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Abstract Correlated patterns are an important class of regularities that exist in a database.
Although there exists no universally acceptable best measure to judge the interestingness
of a pattern, all-confidence is emerging as a popular measure to discover the patterns. It is
because the measure satisfies both the anti-monotonic and null-invariance properties. The
former property makes the pattern mining practicable in real-world applications. The latter
property facilitates the user to discover the patterns involving both frequent and rare items
without generating the huge number of patterns. In this paper, we show that though the
measure satisfies the null-invariance property, mining the patterns containing both frequent
and rare items with a single minimum all-confidence (minAllConf ) threshold leads to the
dilemma known as “rare item problem.” At a high minAllConf , the discovered correlated
patterns involving rare items have very short length. At a low minAllConf , combinato-
rial explosion can occur, producing too many patterns. To confront the problem, the paper
introduces an alternative model based on the concept of multiple minAllConf thresholds.
The proposed model generalizes the existing model of correlated patterns and facilitates the
user to specify a different minAllConf for each pattern depending upon its items’ frequen-
cies. A pattern-growth algorithm, called GCoMine, has also been proposed to discover the
patterns. Experiment results show that GCoMine is efficient, and the proposed model can
address the problem effectively.
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1 Introduction

Finding frequent patterns (or itemsets) from transactional databases has been widely studied
in data mining (Agrawal et al. 1993; Agrawal and Srikanth 1994; Han et al. 2004, 2007). A
major obstacle encountered while mining the patterns in real-world non-uniform databases
is as follows: the pattern mining involves exponential mining space and often generates a
huge number of patterns. To confront the problem, researchers have introduced correlated
pattern mining (Brin et al. 1997). It is because the users can be interested in not only the
frequent occurrences of sets of items, but also their possible strong correlations implied by
such co-occurrences. The usefulness of correlated patterns was demonstrated in many dif-
ferent application domains such as climate studies (Storch and Zwiers 2002), public health
(Cohen et al. 2002) and bioinformatics (Kuo et al. 2002; Xiong et al. 2005, 2006).

Numerous measures have been introduced in the literature to assess the interestingness
of a pattern. Examples include all-confidence, any-confidence, lift, χ2, bond, h-confidence
and relative support (Brin et al. 1997; Xiong et al. 2006; Omiecinski 2003; Yun et al. 2003).
Each measure has a selection bias that justifies the significance of a knowledge pattern. As
a result, there exists no universally acceptable best measure to judge the interestingness of
a pattern for any given database or application. Researchers are making efforts to suggest
a right measure depending upon the user and/or application requirements (Tan et al. 2002;
Wu et al. 2010; Surana et al. 2010).

Recently, all-confidence is emerging as a popular measure to discover the patterns (Lee
et al. 2003; Kim et al. 2004, 2011; Zhou et al. 2006a, b). It is because the measure satisfies
both the anti-monotonic (see Definition 1) and null-invariance (see Definition 2) proper-
ties. The former property says that “all non-empty subsets of a correlated pattern must
also be correlated.” This property plays a key role in reducing the search space, which in
turn decreases the computational cost of mining the patterns. In other words, this property
makes the pattern mining practicable in real-world applications. The latter property dis-
closes genuine correlation relationships without being influenced by the object co-absence
in a database. In other words, this property facilitates the user to discover interesting patterns
involving both frequent and rare items without generating a huge number of uninteresting
patterns.

Definition 1 (Anti-monotonic property (Agrawal and Srikanth 1994)). A measure C is
anti-monotone if and only if whenever a pattern (or an itemset) X violates C, so does any
superset of X.

Definition 2 (Null-invariance property (Tan et al. 2002)). Let us consider a 2×2 con-
tingency table (shown in Table 1) as a contingency matrix, M = [f11f10; f01f00]. Let an
interestingness measure is a matrix operator, O , that maps the matrix M into a scalar value,
k, i.e., OM = k. A binary measure of association is null-invariant if O(M + C) = O(M),
where C = [00; 0k] and k is a positive constant.

The model of correlated patterns is as follows (Lee et al. 2003). Let I = {i1, i2, · · · , in}
be a set of items, and DB be a database that consists of a set of transactions. Each transaction
T contains a set of items such that T ⊆ I . Each transaction is associated with an identifier,
called T ID. Let X ⊆ I be a set of items, referred as an itemset or a pattern. A pattern that
contains k items is a k-pattern. A transaction T is said to contain X if and only if X ⊆ T .
The support of pattern X, denoted as S(X), represents the number of transactions containing
X in DB . The pattern X is said to be frequent if S(X) ≥ minSup, where minSup is
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Table 1 A 2 × 2 contingency
table for variables A and B B B

A f11 f10 f1+
A f01 f00 f0+

f+1 f+0 N

the user-defined minimum support threshold. The all-confidence of a pattern X, denoted as
all-conf (X), can be expressed as the ratio of its support to the maximum support of an item

within itself. That is, all-conf (X) = S(X)

max(S(ij )|∀ ij ∈ X)
.

Definition 3 (The correlated pattern X). The pattern X is said to be all-confident or
associated or correlated if

S(X) ≥ minSup

and (1)

all-conf (X) ≥ minAllConf

where, minAllConf is the user-defined minimum all-confidence threshold value.

The support of a pattern can also be expressed in percentage of |DB|, where |DB|
represents the total number of transactions in DB . In this paper, we use the former definition
of support for ease of explanation. Example 1 illustrates the model using the transactional
database shown in Table 2.

