
Trace System of iSCSI Storage Access ver. 773

Saneyasu Yamaguchi
Institute of Industrial Science,

The University of Tokyo
4-6-1 Komaba Meguro-ku,

Tokyo 153-8505, Japan
sane@tkl.iis.u-tokyo.ac.jp

Masato Oguchi
Department of

Information Sciences,
Ochanomizu University

2-1-1 Otsuka Bunkyo-ku,
Tokyo 112-8610, Japan
oguchi@computer.org

Masaru Kitsuregawa
Institute of Industrial Science,

The University of Tokyo
4-6-1 Komaba Meguro-ku,

Tokyo 153-8505, Japan
kitsure@tkl.iis.u-tokyo.ac.jp

Abstract

In this paper, an IP-SAN access trace method is proposed
and its implementation is presented. IP-SAN and iSCSI are
expected to remedy problems of Fibre Channel (FC)-based
SAN. Because servers and storage cooperatively work with
communications through TCP/IP layer in IP-SAN system,
an integrated analysis of both sides is considered to be sig-
nificant for achieving better performance.

Our proposed system can precisely point out the cause
of performance degradation when IP-SAN is used for a re-
mote storage access. In the experiment of parallel iSCSI ac-
cess in a long-delayed network, the total performance is
limited by a parameter in an implementation of the SCSI
layer in the iSCSI protocol stack. Based on the result ob-
tained with our IP-SAN access trace system, the parame-
ter in the layer is modified. As a result, four times perfor-
mance improvement is achieved compared with the default
value case. Thus it is effective to monitor all the layers in
the iSCSI protocol stack and execute an integrated analy-
sis, using our system.

1. Introduction

Recently, storage management cost is one of the most
important issues of computer systems [12, 13]. Since pe-
riodical backup is required for management of storage, if
the storage is distributed among many servers, its manage-
ment cost is extremely high. Storage Area Network (SAN),
a high speed network for storage, is introduced to resolve
this issue. Each server is connected to consolidated stor-
age through SAN. Management cost can be significantly
decreased by the consolidation of storage, thus SAN has al-
ready become an important tool in the business field. How-
ever, current generation SAN based on FC [6, 7] has some
demerits; for example, (1) the number of FC engineers is

small, (2) installation cost of FC-SAN is high, (3) FC has
distance limitation, (4) the interoperability of FC is not nec-
essarily high.

The next generation SAN based on IP (IP-SAN) is ex-
pected to remedy these defects. IP-SAN employs commod-
ity technologies for a network infrastructure, including Eth-
ernet and TCP/IP. One of the promising standard data trans-
fer protocol of IP-SAN is iSCSI [2, 18], which was ap-
proved by IETF [1] in February 2003 [4]. IP-SAN has fol-
lowing advantages over FC-SAN [8, 16, 17]: (1) the num-
ber of IP engineers is large, (2) initial cost of IP-SAN is low,
(3) IP has no distance limitation, (4) Ethernet and IP have no
interoperability problem. However, the problem of low per-
formance and high CPU utilization is pointed out as demer-
its of IP-SAN [16, 17, 20]. Thus improving its performance
and keeping CPU utilization at low rate [11, 16] are criti-
cal issues for IP-SAN.

We evaluate the performance issue of iSCSI in this pa-
per. As an instance of evaluation, an iSCSI access in a
long-delayed network is investigated. This is because per-
formance decline caused by network latency is pointed out
in IP-SAN [13, 15], while iSCSI achieves almost compara-
ble performance with that of FC-SAN in a LAN environ-
ment [8, 10]. In addition, although a SCSI access over a
long-delayed network is an important case, which can be
realized since iSCSI has no distance limit, an iSCSI access
over a long-delayed network is not discussed enough.

Studies for CPU utilization during communications are
found in the literature [9, 11, 16, 17, 19]. We do not discuss
hardware supported TCP processing in this paper, because
[8, 16, 17] concluded that although such hardware is effec-
tive for reducing CPU utilization, it does not achieve bet-
ter performance than that of the software-based approach.
We also evaluated the hardware supported TCP processing
by ourselves and obtained a similar result: In our exper-
iments, TCP/IP communication throughput and CPU uti-
lization with software TCP/IP implementation were 70.4

[MB/sec] and 27.5 %, respectively. Throughput and CPU
utilization with TCP/IP offload engine (TOE) were 63.1
[MB/sec] and 10.4%, respectively.

