
Novel Techniques to Reduce Search Space

in Periodic-Frequent Pattern Mining

R. Uday Kiran and Masaru Kitsuregawa

Institute of Industrial Science,
The University of Tokyo, Tokyo, Japan

{uday rage,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. Periodic-frequent patterns are an important class of regular-
ities that exist in a transactional database. Informally, a frequent pattern
is said to be periodic-frequent if it appears at a regular interval specified
by the user (i.e., periodically) in a database. A pattern-growth algorithm,
called PFP-growth, has been proposed in the literature to discover the
patterns. This algorithm constructs a tid-list for a pattern and performs
a complete search on the tid-list to determine whether the corresponding
pattern is a periodic-frequent or a non-periodic-frequent pattern. In very
large databases, the tid-list of a pattern can be very long. As a result,
the task of performing a complete search over a pattern’s tid-list can
make the pattern mining a computationally expensive process. In this
paper, we have made an effort to reduce the computational cost of min-
ing the patterns. In particular, we apply greedy search on a pattern’s
tid-list to determine the periodic interestingness of a pattern. The usage
of greedy search facilitate us to prune the non-periodic-frequent patterns
with a sub-optimal solution, while finds the periodic-frequent patterns
with the global optimal solution. Thus, reducing the computational cost
of mining the patterns without missing any knowledge pertaining to the
periodic-frequent patterns. We introduce two novel pruning techniques,
and extend them to improve the performance of PFP-growth. We call
the algorithm as PFP-growth++. Experimental results show that PFP-
growth++ is runtime efficient and highly scalable as well.

Keywords: Data mining, pattern mining and periodic behaviour.

1 Introduction

Since the introduction of periodic-frequent patterns in [1], the problem of find-
ing these patterns has received a great deal of attention in data mining [2,3,4,5].
The classic application is market basket analysis, where these patterns can pro-
vide useful information pertaining to the sets of items that were not only sold
frequently, but also purchased regularly by the customers. The basic model of
periodic-frequent patterns is as follows [1].

Let I = {i1, i2, · · · , in} be the set of items. A set X = {ij , · · · , ik} ⊆ I,
where j ≤ k and j, k ∈ [1, n], is called a pattern (or an itemset). A transaction
t = (tid, Y) is a tuple, where tid represents a transaction-id (or timestamp) and

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part II, LNCS 8422, pp. 377–391, 2014.
c© Springer International Publishing Switzerland 2014

378 R.U. Kiran and M. Kitsuregawa

Y is a pattern. A transactional database TDB over I is a set of transactions,
i.e., TDB = {t1, t2, · · · , tm}, m = |TDB|, where |TDB| represents the size of
TDB in total number of transactions. If X ⊆ Y , it is said that t containsX orX
occurs in t and such transaction-id is denoted as tidXj , j ∈ [1,m]. Let TIDX =

{tidXj , · · · , tidXk }, j, k ∈ [1,m] and j ≤ k, be the set of all transaction-ids where
X occurs in TDB. The support of pattern X , denoted as S(X), represents
the number of transactions containing X in TDB, i.e., S(X) = |TIDX |. Let
tidXp and tidXq , p, q ∈ [1,m] and p < q, be the two consecutive transaction-
ids where X has appeared in TDB. The number of transactions (or the time
difference) between tidXp and tidXq can be defined as a period of X , say pXi .

That is, pXi = tidXq − tidXp . Let PX = {pX1 , pX2 , · · · , pXr }, r = |TIDX | + 1, be
the complete set of all periods of X in TDB. The periodicity of X , denoted
as Per(X) = max(pX1 , pX2 , · · · , pXr). (It was argued in the literature that the
largest period of a pattern can provide the upper limit of its periodic occurrence
characteristic.) The pattern X is said to be frequent if S(X) ≥ minSup, where
minSup represents the user-definedminimum support. The frequent patternX is
said to be periodic-frequent if Per(X) ≤ maxPer, where maxPer represents
the user-defined maximum periodicity. Please note that the support and
periodicity of a pattern can also be expressed in percentage of |TDB|.
We now explain the model using the transactional database shown in Table 1.