Example 1 The transactional database shown in Table 2 has 20 transactions. The set of
items, I = {a, b, c, d, e, f, g, h}. The set of items ‘a’ and ‘b’, i.e., {a, b} is a pattern. It is
a 2-pattern. For simplicity, we write this pattern as ‘ab’. The pattern occurs in 8 transactions
(t ids of 1, 2, 7, 10,11, 13, 16 and 19). Therefore, the support of ‘ab,’ i.e., S(ab) = 8. If
the user-specified minSup = 3, then ‘ab’ is a frequent pattern because S(ab) ≥ minSup.
The all-confidence of ‘ab,’ i.e., all-conf (ab) = 8

max(11,9) = 0.72. If the user-specified
minAllConf = 0.63, then ‘ab’ is a correlated pattern because S(ab) ≥ minSup and
all-conf (ab) ≥ minAllConf .

Lee et al. (2003) have proposed a pattern-growth algorithm, called CoMine, to discover
the correlated patterns. In Kiran and Kitsuregawa (2012), we have proposed an improved
CoMine algorithm, called CoMine++. While testing the performance of CoMine++ on dif-
ferent types of datasets, we have made the following key observation: though the measure
satisfies the null-invariance property, the usage of a single minAllConf threshold confines

Table 2 Transactional database

TID ITEMS TID ITEMS TID ITEMS TID ITEMS TID ITEMS

1 a, b 5 c, d 9 c, d, g 13 a, b, e 17 c, d

2 a, b, e 6 a, c 10 a, b 14 b, e, f, g 18 a, c

3 c, d 7 a, b 11 a, b 15 c, d 19 a, b, h

4 e, f 8 e, f 12 a, c, f 16 a, b 20 c, d, f
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the discovery of correlated patterns involving both frequent and rare items to the databases
in which the frequencies of items do not vary widely. If the items’ frequencies in the database
vary in a great deal, then we encounter the following problems:

• At a high minAllConf threshold, we discover the correlated patterns pertaining to both
frequent and rare items. However, most of the discovered patterns containing rare items
tend to have very short length. We have observed that most of them were singleton
patterns as they have all-confidence of 1.

• In order to discover the long correlated patterns containing rare items, we have to set
a low minAllConf threshold. However, this may cause combinatorial explosion, pro-
ducing too many patterns, because those frequent items will be associated with one
another in all possible ways and many of them can be meaningless depending upon the
user and/or application requirements.

We call this dilemma as the rare item problem (Weiss 2004). This problem is further dis-
cussed in Section 3. Please note that considering an item as either frequent or rare is a
subjective issue that depends upon the user and/or application requirements.

One cannot ignore the knowledge pertaining to rare items. It is because such knowledge
has been found useful in many real-world applications, such as detecting oil spills in satel-
lite images (Kubat et al. 1998) and improving the performance of recommender systems
(Gedikli and Jannach 2010). Example 2 illustrates the significance of knowledge pertaining
to rare items.

Example 2 In a supermarket, the set of items ‘bed’ and ‘pillow’ are relatively less frequently
purchased than the set of items ‘bread’ and ‘jam’. However, the managers of a supermarket
are more interested in the correlation relationship between the former set of items. It is
because the former set of items generate more revenue per unit.

With this motivation, we make an effort to discover correlated patterns involving both
frequent and rare items effectively. The contributions of this paper are as follows:

i. We theoretically analyze the pattern model and introduce the concepts “items’ support
intervals” and “cutoff-item-support.” Next, we describe the rare item problem using
these two concepts.

ii. To confront the problem, we extend the existing correlated pattern model to allow the
user to specify multiple minimum all-confidence thresholds to reflect frequencies of
items. In particular, the user can specify a different minAllConf -like threshold for
each item known as minimum item all-confidence (MIAC). Thus, each pattern may
satisfy a different minAllConf threshold depending on its items’ frequencies. This
new model enables us to achieve our objective of producing long correlated patterns
containing rare items without causing combinatorial explosion.

iii. A pattern-growth algorithm, called Generalized CoMine (GCoMine), has also been
proposed to discover the patterns. The GCoMine uses the prior knowledge regarding
the items’ MIAC values and discovers the complete set of correlated patterns with a
single scan on the database.

iv. By conducting experiments on different datasets, we show that the proposed model can
discover interesting patterns involving both frequent and rare items without generating
a huge number of meaningless correlated patterns. In addition, we also show that the
GCoMine is runtime efficient and scalable as well.
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The rest of the paper is organized as follows. Section 2 describes the related work on cor-
related pattern mining. Section 3 describes the rare item problem while mining the patterns
with a single minAllConf threshold. Section 4 introduces the proposed model. Section 5
describes the GCoMine to discover the patterns. The experimental results on both synthetic
and real-world datasets have been reported in Section 7. Finally, Section 6 concludes the
paper with future research directions.

In Kiran and Kitsuregawa (2013), we have shown that mining correlated patterns with
a single minAllConf threshold leads to the rare item problem, and proposed a model
to address same. In this paper, we have introduced GCoMine algorithm to discover the
complete set of correlate patterns with a single scan on the database. Furthermore, we
have strengthen the paper with extensive experiments on both synthetic and real-world
datasets.

2 Related work

In the literature, the rare item problem was first identified while mining frequent patterns
with a single minSup threshold (Weiss 2004). It is as follows:

i. If minSup is set too high, we will miss those patterns that involve rare items.
ii. In order to find the frequent patterns that involve both frequent and rare items, we have

to set low minSup. However, this may cause combinatorial explosion, producing too
many frequent patterns.

To confront the problem, researchers have made efforts to mine frequent patterns using
multiple minSups framework (Liu et al. 1999; Kiran and Reddy 2011). In this framework,
each item in the database is specified with a minSup-like constraint known as minimum
item support (MIS). The minSup for a pattern is represented with the minimal MIS value
among all its items. Thus. each pattern can satisfy a different minSup depending upon its
items’ frequencies. In this paper, we have employed similar approach to address the problem
in correlated pattern mining.