An iSCSI storage access is composed of many proto-
cols, that is “SCSI over iSCSI over TCP/IP over Ether-
net”. The protocol stack of iSCSI is complicated and the
storage access is executed through all these layers, so that
any layers can be a performance bottleneck of end-to-end
performance communication. Consequently, all these lay-
ers should be observed for improving iSCSI storage access
performance. In addition, integrated analysis of the behav-
ior of both server computers and storage appliances is im-
portant because iSCSI is composed of the protocol stack in
both sides. In IP-SAN system, although server computers
and storage appliances work cooperatively via iSCSI proto-
col, since they have their own OSs, they are monitored sep-
arately in general. However, it is difficult to understand the
whole system’s behavior by monitoring only one side, thus
integrated analysis is required.

In this paper, we propose an “IP-SAN trace system”,
which can monitor all the layers in IP-SAN protocol stack
and show the integrated analysis of the whole IP-SAN sys-
tem. Next, we apply the proposed system to parallel iSCSI
accesses in a long-delayed network, and demonstrate the
system can point out the cause of performance decline.
In our experiment, significant iSCSI performance improve-
ment is achieved using the system.

The rest of this paper is organized as follows. Section 2
provides a brief explanation of iSCSI. We propose “IP-SAN
Trace System” in Section 3, and present an actual adapta-
tion of the system in Section 4. Section 5 introduces related
works. In Section 6, we conclude this paper.

2. iSCSI

In this section, an overview of iSCSI and IP-SAN is
shown.

iSCSI [2, 18] is a block level data transfer protocol for
IP-SAN. It was approved by IETF [1] in February 2003.
In an iSCSI storage access, the SCSI protocol is encapsu-
lated into the TCP/IP protocol and transferred over TCP/IP
network for accessing remote SCSI storage. The protocol
stack of an iSCSI storage access is “SCSI over iSCSI over
TCP/IP over Ethernet”, which is shown in Figure 1 (“Mon-
itor” in the figure will be introduced in Section 3).

I/O requests issued by application programs in server
computers are transferred through either files system or
block device or character device at first, then through the
SCSI layer, the iSCSI layer, the TCP/IP layer, and the Ether-
net layer in a server computer. The requests are transmitted
to storage appliances via Ethernet, and transferred through
the Ethernet layer, the TCP/IP layer, the iSCSI layer and
the SCSI layer, and finally received by the storage device.

Figure 1. iSCSI Protocol Stack and Analysis
System

Responses for the I/O requests are transferred to the appli-
cations through the same path inversely. Any of these lay-
ers may be the cause of end-to-end performance decline.
For example, iSCSI protocol defines “MaxRecvDataSeg-
mentLength”, “MaxBurstLength” and “FirstBurstLength”,
the TCP/IP layer restricts output performances according to
its flow controlling algorithm [23], and the number of Eth-
ernet layer’s packets descriptor is limited [23]. They can be
significant issues of performance decline.

As we mentioned, an iSCSI storage access is executed
through all these layers. However, because these layers are
designed not for iSCSI storage accesses but for general pur-
poses, some functions of these layers may degrade iSCSI
performance. Consequently, detailed analyses of all layers
are required for improving iSCSI performance. For exam-
ple, we have already found that TCP’s Nagle’s algorithm
and delayed ack algorithm severely decrease iSCSI perfor-
mance [22]. A large block are divided into multiple small
blocks by OS and they are synchronized in the SCSI layer,
which severely decrease iSCSI performances [14, 21]. And
the combination of TCP’s flow controlling algorithm and
SCSI synchronization heavily declines iSCSI performances
[23].

3. IP-SAN Trace System

In this section, we present detailed explanation of the
proposed “IP-SAN Trace System”.