Table 1. Transactional database

TID Items TID Items TID Items TID Items TID Items
1 a, b 3 c, e, f, j 5 b, c, d 7 a, b, i 9 a, e, f, g
2 a, c, d, i 4 a, b, f, g, h 6 d, e, f 8 c, d, e 10 a, b, c

Example 1. The database shown in Table 1 contains 10 transactions. Therefore,
|TDB| = 10. Each transaction in this database is uniquely identifiable with
a transaction-id (tid), which also represents the timestamp of corresponding
transaction. The set of items, I = {a, b, c, d, e, f, g, h, i, j}. The set of
items ‘a’ and ‘b’, i.e., {a, b} is a pattern. It is a 2-pattern. For the purpose
of simplicity, we represent this pattern as ‘ab’. The pattern ‘ab’ occurs in tids
of 1, 4, 7 and 10. Therefore, the list of tids containing ‘ab’ (or tid-list of ‘ab’),
i.e., TIDab = {1, 4, 7, 10}. The support of ‘ab’, i.e., S(ab) = |TIDab| = 4. The
complete set of all periods for this pattern are: p1 = 1 (= 1 − tidi), p2 = 3 (=
4−1), p3 = 3 (= 7−4), p4 = 3 (= 10−7) and p5 = 0 (= 10−tidl), where tidi = 0
represents the initial transaction and tidl = |TDB| = 10 represents the tid of
last transaction in the transactional database. The periodicity of ‘ab’, denoted
as Per(ab) = max(1, 3, 3, 3, 0) = 3. If the user-specified minSup = 2, then ‘ab’ is
a frequent pattern because S(ab) ≥ minSup. If the user-specified maxPer = 3,
then the frequent pattern ‘ab’ is a periodic-frequent pattern because Per(ab) ≤
maxPer.

The periodic-frequent patterns satisfy the anti-monotonic property. That is,
“all non-empty subsets of a periodic-frequent pattern are also periodic-frequent.”

Novel Techniques to Reduce Search Space 379

Tanbeer et al. [1] have proposed a pattern-growth algorithm, called Periodic-
Frequent Pattern-growth (PFP-growth), to mine the patterns. Briefly, this al-
gorithm compresses the database into a Periodic-Frequent tree (PF-tree), and
mines it recursively to discover the patterns. The nodes in PF-tree do not main-
tain the support count as in FP-tree. Instead, they maintain a list of tids (or
a tid-list) in which the corresponding item has appeared in a database. These
tid-lists are later aggregated to derive the final tid-list of a pattern (i.e., TIDX

for pattern X). A complete search on this tid-list provides the support and
periodicity, which are later used to determine whether the corresponding pat-
tern is a periodic-frequent or a non-periodic-frequent pattern. In other words,
the PFP-growth performs a complete search on a pattern’s tid-list to determine
whether it is a periodic-frequent or a non-periodic-frequent pattern.

In very large databases, the tid-list of a pattern can be very long. As a re-
sult, the task of performing a complete search on a pattern’s tid-list can make
the pattern mining a computationally expensive process (or the PFP-growth a
computationally expensive algorithm).

In this paper, we have made an effort to reduce the computational cost of
mining the periodic-frequent patterns. The contributions of this paper are as
follows:

1. In this paper, we apply greedy search on a pattern’s tid-list to determine
whether it is a periodic-frequent or a non-periodic-frequent pattern.

2. A novel concept known as local-periodicity has been proposed in this paper.
For a pattern, the local-periodicity corresponds to a sub-optimal solution
(i.e., maximum period found in a subset of tid-list), while the periodicity
corresponds to the global optimal solution. If the local-periodicity of a pattern
fails to satisfy the maxPer, then we immediately determine the correspond-
ing pattern as a non-periodic-frequent pattern and avoid further search on
the tid-list to measure its periodicity. This results in reducing the compu-
tational cost of mining the patterns.

3. Using the concept of local-periodicity, we introduce two novel pruning tech-
niques and extend them to improve the performance of PFP-growth. We
call the algorithm as PFP-growth++. The proposed techniques facilitate
the PFP-growth++ to prune the non-periodic-frequent patterns with a sub-
optimal solution, while finds the periodic-frequent patterns with a global
optimal solution. Thus, we do not miss any knowledge pertaining to periodic-
frequent patterns.