Brin et al. (1997) have introduced correlated pattern mining using lif t and χ2 as the
interestingness measures. Lee et al. (2003) have shown that correlated patterns can be
effectively discovered with all-confidence measure as it satisfies both null-invariance and
anti-monotonic properties. An FP-growth-like algorithm, called CoMine, was also proposed
to discover the correlated patterns. An improved CoMine, known as CoMine++, has also
been proposed to discover the patterns (Kiran and Kitsuregawa 2013). Kim et al. (2004) have
used all-confidence to discover confidence-closed correlated patterns. In addition, a pattern-
growth algorithm known as CCMine has been discussed to discover the patterns. Zhou et al.
(2006a) have employed all-confidence to mine mutually and positively correlated patterns.
All these approaches employ only a single minAllConf threshold to discover the patterns.
As a result, these approaches also suffer from the rare item problem.

Xiong et al. (2005, 2006) have introduced h-conf idence measure to discover “Hyper-
clique patterns.” These patterns are groups of objects which are strongly related to each
other. Theoretically, the h-conf idence is same as the all-confidence (Xiong et al. 2006). As
a result, mining these patterns with a single minimum h-confidence value leads to the rare
item problem.

Since the proposed work focusses on addressing the rare item problem in the basic model
of correlated patterns, it can be observed that our work provides a lot of scope for the data
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mining researchers to investigate the extensions of our work to address the problem in all of
the above approaches.

Some of the null-invariance measures, such as Cosine, do not satisfy the the anti-
monotonic property. This increases the search space, which in turn increases the computa-
tional cost of mining the patterns. Kim et al. (2011) have introduced two pruning techniques
to reduce the computational cost of mining the patterns. An Apriori-like algorithm, called
NICOMINER, has been proposed to discover the patterns. As the all-confidence measure
satisfies the null-invariance property, NICOMINER can be employed to discover the pat-
terns with our model. However, it is not efficient because the algorithm suffers from the
performance problems, which involves the generation of huge number of candidate patterns
and multiple scans on the dataset.

3 The rare item problem in correlated pattern mining

In this section, we theoretically analyze the basic model of correlated patterns and intro-
duce the concepts “items’ support intervals” and “cutoff-item-support.” These two concepts
facilitate us in describing the problem effectively.

3.1 Items’ support intervals

Definition 4 Items’ Support Intervals: It says that an item ij ∈ I can generate correlated
patterns of higher order by combining with only those items that have support within a spe-
cific interval. From the Definition 3, it turns out that an item ij ∈ I can generate correlated
patterns of higher-order by combining with only those items that have support within the
interval ⎡

⎣max

(
S(ij )×minAllConf,

minSup

)
,max

⎛
⎝

S(ij )

minAllConf
,

minSup

⎞
⎠

⎤
⎦ .

The correctness is shown in Theorem 1, and is based on Properties 1 and 2 and Lemmas
1 and 2. Example 3 illustrates the concept of items’ support intervals.

Example 3 The support of item ‘f ’ in Table 2 is 5. If minAllConf = 0.63 and minSup =
3, then ‘f ’ can generate correlated patterns by combining with only those items that have
support in the range of [3, 8] (= [max(5 × 0.63,3),max( 5

0.63 , 3)]). In other words, the
item ‘f ’ may generate correlated patterns of higher-order by combining with only the
items ‘e’ and ‘d’. It is because only these items have support within the interval [3, 8] in
Table 2.

Property 1 If X and Y are two patterns such that X ⊂ Y , then S(X) ≥ S(Y ).

Property 2 The maximum support a pattern X can have is min(S(ij )|∀ij ∈ X). Therefore,

the maximum all-confidence a pattern X can have is
min(S(ij )|∀ij ∈ X)

max(S(ij )|∀ij ∈ X)
.

Lemma 1 Let minAllConf be the user-defined minimum all-confidence threshold value.
The lower limit of a support interval for an item iq ∈ I having support S(iq) is S(iq) ×
minAllConf .
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Proof Let ‘ip’ and ‘iq ’ be the two items (or 1-patterns) having supports such that
S(ip) < S(iq). The maximum all-confidence the pattern ‘ipiq ’ (={ip , iq }) can have is
S(ip)

S(iq )
(Property 2). If S(iq) × minAllConf > S(ip), then minAllConf >

S(ip)

S(iq )
. If

S(iq) × minAllConf = S(ip), then minAllConf = S(ip)

S(iq )

(= all-conf (ipiq )
)
. There-

fore, the lower limit of a support interval for an item iq ∈ I with support S(iq) is
S(iq)×minAllConf .

Lemma 2 Let minAllConf be the user-defined minimum all-confidence threshold value.
The upper limit of a support interval for an item iq ∈ I having support S(iq) is

S(iq)

minAllConf
.

Proof Let ‘iq ’ and ‘ir ’ be the two items (or 1-patterns) having supports such that S(iq) <
S(ir ). Using Property 2, the maximum all-confidence for the pattern ‘iq ir ’ (={iq , ir }) can

be S(iq )

S(ir )
. If S(ir ) >

S(iq)

minAllConf
, then minAllConf >

S(iq)

S(ir )
. Therefore, the upper limit

of a support interval for an item iq ∈ I is
S(iq)

minAllConf
.

Theorem 1 For the user-defined minSup and minAllConf thresholds, the support
interval of an item iq ∈ I with support S(iq) is

⎡
⎣max

(
S(iq)×minAllConf,

minSup

)
, max

⎛
⎝

S(iq)

minAllConf
,

minSup

⎞
⎠

⎤
⎦ .

Proof The support interval for an item iq ∈ I for support measure is [minSup, ∞).
In other words, items having support no less than minSup can combine with one
another in all possible ways to generate frequent patterns of higher-order. Using Lem-
mas 1 and 2, the support interval of an item iq ∈ I for all-confidence measure is[
S(iq)×minAllConf,

S(iq)

minAllConf

]
. Therefore, the support interval for an item iq ∈ I

for both support and all-confidence measures is
⎡
⎣max

(
S(iq)×minAllConf,

minSup

)
, max

⎛
⎝

S(iq)

minAllConf
,

minSup

⎞
⎠

⎤
⎦ .