We have implemented a monitoring system, shown in
Figure 1, which monitors all the layers in IP-SAN. We have
also constructed an integrated trace system which compre-
hensively analyzes logs recorded in both server computes
and storage appliances. For our experiments, open source
codes of an OS implementation and an iSCSI driver are

Figure 2. iSCSI Access Trace

used. We have inserted monitoring codes into these imple-
mentations for recording IP-SAN system’s behavior. Linux
(kernel version 2.4.18) is adopted as an OS implementation
and iSCSI reference implementation (version 1.5.02) [3] de-
veloped by University of New Hampshire’s InterOperabil-
ity Lab [5] (we call this implementation “UNH”) is used as
an iSCSI driver.

Figure 2 shows an example of a visualized iSCSI trace
obtained by the proposed trace system. In the figure, Y-
Axis stands for the state transition of iSCSI storage access.
Each label beside Y-Axis indicates each layer in the iSCSI
protocol stack. Meaning of these labels (Init syscall,
Init raw dev and so on) are; 1) system calls issued by
applications, 2) the raw device layer, 3) the SCSI layer, 4)
the iSCSI layer, 5) the TCP/IP layer, 6) Packet transmis-
sion by the Ethernet layer, 7) the TCP/IP layer, 8) the iSCSI
layer, 9) the SCSI layer, 10) HDD device access from the
top to the bottom respectively. The labels from 1) to 5) be-
long to processes in server computers (iSCSI initiator) and
the labels from 7) to 10) belong to processes in storage ap-
pliance (iSCSI target). In this case, we have used raw device
mode instead of file system mode in the iSCSI initiator. The
iSCSI target works with “File Mode” of UNH implementa-
tion1, thus the trace in the lowest layer is not that of HDD
device access but that of file access in the target OS’s file
system. X-Axis stands for the time of each trace.

The figure helps to understand IP-SAN’s behavior, for
example, which process in iSCSI protocol stack dominantly
consumes time, in which layer processes are waiting for I/O
responses, and a block of the issued I/O requests are divided
into small blocks by some layers. In the case of this fig-
ure, an application issues system calls read() with 2MB

1 UNH implementation can export a local file to initiator as a storage
image.

Figure 3. Visualized Trace of Parallel iSCSI
Access (default): A

block size. The raw device layer divides it into 4 blocks
of 512KB, then issues 512KB I/O requests one by one to
the lower layer (the SCSI layer), finally it returns I/O re-
sponses to the upper layer (the system call layer) after com-
pleting 4 requests. After the SCSI layer receives 512KB I/O
requests, it divides the requests into multiple 32KB SCSI
read commands and transfers them to the lower layer (the
iSCSI layer). iSCSI tx thread is activated when requests
are sent from the SCSI layer, and the iSCSI layer transferred
the requests to the TCP/IP layer. The TCP layer sends data
segments to the Ethernet layer, and the Ethernet layer sends
them to the storage appliance (target computer).

Figure 3 shows an example of a visualized traces in the
case of parallel iSCSI accesses (the area surrounded with
the broken line will be mentioned in Section 4.3.2). Coop-
eration of the initiator and the target can be understood eas-
ily with this figure.

The proposed system monitors the IP-SAN’s behavior
by modifying the source codes, thus the system can observe
the behavior of the kernel and the iSCSI driver at source
code level. For example, this system records which way is
selected in a branch like Figure 4. These figure will be men-
tioned in Section 4.3 again.

As shown above, the whole IP-SAN’s behavior can be
easily understood with the trace system.

4. Trace of Parallel iSCSI Accesses in Long-
Delayed Network

In this section, we present how the proposed “IP-SAN
access trace system” is actually applied to IP-SAN. In addi-

Issuing

SCSI command

host_busy>=can_queue

host_busy< can_queue

851 void scsi_request_fn(request_queue_t * q)

852 {

872 while (1 == 1) {

895 if ((SHpnt->can_queue > 0

&& (atomic_read(&SHpnt->host_busy) >= SHpnt->can_queue))

896 || (SHpnt->host_blocked)

897 || (SHpnt->host_self_blocked)) {

911 break;

912 } else {

914 atomic_inc(&SHpnt->host_busy);

916 }

1015 if (SCpnt->request.cmd != SPECIAL) {

1046 if (!STpnt->init_command(SCpnt)) {

1064 }

1065 }

1102 }

1103 }

�drivers/scsi/scsi_lib.c�

Figure 4. Trance of Linux SCSI Layer:
”drivers/scsi/scsi lib.c”

tion, we show that the system can point out the cause of per-
formance decline. The proposed system is applied to a short
block of parallel iSCSI accesses in a long-delayed network
environment. It points out which layers restrict the number
of parallel processing.

