word vectors in four languages: English (En),
Spanish (Es), Japanese (Jp) and Chinese (Cn). We
have chosen three language pairs: (En, Es), (Jp,
Cn) and (En, Jp), for the translation, so that we
can examine the impact of each type of translat-
able context pairs integrated into the learning ob-
jective.

4.1 Setup
First, we prepared source text in the four lan-
guages from Wikipedia2 dumps following (Baroni
et al., 2014). We extracted plain text from the
XML dumps by using wp2txt.3 Since words are
concatenated in Japanese and Chinese, we used
MeCab4 and Stanford Word Segmenter5 to tok-
enize the text. Since inflection occurs in English,
Spanish, and Japanese, we used Stanford POS tag-
ger,6 Pattern,7 and MeCab to lemmatize the text.

2http://dumps.wikimedia.org/
3https://github.com/yohasebe/wp2txt/
4http://taku910.github.io/mecab/
5http://nlp.stanford.edu/software/segmenter.shtml
6http://nlp.stanford.edu/software/tagger.shtml
7http://www.clips.ua.ac.be/pages/pattern

Next, we induced count-based word vectors
from the obtained text. We considered context
windows of five words to both sides of the tar-
get word. The function words are then excluded
from the extracted context words. Since the count
vectors are very high-dimensional and sparse, we
selected top-10k frequent words as contexts words
(in other words, the number of dimensions of the
word vectors). We converted the counts into pos-
itive point-wise mutual information (Church and
Hanks, 1990) and normalized the resulting vectors
to remove the bias that is introduced by the differ-
ence of the word frequency.

Then, we compiled a seed bilingual dictionary
(a set of bilingual word pairs) for each language
pair that is used to learn and evaluate the transla-
tion matrix. We utilized cross-lingual synsets in
the Open Multilingual Wordnet8 to obtain bilin-
gual pairs.

Since our method aims to be used in expand-
ing bilingual dictionaries, we designed datasets as-
suming such a situation. Considering that more
frequent words are likely to be registered in a dic-
tionary, we sorted words in the source language
by frequency and used the top-11k words and
their translations in the target language as a train-
ing/development data, and used the subsequent 1k
words and their translations as a test data.

We have compared our method with the follow-
ing three methods:

Baseline learns a translation matrix using Eq. 1
for the same count-based word vectors as the
proposed method. Comparison between the
proposed method and this method reveals the
impact of incorporating the cross-lingual cor-
respondences between dimensions.

CBOW learns a translation matrix using Eq. 1
for word vectors learned by a neural net-
work (specifically, continuous bag-of-words
(CBOW)) (Mikolov et al., 2013b). Compari-
son between this method and the above base-
line reveals the impact of the vector repre-
sentation. Note that the CBOW-based word
vectors take rare context words as well as
the top-10k frequent words into account. We
used word2vec9 to obtain the vectors for each
language.10 Since Mikolov et al. (2013b)

8http://compling.hss.ntu.edu.sg/omw/
9https://code.google.com/p/word2vec/

10The threshold of sub-sampling of words was set to 1e-3
to reduce the effect of very frequent words, e.g., “a” or “the.”



Table 1: Experimental results: the accuracy of the translation.
Testset Baseline CBOW Direct Mapping Proposedw/o surface Proposed

P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5
Es→En 0.1% 0.5% 7.5% 22.0% 45.7% 61.1% 46.6% 62.4% 54.7% 67.6%
Es←En 0.1% 0.6% 7.1% 18.9% 11.9% 26.1% 28.7% 45.7% 31.3% 49.6%
Jp →Cn 0.6% 1.6% 5.4% 13.8% 9.3% 22.2% 11.1% 26.2% 15.5% 34.0%
Jp ←Cn 0.3% 1.2% 2.9% 11.3% 11.6% 26.8% 7.8% 21.6% 13.1% 27.9%
En→ Jp 0.3% 1.1% 4.9% 13.3% 5.4% 13.9% 18.5% 36.4% 19.3% 37.1%
En← Jp 0.2% 1.0% 6.5% 19.1% 22.3% 37.4% 32.3% 51.0% 32.5% 51.9%

reported the accurate translation can be ob-
tained when the vectors in the source lan-
guage is 2-4x larger than that in the target
language, we prepared m-dimensional (m =
100, 200, 300) vectors for the target language
and n-dimensional (n = 2m, 3m, 4m) vec-
tors for the source language, and optimized
their combinations on the development data.

Direct Mapping exploits the training data to map
each dimension in a word vector in the source
language to the corresponding dimension in
a word vector in the target language, refer-
ring to the bilingual pairs in the training data
(Fung, 1998). To deal with words that have
more than one translation, we weighted each
translation by a reciprocal rank of its fre-
quency among the translations in the target
language, as in (Prochasson et al., 2009).

Note that all methods, including the proposed
methods, use the same amount of supervision
(training data) and thereby they are completely
comparable with each other.

Evaluation procedure For each word vector in
the source language, we translate it into the target
language and evaluate the quality of the translation
as in (Mikolov et al., 2013b): i) measure the cosine
similarity between the resulting word vector and
all the vectors in the test data (in the target lan-
guage), ii) next choose the top-n (n = 1, 5) word
vectors that have the highest similarity against the
resulting vector, and iii) then examine whether the
chosen vectors include the correct one.

4.2 Results
Table 1 shows results of the translation between
word vectors in each language pair. Proposed sig-
nificantly improved the translation quality against
Baseline, and performed the best among all of
the methods. Although the use of CBOW-based
word vectors (CBOW) has improved the trans-
lation quality against Baseline, the performance

Figure 1: The impact of the size of training data
(Es→ En).

gain is smaller than that obtained by our new ob-
jective. Proposedw/o surface uses only the training
data to find translatable context pairs by setting
βsim = 0. Thus, its advantage over Direct Map-
ping confirms the importance of learning a trans-
lation matrix. In addition, the greater advantage of
Proposed over Proposedw/o surface in the transla-
tion between (En, Es) or (Jp, Cn) conforms to our
expectation that surface-level similarity is more
useful for translation between the language pairs
which have often exchanged their vocabulary.

Figure 1 shows P@1 (Es→ En) plotted against
the size of training data. Remember that the train-
ing data is not only used to learn a translation ma-
trix in the methods other than Direct Mapping but
also is used to map dimensions in Direct Mapping
and the proposed methods. Proposed performs
the best among all methods regardless the size of
training data. Comparison between Direct Map-
ping and Proposedw/o surface reveals that learning
a translation matrix is not always effective when
the size of the training data is small, since it may
be suffered from over-fitting (the size of the trans-
lation matrix is too large for the size of training
data). We can see that surface-level similarity is
beneficial especially when the size of training data
is small.



5 Conclusion

We have proposed the use of prior knowledge
in accurately translating word vectors. We have
specifically exploited two types of translatable
context pairs, which are taken from the training
data and guessed by surface-level similarity, to de-
sign a new objective function in learning the trans-
lation matrix. Experimental results confirmed that
our method significantly improved the translation
among word vectors in four languages, and the ad-
vantage was greater than that obtained by the use
of a word vector learned by a neural network.
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