3.2 Cutoff-item-support

Xiong et al. (2006) have introduced “the cross-support property” (see Property 3) while
mining the hyper-clique patterns with the h-confidence measure.

Property 3 [Generalized Cross-Support Property]: Given a measure M , for any cross-
support pattern P with respect to a threshold t , if there exists a monotone increasing function
f such that M(P ) < f (t), then the measure M has the cross-support property.

We slightly modify this property, to handle the specific case of mining correlated patterns
using both support and all-confidence measures. From the definition of correlated pattern
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(see (1)), it turns out that if X = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, is a correlated pattern,
then

S(X) ≥ max(max(S(ij)|∀ij ∈ X)×minAllConf,minSup) (2)

= S(X) ≥ max

⎛
⎜⎜⎜⎝

max(S(i1)×minAllConf, minSup)

max(S(i2)×minAllConf, minSup)
...

max(S(ik)×minAllConf, minSup)

⎞
⎟⎟⎟⎠ (3)

Using (3), we introduce the definition of “cutoff-item-support”. It is as follows.

Definition 5 Cutoff-item-support of an item: The cutoff-item-support (CIS) of an item
ij ∈ I , denoted as CIS(ij ), is the minimum support a pattern X 	 ij must have to be a
correlated pattern. It is equal to the maximum of minSup and product between its support
and minAllConf . That is, CIS(ij ) = max(minSup, S(ij )×minAllConf ).

Example 4 The support of ‘a’ in Table 2 is 11. If the user-specified minSup = 3 and
minAllConf = 0.63, then the CIS of ‘a’, denoted as CIS(a) = 7 (
 max(3, 0.63×11)).
It means any pattern containing ‘a’ must have support no less than 7 to be a correlated
pattern. Similarly, the CIS values of ‘b’, ‘c’, ‘d’, ‘e’, ‘f ’, ‘g’ and ‘h’ are 6, 6, 4, 3, 3, 3 and
3, respectively.

The CIS of an item plays a key role in correlated pattern mining. If the items have their
CIS values very close to their supports, then the discovered patterns involving those items
tend to have very short length (due to the apriori property Agrawal et al. 1993). If the items
have their CIS values very far away from their supports, then it is possible to discover
long patterns involving those items. However, this may cause combinatorial explosion, pro-
ducing too many patterns as the items can combine with one another in all possible ways.
Thus, while specifying the minAllConf and minSup thresholds, we have to be careful that
items’ CIS values are neither too close nor too far away from their respective supports. The
definition of correlated patterns using items’ CIS values is as follows.

Definition 6 (Correlated pattern.) A pattern X is said to be correlated if its support is no
less than the maximum CIS value of all its items. That is, if X is a correlated pattern, then
S(X) ≥ max(CIS(ij )|∀ij ∈ X).

Since the CIS of an item ij ∈ X, i.e., CIS(ij ) = max(S(ij )×minAllConf, minSup),
the correctness of the above definition is straight forward to prove from (3).

3.3 The problem

When we use a single minAllConf threshold value to mine correlated patterns, then:

• The support interval width does not remain uniform for all items. Instead, it decreases
from frequent to rare items (see Property 4).

Example 5 In Table 2, the item ‘a’ appears more frequently than the item ‘d’. If the user-
defined minSup = 3 and minAllConf = 0.63, then the support intervals for ‘a’ and ‘d’
are [7, 17] and [6, 14], respectively. It can be observed that the support interval width of
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‘a’ is 10 (=17-7), while for ‘f ’ is only 8 (=14-6). Thus, the support interval decreases from
frequent to rare items.

Thus, the usage of a single minAllConf threshold facilitates only the frequent items
to combine with wide range of items’ supports.

• The difference (or gap) between the items’ support and corresponding CIS values do
not remain uniform. Instead, it decreases from frequent to rare items (see Property 5).

Example 6 Continuing with Example 4, it can be observed that the difference between the
support and corresponding CIS values of ‘a’ and ‘d’ are 4 and 2, respectively. Thus, the
gap decreases as we move from frequent to rare items.

Property 4 Let ij and ik , 1 ≤ j ≤ n, 1 ≤ k ≤ n and j �= k, be the items such that
S(ij ) ≥ S(ik). For the user-defined minAllConf and minSup thresholds, it turns out that
the support interval width of ij will be no less than the support interval width of ik . That is,

max

(
S(ij )×minAllConf,

minSup

)
−max

⎛
⎝

S(ij )

minAllConf
,

minSup

⎞
⎠ ≥

max

(
S(ik)×minAllConf,

minSup

)
−max

⎛
⎝

S(ik)

minAllConf
,

minSup

⎞
⎠ (4)

Property 5 Let ip and iq be the items having supports such that S(ip) ≥ S(iq). For the
user-specified minAllConf and minSup thresholds, it turns out that S(ip) − CIS(ip) ≥
S(iq)− CIS(iq).

The non-uniform width of items’ support intervals and the non-uniform gap between the
items’ support and corresponding CIS values causes the following problems while mining
correlated patterns with a single minAllConf threshold:

i. At a high minAllConf value, rare items will have CIS values very close (or almost
equivalent) to their respective supports. In addition, the support interval width for rare
items will be very small allowing only rare items to combine with one another. Since
it is difficult for the rare items to combine with one another and have support which is
almost equivalent to their actual support, many discovered correlated patterns contain-
ing rare items tend to have a very short length. We have observed that most of them
were only singleton patterns as they always have all-conf = 1.

ii. To discover long correlated patterns involving rare items, we must specify a low
minAllConf threshold value. However, a low minAllConf causes frequent items to
have their CIS values far away from their respective supports causing combinatorial
explosion and producing too many correlated patterns.