4.1. Experimental Setup

We have constructed a long-delayed IP-SAN environ-
ment. A network delay emulator is inserted between an
iSCSI initiator (server computer) and an iSCSI target (stor-
age appliance). The network delay emulator is constructed
with FreeBSD Dummynet. The initiator and the target es-
tablish TCP connection over the delay emulator and an
iSCSI connection is established over this TCP connection.

The UNH iSCSI implementation (refer to Section 3)
is employed as iSCSI initiator and target implementation.
Since the iSCSI target works with “File Mode”, the follow-
ing experiments do not include actual HDD device accesses.
One way delay time is 16 ms.

The initiator, the Dummynet, and the target are built with
PCs. Linux OS is installed to both initiator and target PCs.
The detailed specifications of the initiator and the target PC
are as follows: CPU Pentium4 2.80GHz, Main Memory
1GB, OS Linux 2.4.18-3, NIC Gigabit Ethernet Card Intel
PRO/1000 XT Server Adapter. The detailed specifications
of Dummynet PC are as follows: CPU Pentium4 1.5GHz,
Main Memory 128MB, OS FreeBSD 4.5-RELEASE, NIC
Intel PRO/1000 XT Server Adapter×2.

We have executed the following benchmark in this ex-
perimental environment. The benchmark software iterates
issuing system call read() to raw device which is es-
tablished with an iSCSI connection. The block size of the
read requests is 512 Bytes. SCSI Logical Block Addresses

0

50

100

150

200

250

0 2 4 6 8 10

Number of Processes []

T
o
ta

l
T

ra
n
sa

ct
io

n
 [
T

ra
n
s/

se
c]

can queue=2 (default)

can queue=30

Figure 5. Experimental Result: Total perfor-
mance of parallel I/O, 16ms

(LBAs) to be read is specified sequentially. The addresses
do not have an impact on experimental performance be-
cause of target side file system cache (which will be men-
tioned later in this section). We executed multiple processes
simultaneously and measured total performance of all pro-
cesses. Each benchmark process iterates 2048 times system
call read().

In this environment, the issued system calls are always
transmitted to the SCSI layer in the target side without any
cache hit in the initiator side, because the benchmark pro-
cesses issue system calls to the raw device. These experi-
ments are executed when target storage image in file (the
iSCSI target is executed with “File Mode”) is stored in file
system’s cache on the target (worm cache). Consequently,
all read requests issued from the initiator reach the SCSI
layer in the target side and hit file system cache in the tar-
get side, thus it does not include HDD device access. We
have employed the file mode iSCSI target in order to iso-
late the efficiency of the behavior of IP-SAN system from
the behavior of the HDD device.

Experiments in Section 4.2 and Section 4.4 are exe-
cuted without the monitoring system, thus the performances
shown in Figure 5 are not effected by the monitoring sys-
tem.

4.2. Experimental Results

The experimental results with default setup,
which does not have any tuning, are shown as
“can queue=2(default)” in Figure 5. X-Axis in
the figure stands for the number of processes executed si-
multaneously. Y-Axis stands for the number of total trans-
actions of all processes per second. The number of trans-
actions means the number of 512 Bytes system calls
read().

In the case of a single process, the transaction perfor-
mance is 31.0 [Trans/sec]. This nearly equals to the recipro-
cal number of Round Trip Time (RTT), 32 [ms/transaction]
in this experiment. The result is reasonable in this case.
In the case of two concurrent processes, the total transac-
tion performance is 62.0 [Trans/sec]. Nearly doubled per-
formance improvement is achieved using two processes.
This is also reasonable because short block accesses in a
long-delayed network do not consume many computer re-
sources, for instance the resources of network, CPU, and
memory.

In the cases of more than three concurrent processes, the
performance improvement is not obtained compared with
that of two processes case. These results imply that a layer
in iSCSI protocol stack restricts the number of I/O requests
processed concurrently to two, which is a critical cause to
hinder the improvement of total performance.

4.3. Trace Analysis of Parallel iSCSI Access

In this subsection, we present trace analyses of paral-
lel accesses and demonstrate that the proposed system can
point out the cause of performance decline.

4.3.1. Trace of I/O requests Figure 3 is obtained by ana-
lyzing traced logs of the experiment in Section 4.1 and Sec-
tion 4.2. The number of processes is three. The trace lines of
“Initiator Thread” are drawn discontinuously in the figure.
This is because context switches are issued by OS’s pro-
cess scheduler, and the processes suspended and resumed
on these lines. Plots at 0.010 [sec] and 0.040 [sec] also in-
dicate context switches by the process scheduler. Although
the scheduler allocates CPU resources to the processes at
these points, the processes are waiting for I/O response at
that time, thus they immediately invoke context switches
and release CPU resources. According to the figure, only
two I/O requests are sent from the initiator to the target
within RTT (32ms). This indicates the number of I/O re-
quests processed concurrently is restricted in the initiator
side.

4.3.2. Analysis of the Trace across Multiple Layers An
analysis of the trace to determine a cause of the restriction
for parallel processing is shown in this subsection. The trace
is analyzed across multiple layers of iSCSI at first.

Figure 6 is obtained by magnifying the area surrounded
with the dotted line in Figure 3. Figure 7 shows magnified
view of the area surrounded with the dotted line in Figure 6.

In these figures, three processes running concurrently are
drawn, labeled as “I/O(A)”, “I/O(B)”, and “I/O(C)”. Traced
lines are shown discontinuously like Figure 3. The lines ter-
minate when context switch occurs and processes resume.
Figure 6 shows that I/O(A), (B), and (C) issue a system call

to Network
to Network

STOP

Figure 6. Visualized Trace of Parallel iSCSI
Access (default): B

to Network

STOP

Figure 7. Visualized Trace of Parallel iSCSI
Access (default): C

at 0.000 [sec], 0.015 [sec] and 0.015[sec] respectively. Ac-
cording to the figure, three system calls can be issued within
one RTT, receiving no response from the target.

The trace of “I/O(A)” shows that the request by “I/O(A)”
is transferred through the raw device layer, the SCSI layer,
and the iSCSI layer, then the iSCSI layer issues a request to
the TCP/IP layer. Figure 7 shows that “I/O(C)” issues a sys-
tem call at 0.01485 [sec], and the request is transferred up
to the iSCSI layer and sent to the network.

On the other hand, in the case of “I/O(B)”, the issued re-

quest is not sent to the iSCSI layer. A system call is issued
by “I/O(B)” at 0.01494 [sec], and the raw device layer also
issues the I/O request to the lower layer (the SCSI layer) af-
ter the issue of the system call. However, the SCSI layer
returns without issuing a SCSI command even though the
layer has received the request. This result indicates that the
maximum number of SCSI commands issued simultane-
ously is restricted to two in the SCSI layer, which is con-
sidered to be the cause of the upper limit of total perfor-
mance.

4.3.3. Analysis of the Trace inside a Layer The trace
is analyzed more precisely, focusing on a particular layer,
which is determined in the previous analysis. The proposed
system can trace the behavior inside an IP-SAN system in
source code level.

The branch point of the first two requests
(I/O(A) and (C)) and the third request (I/O(B)) is in
“drivers/scsi/scsi lib.c” in the implementa-
tion of Linux SCSI layer, as shown in Figure 4. This part in
Linux SCSI implementation compares “host busy” 2, the
number of active commands and “can queue” 3, the max-
imum number of SCSI commands the lower layer (iSCSI
driver implementation in our case) can receive simulta-
neously. The default value of “can queue” in the UNH
iSCSI implementation is 2.

At the beginning, “host busy” is 0. In the cases of
the first two I/O requests (I/O(A) and (C)), “host busy”
are 0 and 1 respectively, thus the route labeled as
“host busy<can queue” in the figure is traced. In this
route, incrementing “host busy” at line 914 and issu-
ing a SCSI command at line 1046 are recorded. In the case
of the third I/O request (I/O(B)), “host busy” was 2, thus
the route labeled as “host busy>=can queue” in the
figure is traced. In this route, a SCSI command is not is-
sued as shown in the figure.