We call this dilemma as the rare item problem in correlated pattern mining. In the next
section, we discuss the technique to address the problem.

4 Proposed model

To address the rare item problem, it is necessary for the pattern model to dynamically set
high minAllConf threshold for a pattern containing frequent items and low minAllConf



J Intell Inf Syst

threshold for a pattern containing rare items. To do so, we introduce an alternative model
of mining correlated patterns using multiple minimum all-confidence thresholds. The idea
is to specify minAllConf threshold for each item depending upon its frequency and spec-
ify the minAllConf for a pattern accordingly. We inherit this approach from the multiple
minSups-based frequent pattern mining, where each pattern can satisfy a different minSup

depending upon the items’ frequencies within itself (Liu et al. 1999).
In our proposed model, the definition of correlated pattern remains the same. However,

the definition of minAllConf is changed to address the problem. In the proposed model,
each item in the database is specified with a minAllConf constraint, called minimum item
all-confidence (MIAC). Next, theminAllConf of pattern X = {i1, i2, · · · , ik}, 1 ≤ k ≤ n,
is represented as maximum MIAC value among all its items. That is,

minAllConf (X) = max

(
MIAC(i1), MIAC(i2),

· · · , MIAC(ik)

)
(5)

where, MIAC(ij ) is the user-specified MIAC threshold for an item ij ∈ X. Thus, the
definition of correlated pattern is as follows.

Definition 7 (Correlated pattern). The pattern X = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, is said to
be correlated if

S(X) ≥ minSup

and (6)

all-conf (X) ≥ max

(
MIAC(i1), MIAC(i2),

· · · , MIAC(ik)

)

Please note that the correctness of all-confidence measure will be lost if minAllConf

of a pattern is represented with the minimal MIAC of all the items within itself.
In particular, if the items’ MIAC values are converted into corresponding CIS val-
ues, then the above definition still preserves the definition of correlated pattern given in
Definition 3.

Definition 8 (Problem Definition). Given the transactional database (DB), the minimum
support (minSup) threshold and the items’ minimum item all-confidence (MIAC) thresh-
old values, discover the complete set of correlated patterns that satisfy the minSup and
maximum MIAC value of all items within itself.

The proposed model facilitates the user to specify the all-confidence thresholds such
that the support interval width of items can be uniform and the gap between the items’
supports and corresponding CIS values can also be uniform. In addition, it also allows
the user to dynamically set a high minAllConf value for the patterns containing fre-
quent items and a low minAllConf value for the patterns containing only rare items. As
a result, this model can efficiently address the rare item problem. Moreover, the proposed
model generalizes the existing model of correlated patterns. If all items are specified with
a same MIAC value, then the proposed model is same as the basic model of correlated
patterns.

The correlated patterns discovered with the proposed model satisfy the anti-monotonic
property. That is, all non-empty subsets of a correlated pattern must also be correlated pat-
terns. The correctness is based on Property 6 and shown in Lemma 3. In the next section,
we discuss our algorithm to discover the patterns.
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Property 6 If Y ⊃ X, then minAllConf (Y ) ≥ minAllConf (X) as max(MIAC(ij )|
∀ij ∈ Y) ≥ max(MIAC(ij)|∀ij ∈ X).

Lemma 3 The correlated patterns discovered with the proposed model satisfy the anti-
monotonic property.

Proof Let X and Y be the two patterns in a transactional database such that X ⊂ Y .
From the apriori property (Agrawal et al. 1993), it turns out that S(X) ≥ S(Y ) and
all-conf (X) ≥ all-conf (Y ). Further, minAllConf (Y ) ≥ minAllConf (X) (see, Property
6). Therefore, if all-conf (Y ) ≥ minAllConf (Y ), then all-conf (X) ≥ minAllConf (X).
Hence proved.

5 GCoMine algorithm

The GCoMine algorithm accepts transactional database DB , set of items I , minSup and
items’ MIAC values as the input parameters. Using the prior knowledge regarding the
items’ MIAC values and pattern-growth technique, the algorithm discovers the com-
plete set of correlated patterns with a single scan on the database. The steps involved in
GCoMine are as follows: (i) Construction of Correlated Pattern-tree (CP-tree) and (ii)
mining correlated patterns from CP-tree. We now discuss these two steps.

5.1 Construction of CP-tree

The CP-tree consists of two components: CP-list and prefix-tree. The CP-list is a list with
the following fields – item-name (I ), minimum item all-confidence (MIAC), support (S)
and head of node-links which points to the first node in the prefix-tree carrying the item-
name. The structure of prefix-tree in CP-tree is same as that of the prefix-tree in FP-tree
(Han et al. 2004). That is, each node in the prefix-tree consists of three fields: item-name,
count and node-link. The item-name registers which item this node represents, count reg-
isters the number of transactions represented by the portion of the path reaching this node,
and node-link links to the next node in the CP-tree carrying the same item-name, or null if
there is none. The key difference between these prefix-trees in CP-tree and FP-tree are as
follows: the items in FP-tree are arranged in support descending order of items, while the
items in CP-tree are arranged in MIAC descending order of items.

The construction of CP-tree is shown in Algorithm 1. We illustrate this algorithm using
the transactional database shown in Table 1. Let the user-defined MIAC values for the items
‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f ’, ‘g’ and ‘h’ be 0.73, 0.66, 0.66, 0.5, 0.4, 0.4, 0.4, 0.4, respectively.
First, all items in the database are sorted in descending order of their MIAC values (Step
1 in Algorithm 1). Let this sorted list of items be L. Thus, L = {a, b, c, d, e, f, g, h}. In L

order, insert each item into the CP-list with corresponding MIAC value and support = 0
(Step 2 in Algorithm 1). Next, create a root node in CP-tree and label it as “null.” The
resultant CP-list before scanning the database is shown in Fig. 1a.