These analyses of the SCSI layer, which are determined
in the proposed analysis system, point out that the upper
limit of the total performance of parallel I/O requests is
decided by the iSCSI implementation’s default value of
“can queue”.

4.4. Resolving the Pointed Out Issue and Perfor-
mance Improvement

We measure the total performance of concurrent
iSCSI accesses with “can queue” = 30 and ob-
tained “can queue=30” in Figure 5. The total perfor-

2 “host busy” is explained as “commands actually ac-
tive on low-level” in Linux SCSI implementation
“drivers/scsi/hosts.h”.

3 “can queue” is explained as “max no. of simultaneously active
SCSI commands driver can accept” in the UNH iSCSI implementa-
tion “initiator/iscsi initiator.c”.

mance of all processes increases linearly from single
process to eight processes. Four times performance im-
provement is achieved when the number of processes
is greater than 8 by removing the cause of the perfor-
mance decline pointed out by the proposed analysis sys-
tem.

As we have shown, the integrated analysis of both server
computers and storage appliances, monitoring all layers
from application’s system calls to HDD device access in
the iSCSI protocol stack, is an effective method for improv-
ing iSCSI performance. We have demonstrated it by apply-
ing the system to an actual IP-SAN system so that the pro-
posed system can properly point out the cause of perfor-
mance limit, and the performance is significantly improved
by resolving the pointed out issue.

5. Related Work

Some studies present performance evaluation of IP-SAN
using iSCSI [8, 10, 13, 15, 16, 17].

Ng et al. [13] is a pioneering work. They early pre-
sented detailed performance evaluations and discussions of
SCSI over IP. They showed experimental results of both
microbenchmarks and macrobenchmarks, and showed re-
sults in various network delays and congestion environ-
ment. Their analysis of identifying bottlenecks includes dis-
cussions of file system, OS, TCP/IP and SCSI. They sug-
gested that caching in the initiator side is effective in in-
creasing SCSI over IP performance.

Sarkar et al. [17] prevented iSCSI performance evalu-
ation. The study especially paid attention to CPU utiliza-
tion of iSCSI storage access. It is very important work be-
cause high CPU utilization is one the most essential is-
sue of IP-SAN. They experimented with performances of
iSCSI storage accesses with various block sizes in a LAN
environment. The work demonstrated that TCP/IP process-
ing consumed much CPU resources. They showed the CPU
utilization reached 100 % at the peak throughput, 64 KB
block size. Sarkar et al. also published the study for effect
of a current generation of TOE and a current generation of
iSCSI HBA in [16]. It is also important work because us-
ing a TOE and an iSCSI HBA attract attention for resolv-
ing the iSCSI’s CPU utilization issue. In order to compare
iSCSI performances with a software approach, an approach
using a representative TOE and an approach using a repre-
sentative HBA approach, they executed micro-benchmarks
and macro-benchmarks with various block size, with var-
ious I/O and with various CPU frequencies. They showed
hardware approaches (TOE and HBA) were effective in de-
creasing CPU utilization but hardware approaches were not
effective in improving iSCSI performances.

Fujita et al. [20] presented an analysis of iSCSI targets.
The work gave not only performance evaluations but also

discussions including the iSCSI target implementation and
kernel implementation. This discussion is also mention be-
haviors inside IP-SAN system.

6. Conclusion

In this paper, we proposed an integrated IP-SAN trace
method, implemented a system based on the idea, and
demonstrated that the system could precisely point out the
cause of performance decline. It was confirmed that iSCSI
performance could be significantly increased by resolving
the pointed out issue. In the case of our experiments, four
times performance improvement has been obtained. Thus
we found that monitoring all the layers in the iSCSI pro-
tocol stack and executing an integrated analysis including
both server computers and storage appliances are effective
for improving iSCSI performance.