A CP-tree is then updated as follows. The database DB is scanned. The items in each
transaction are processed in L order, and a branch is created for each transaction as in FP-
growth. Simultaneously, we increment the support values of respective items in the CP-list
by 1 (Lines 4 to 8 in Algorithm 1 and Algorithm 2). For example, the scan of the first
transaction, “1: a, b,” which contains two items 〈a, b in L order 〉, leads to the construction
of the first branch of the tree with nodes 〈a : 1〉 and 〈b : 1〉, where ‘a’ is linked as a child
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Fig. 1 Construction of initial CP-tree

of the root and ‘b’ is linked as the child node of ‘a’. Next, we increment support values of
‘a’ and ‘b’ in the CP-list by 1. The CP-tree generated after scanning the first transaction is
shown in Fig. 1b. The second transaction containing the items ‘a’, ‘b’ and ‘e’ in L order
will result in a branch where ‘a’ is linked to root , ‘e’ is linked to ‘a’ and ‘f ’ is linked to
‘e.’ However, this branch would share a common prefix, ‘a’ and ‘b’, with the existing path
for 1. Therefore, we instead increment the count of ‘a’ and ‘b’ nodes by 1, and create new
node, 〈e : 1〉, where ‘e’ is linked to ‘b’. The support of items ‘a’, ‘b’ and ‘e’ in CP-list are
incremented by 1. The resultant CP-tree is shown in Fig. 1c. Similar process is repeated for
the remaining transactions and CP-tree is updated accordingly. The resultant CP-tree after
scanning every transaction in the database is shown in Fig. 1d. For the simplicity of figures,
we do not show the node traversal pointers in CP-tree. However, they are maintained as in
the construction process of FP-tree.

After scanning the entire database, we derive the actual supports of the items in the
database. Since the correlated patterns discovered with the proposed model satisfy the anti-
monotonic property, we prune infrequent items (or 1-patterns) from the CP-tree using the
minSup threshold (Lines 9 to 16 in Algorithm 1 and Algorithm 3). This step reduces the
computational cost of mining the patterns from CP-tree. The infrequent items are the items
that have support no more than minSup threshold. The remaining items (or frequent items)
were considered as correlated items, because, the all-confidence value of every item will be
equal to 1, which is no less than their respective MIAC values. Let C denote the sorted list
of correlated items in CP-list in descending order of their MIAC values. Figure 2 shows the
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final CP-tree generated pruning the infrequent items ‘g’ and ‘h’. The constructed CP-tree
preserves all the interesting correlation relationships between the sets of items in a database.
The correctness of CP-tree is shown in Lemma 4.

Lemma 4 Given a transactional database DB , the minimum support (minSup) and
items’ MIAC values, the constructed CP-tree contains the complete information about all
correlated patterns in DB .

Rationale In the CP-tree construction process, each transaction in DB is mapped to one
path in the CP-tree. All correlated items information in each transaction is completely
stored in the CP-tree. Since the correlated patterns satisfy the anti-monotonic property, the
constructed CP-tree contains the complete information about all correlated patterns in DB .

5.2 Mining correlated patterns from CP-tree

The procedure for mining correlated patterns from CP-tree is shown in Algorithm 4, and
is as follows. Start from each correlated 1-pattern (as an initial suffix pattern), construct its
conditional pattern base (a sub-database, which consists of the set of prefix-paths in the CP-
tree co-occurring with the suffix pattern), then construct its conditional CP-tree, and perform
mining recursively on such a tree. The pattern-growth is achieved by the concatenation of
the suffix pattern with the correlated patterns generated from the conditional CP-tree.

Table 3 shows the correlated patterns discovered from the CP-tree shown in Fig. 2. We
briefly explain mining the patterns from CP-tree. Consider the item ‘f ’ that has lowest
MIAC among all items in the CP-tree. It occurs in four branches of CP-tree. The branches
are 〈a, c, f : 1〉, 〈c, d, f : 1〉, 〈e, f : 2〉 and 〈b, e, f : 1〉. Consider ‘f ’ as a suffix pattern
(or item), its conditional prefix paths are 〈a, c : 1〉, 〈c, d : 1〉, 〈e : 2〉 and 〈b, e : 1〉, which
form its conditional pattern base (see Fig. 3a). The conditional CP-tree is generated with
〈e : 3〉; the items a, b, c and d are not included because the support counts are less than
the minSup value (see Fig. 3b). The single path generates the correlated pattern {e, f : 3}.
Similar process is repeated for other remaining items in CP-tree to discover the complete
set of correlated patterns. The correctness of GCoMine has been shown in Lemma 5.

Lemma 5 Let α be a pattern in CP-tree. Let minSup be the minimum support that α
has to satisfy. Let B be the α-conditional pattern base, and β be an item in B . Let
sup(β) and supB(β) be the support of β in the transactional database and in B , respec-
tively. Let MIAC(β) be the user-specified β’s MIAC value. If α is a correlated pattern,
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Table 3 Mining the CP-tree by creating conditional pattern bases

Item Conditional pattern base Conditional CP-tree Correlated patterns

f {{a, c : 1}, {c, d : 1}, {e : 2}, {b, e : 1}} 〈e : 3〉 {e, f : 3}
e {{a, b : 2}, {b : 1}} – –

d {c : 6} – {c, d : 6}
c {a : 3} – –

b {a : 8} 〈a : 8〉 {a, b : 8}

supB(β) ≥ minSup and
supB(β)

sup(β)
≥ MIAC(β), then the pattern < α, β > is also a

correlated pattern.

Proof According to the definition of conditional pattern base and compact CP-tree (or
CP-tree), each subset in B occurs under the condition of the occurrence of α in the trans-
actional database. If an item β appears in B for n times, it appears with α in n times
in the database. Thus, from the definition of correlated pattern used in our model, if the
supB(β)

sup(β)
≥ MIAC(β) and supB(β) ≥ minSup, then < α, β > is a correlated pattern.