We plan to explore the following matters as a future
work. In this paper, we selected raw device as an upper layer
of the SCSI layer. The iSCSI target driver works with “File
Mode”. We plan to analyze IP-SAN’s behavior using a file
system and actual HDD devices. We also plan to evaluate an
overhead of the proposed analysis system. Since the cause
of performance upper limit which restricts up to eight paral-
lel processes is not mentioned in this paper, we will analyze
and determine the cause.

References

[1] IETF Home Page. http://www.ietf.org/ .
[2] IETF IPS.

http://www.ietf.org/html.charters/ips-
charter.html .

[3] iSCSI reference implementation.
http://www.iol.unh.edu/consortiums/
iscsi/downloads.html .

[4] Storage Networking Industry Assocation.
http://www.snia.org/ .

[5] University of new hampshire interoperability lab.
http://www.iol.unh.edu/ .

[6] “Fibre Channel - Arbitrated Loop,” Standard X3.272-1996,
1996.

[7] “Fibre Channel - Switch Fabric,” Standard NCITS 320-1998,
1998.

[8] S. Aiken, D. Grunwald, and A. Pleszkun. A Performance
Analysis of the iSCSI Protocol. In IEEE/NASA MSST2003
Twentieth IEEE/Eleventh NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2003.

[9] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
Analysis of TCP Processing Overhead. IEEE Communica-
tions Magazine, 27(6):94–101, June 1989.

[10] Y. Lu and D. H. C. Du. Performance Study of iSCSI-Based
Storage Subsystems. IEEE Communications Magazine, Au-
gust 2003.

[11] J. C. Mogul. Tcp offload is a dumb idea whose time has
come. In 9th Workshop on Hot Topics in Operating Systems
(HotOS IX), May 2003.

[12] F. Neema and D. Waid. Data Storage Trend. In UNIX Re-
view, 17(7), June 1999.

[13] W. T. Ng, B. H. E. Shriver, E. Gabber, and B. Ozden. Ob-
taining High Performance for Storage Outsourcing. In Proc.
FAST 2002, USENIX Conference on File and Storage Tech-
nologies, pages 145–158, January 2002.

[14] M. Oguchi, S. Yamaguchi, , and M. Kitsuregawa. Perfor-
mance Improvement of Sequential Access to IP-Storage us-
ing IP-SAN analysis tools. In In Proceedings of the Interna-
tional Symposium of Santa Caterina on Challenges in the In-
ternet and Interdisciplinary Research (SSCCII-2004), No.21,
January 2004.

[15] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy. A per-
formance Comparison of NFS and iSCSI for IP-Networked
Storage. In Proc. FAST 2004, USENIX Conference on File
and Storage Technologies, March 2004.

[16] P. Sarkar, S. Uttamchandani, and K. Voruganti. Storage over
IP: When Does Hardware Support help? In Proc. FAST
2003, USENIX Conference on File and Storage Technolo-
gies, March 2003.

[17] P. Sarkar and K. Voruganti. IP Storage: The Challenge
Ahead. In Proc. of Tenth NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2002.

[18] J. Satran et al. Internet Small Computer Systems Inter-
face (iSCSI).
http://www.ietf.org/rfc/rfc3720.txt ,
April 2004.

[19] P. Shivam and J. S. Chase. On the Elusive Benefists of Pro-
tocol Offload. In Proceedings of the ACM SIGCOMM work-
shop on Network-I/O convergence: Experience, Lessons, Im-
plications, pages 179–184, 2003.

[20] F. Tomonori and O. Masanori. Analisys fo iSCSI Target Soft-
ware. In SACSIS (Symposium on Advanced Computing Sys-
tems and Infrastructures) 2004, April 2004. (in Japanese).

[21] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa. Per-
formance Evaluation and Improving of Sequential Storage
Access using the iSCSI Protocol in Long-delayed High
throughput Network. DBSJ Letters Vol.2 No.1, 2003. (in
Japanese).

[22] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa. Analysis of
iSCSI Storage Access with Short Blocks. In IEICE the 15th
Data Engineering Workshop, March 2004. (in Japanese).

[23] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa. iSCSI Anal-
ysis System and Performance Improvement of Sequential
Access. The IEICE Transactions on Information and Sys-
tems(Japanese Edition), 87:216–231, February 2004. (in
Japanese).