Hence proved.

Algorithm 1 GCoMine (DB: transactional database, I : itemset containing n items,
minSup: minimum support and MIAC: items’ MIAC values)

1: Let L denote the sorted list of items in descending order of their MIAC values.
2: In L order, insert each item into the CP-list with their corresponding MIAC values and

support = 0.
3: Create the root of a CP-tree, and label it as “null.”
4: {Construction of CP-tree}
5: for each transaction t ∈ DB do
6: Sort all the items in t in L order.
7: Let the sorted items in t be [p|P ], where p is the first element and P is the

remaining list. Call InsertTree([p|P ], T ).
8: end for
9: Let T ree be the CP-tree generated after scanning every transaction in the database.

10: {Pruning infrequent items from CP-tree.}
11: for (j = n− 1; j ≥ 0; −− j ) do
12: if (S[ij ] < minSup) then
13: Call T reeP runing(T ree, ij ).
14: Delete the item ij in PF-list.
15: end if
16: end for
17: The CP-tree is mined by calling GCoMine patternGrowth(CP-tree, null).
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6 Experimental results

In this section, we first evaluate the basic and proposed models of correlated patterns. We
show that proposed model allows us to find correlated patterns involving rare items without
generating a huge number of meaningless correlated patterns with frequent items. Next, we
evaluate the performance of GCoMine algorithm.

Algorithm 2 InsertTree([p|P ], T )

1: Increment the support of an item p in CP-list by 1.
2: if T has a child node N such that p.item-name=N.item-name then
3: Increment N’s count by 1.
4: else
5: Create a new node N , and let is count be 1.
6: Let its parent link be linked to T .
7: Let its node-link be linked to the nodes with the same item-name via the node-link

structure.
8: end if
9: if P is non-empty then

10: Call InsertTree(P, N);
11: end if

Algorithm 3 TreePruning(T ree, ij )

1: for each node in the node-link of ij in T ree do
2: if the node is a leaf then
3: Remove the node directly.
4: else
5: Remove the node and then link its parent node with the corresponding child

node(s).
6: end if
7: end for
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Algorithm 4 GCoMine patternGrowth(T ree, α)

1: for each ai in the header of T ree do

2: Generate pattern β = α ∪ ai with all-conf idence = S(β)

max(S(ij )|∀ij ∈ β)
;

{S(β) = S(ai) in α-projected database.}
3: Get a set Iβ of items to be included in β-projected database.
4: for each bj ∈ Iβ do
5: if S(β ∪ bj ) < minSup and all-conf (β ∪ bj ) < MIAC(bj) then
6: Delete bj from Iβ . {Since CP-tree is constructed in MIAC descending order

of items, MIAC(bj) will be the maximum MIAC value among all items in
β ∪ bj .}

7: end if
8: end for
9: Construct β-conditional CP-tree with items in Iβ , T reeβ .

10: end for
11: if T reeβ �= ∅ then
12: Call GCoMine patternGrowth(T reeβ, β).
13: end if

6.1 Experimental setup

The GCoMine and CoMine algorithms are written in GNU C++ and run with Ubuntu
10.04 operating system on a 2.66 GHz machine with 1GB memory. The runtime spec-
ifies the total execution time, i.e., CPU and I/Os. We pursued experiments on synthetic
(T10I4D100K and T10I4D1000K) and real-world (Retail (Brijs et al. 2000), Mushroom
and Kosarak) datasets. The T10I4D100K and T10I4D1000K datasets are generated syn-
thetic dataset generator discussed in Agrawal et al. (1993). The real-world datasets were
downloaded from Frequent Itemset MIning (FIMI) repository (http://fimi.ua.ac.be/data/).
The details of these datasets are shown in Table 4. The last column in this table shows the
minSup used in each of these datasets. Since ‘Mushroom’ is a dense dataset, we set high
minSup threshold, i.e., minSup = 0.01. In remaining datasets, we have set relatively low
minSup, i.e., minSup = 0.001. For the purpose of simplicity, we do not discuss about the
minSup threshold used in each of these datasets. However, they are maintained as specified
in Table 4.

6.2 A method to specify items’ MIAC values

For our experiments, we need a method to assign MIAC values to items in a dataset. We
use the actual frequencies (or the supports) of the items in the data as the basis to specify
MIAC values. Since the non-uniform difference (or gap) between the items’ support and
CIS values is the cause of rare item problem, we employ a method that specifies items’
MIAC values such that there exists a uniform gap between the items’ support and CIS

values. It is as follows.
Let δ be the representative (e.g. mean, median and mode) support of all items in the

database. Choosing a minAllConf value, calculate the gap between the δ’s support and
corresponding CIS values (see (7)). We call the gap as “support difference” and is denoted
as SD.

SD = δ − δ ×minAllConf

= δ × (1 −minAllConf ) (7)

http://fimi.ua.ac.be/data/
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Table 4 The details of the datasets

Dataset Type Nature Number of NT MTS ATS Minimum

items support

T10I4D100K Synthetic Sparse 870 100,000 29 10 0.001

T10I4D1000K Synthetic Sparse 30991 983026 33 10 0.001

Retail Real-world Sparse 16470 88162 76 10 0.001

Mushroom Real-world Dense 119 8124 23 23 0.01

Kosarak Real-world Sparse 41270 990002 2498 8 0.001

The terms ‘NT’, ‘MTS’ and ‘ATS’ respectively denote ‘Number of Transactions’, ‘Maximum Transaction
Size’ and ‘Average Transaction Size’

Next, we specify MIAC values for other items such that the gap (or SD) remains
constant. The methodology to specify MIAC values to the items ij ∈ I is shown in (8).

MIAC(ij ) = max

((
1 − SD

S(ij )

)
, LMAC

)
(8)

Where, LMAC is the user-defined lowest MIAC value an item can have. It is particularly

necessary as
(

1 − SD
S(ij )

)
can give negative MIAC value for an item ij if SD > S(ij ).

Figure 4a, b and c respectively shows the MIAC values specified by the proposed model
in T10I4D100K, Retail and Mushroom datasets with minAllConf = 0.7, LMAC = 0.1
and δ representing the mean of the support of all frequent items (or 1-patterns). The X-axis
represents the rank of items provided in the descending order of their support values. The
Y-axis represents the MIAC values of items. It can be observed that the MIAC values
decreases as we move from frequent to less frequent (or rare) items. Thus, the proposed
method specifies high MIAC values for the frequent items, and relatively low MIAC

values for the rare items. The low MIAC values for rare items facilitate them to combine
with other items and generate correlated patterns. Simultaneously, the high MIAC values
of frequent items will prevent them from combining with one another in all possible ways
and generating huge number of uninteresting patterns.

6.3 Generation of correlated patterns

Figure 5a, b and c respectively shows the number of correlated patterns generated by the
basic and proposed models in T10I4D100K, Retail and Mushroom datasets. The LMAC

value is set to 0.1 in all these datasets. The δ is set to the mean of support values of all
frequent items in a database. The X-axis represents the minAllConf values that are varied
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Fig. 5 The correlated patterns discovered by both the models at different minAllConf thresholds in
different datasets

from 0.1 to 1. The Y-axis represents the number of correlated patterns discovered at different
minAllConf values. Too many correlated patterns were discovered in both models when
minAllConf = 0. For convenience, we are not showing the correlated patterns discovered
at minAllConf = 0. The following observations can be drawn from these two graphs:

i. At high minAllConf values, the proposed model has generated more number of cor-
related patterns than the basic model. The reason is as follows. In the basic model, CIS

values of rare items were very close (almost equal) to their respective supports. Since
it is difficult for the rare items to combine with other (rare) items and have support as
their own, very few correlated patterns pertaining to rare items have been discovered.
In the proposed model, some of the rare items had their CIS values relatively away
from their supports. This facilitated the rare items to combine with other rare items and
generate correlated patterns.

ii. At low minAllConf values, the proposed model has generated less number of cor-
related patterns than the basic model. The reason is as follows. The basic model has
specified low CIS values for the frequent items at low minAllConf . The low CIS

values of the frequent items facilitated them to combine with one another in all possi-
ble ways and generate too many correlated patterns. In the proposed model, the CIS

values for the frequent items were not very far away from their respective supports (as
compared with basic model). As a result, the proposed model was able to prevent fre-
quent items to combine with one another in all possible ways and generate too many
correlated patterns.

6.4 Performance comparison of CoMine and GCoMine

Figure 6a, b and c shows the runtime taken by CoMine and GCoMine to generate correlated
patterns in T10I4D100K, Retail and Mushroom datasets, respectively. The LMAC value
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Fig. 7 Scalability test. a T10I4D1000k and b Kosarak datasets

is set to 0.1 in all these datasets. The δ is set as the average support of all those items in
the database that have support no less than the minSup value. The X-axis represents the
minAllConf values that are varied from 0.1 to 1. The Y-axis represents the runtime taken
by both the algorithms to discover the correlated patterns at different minAllConf values.
It can be observed that the runtime of both the algorithms increases with the decrease in
minAllConf threshold value. It is because the runtime of both the algorithms depend upon
the number of correlated patterns getting generated at a particular minAllConf threshold
value. More important, it is clear from this figure that GCoMine can efficiently mine the
correlated patterns at large or small threshold values.

6.5 Scalability of GCoMine

We study the scalability of our GCoMine algorithm on execution time by varying the
number of transactions in T10I4D1000K and Kosarak datasets. In the literature, these two
datasets have been widely used to study the scalability of algorithms. The experimental
setup was as follows. Each dataset was divided into five portions with 0.2 million transac-
tions in each part. Then, we investigated the performance of GCoMine after accumulating
each portion with previous parts. We fixed the minAllConf = 0.5, LMAC = 0.1,
minSup = 0.001 and δ as the average support of all those items in the database that have
support no less than the minSup value.

Figure 7a and b respectively show the runtime requirements of GCoMine in
T10I4D1000K and Kosarak datasets with the increase of dataset size. It is clear from
the graphs that as the database size increases, overall tree construction and mining time
increases. However, GCoMine shows stable performance of about linear increase of runtime
consumption with respect to the database size. Therefore, it can be observed from the scal-
ability test that GCoMine can mine the correlated patterns over large databases and distinct
items with considerable amount of runtime.

7 Conclusions and future work

This paper has theoretically analyzed the basic model of correlated patterns using the con-
cepts, “items’ support intervals” and “cutoff-item-supports”. Using these two concepts, we
have shown that though the all-confidence measure satisfies the null-invariant property,
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mining correlated patterns with a single minAllConf threshold in the databases of widely
varying items’ frequencies can cause dilemma known as the rare item problem. To confront
the problem, we have proposed a generalized model of mining the patterns using the concept
of multiple minAllConf threshold values. A pattern-growth algorithm, called GCoMine,
has been proposed to discover the patterns. Using the prior knowledge regarding the items’
MIAC values and pattern-growth technique, the proposed algorithm discovers the com-
plete set of correlated patterns with a single scan on the database. The effectiveness of the
new model and proposed algorithm are shown experimentally and practically.

As a part of future work, we would like to extend our work to mine correlated patterns in
graph databases, sequential databases and multi-dimensional databases. We are also investi-
gating the methodologies to specify items MIAC values. It is also interesting to investigate
efficient mining of closed and maximal correlated patterns with the proposed model.
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