4. Experimental results show that PFP-growth++ is runtime efficient and
highly scalable as well.

Since the real-world is non-uniform, it was observed that mining periodic-
frequent patterns with a single minSup and maxPer constraint leads to the
“rare item problem.” At high minSup, we miss the patterns involving rare items,
and at low minSup, combinatorial explosion can occur producing too many
patterns. To confront this problem, an effort has been made in [4] to mine the
patterns using multiple minSup and maxPer thresholds. Amphawan et al. [5]
have extended PFP-growth algorithm to mine top-k periodic-frequent patterns

380 R.U. Kiran and M. Kitsuregawa

in a database. As the real-world is imperfect, it was observed that the periodic-
frequent pattern mining algorithms fail to discover those interesting frequent
patterns whose appearances were almost periodic in the database. Uday and
Reddy [2] have introduced periodic-ratio to capture the almost periodic behavior
of the frequent patterns. Alternatively, Rashid et al. [3] have employed standard
deviation to assess the periodic behavior of the patterns. The discovered patterns
are known as regular frequent patterns. The algorithms used in all of the above
works are the extensions of PFP-growth, and therefore, perform a complete
search on the tid-list of a pattern. Thus, all these algorithms are computationally
expensive to use in very large databases. The pruning techniques that are going
to be discussed in this paper can be extended to improve the performance of all
these algorithms. In this paper, we confine our work to finding periodic-frequent
patterns using minSup and maxPer thresholds.

The rest of the paper is organized as follows. Section 2 describes the PFP-
growth algorithm and its performance issues. Section 3 describes the basic idea
and introduces the proposed PFP-growth++ algorithm. Section 4 presents the
experimental evaluation on both PFP-growth and PFP-growth++ algorithms.
Finally, Section 5 concludes the paper.

2 PFP-Growth and Its Performance Issues

2.1 PFP-Growth

The PFP-growth involves two steps: (i) Construction of PF-tree and (ii) Recur-
sive mining of PF-tree to discover the patterns. Before explaining these two steps,
we describe the structure of PF-tree as we also employ similar tree structure to
discover the patterns.

Structure of PF-tree. The structure of PF-tree contains PF-list and prefix-
tree. The PF-list consists of three fields – item name (i), support (f) and pe-
riodicity (p). The structure of prefix-tree is same as that of the prefix-tree in
FP-tree. However, please note that the nodes in the prefix-tree of PFP-tree do
not maintain the support count as in FP-tree. Instead, they explicitly maintain
the occurrence information for each transaction in the tree by keeping an occur-
rence transaction-id, called tid-list, only at the last node of every transaction.
Two types of nodes are maintained in a PF-tree: ordinary node and tail-node.
The former is the type of nodes similar to that used in FP-tree, whereas the
latter is the node that represents the last item of any sorted transaction. The
tail-node structure is of form I[tid1, tid2, · · · , tidn], where I is the node’s item
name and tidi, i ∈ [1, n], (n be the total number of transactions from the root
up to the node) is a tid where item I is the last item.

Construction of PF-tree. The PFP-growth scans the database and discover
periodic-frequent items (or 1-patterns) using Algorithm 1. Figure 1(a), (b) and
(c) respectively show the PF-list generated after scanning the first, second and
every transaction in the database (lines 2 to 11 in Algorithm 1). To reflect

Novel Techniques to Reduce Search Space 381

i f p id1
a 1 1 1
b 1 1 1

i f p id1
a 2 1 2
b 1 1 1
c 1 2 2
d 1 2 2

(a) (b) (c) (e)

i 1 2 2

i f p id1
a 5 3 10
b 5 3 10
c 5 3 10
d 4 3 8

e 4 3 9
f 4 3 9

g 3 6 10
h 1 4 4

i 2 5 7

j 1 3 3

i f p
a 5 3
b 5 3
c 5 3
d 4 3

e 4 3
f 4 3

g 3 6
h 1 6
(d)

i 2 5

j 1 7

i f p
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

Fig. 1. Construction of PF-list. (a) Af-
ter scanning first transaction (b) Af-
ter scanning second transaction (c)
After scanning every transaction (d)
Updated periodicity of items and (e)
Sorted list of periodic-frequent items.

{}
null

a

b:1

{}
null

a

b:1 c

d:2

(a) (b) (c)

i f p
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

{}
null

a

b:1,7

c:10 f:4

c

d:2

d

e

f:6

c

e d

e:8f:3

b

c

d:5

e

f:9

Fig. 2. Construction of PF-tree. (a)
After scanning first transaction (b) Af-
ter scanning second transaction and (c)
After scanning every transaction.

the correct periodicity for an item, the pcur value of every item in PF-list is
re-calculated by setting tcur = |TDB| (line 12 in Algorithm 1). Figure 1(d)
shows the updated periodicity of items in PF-tree. It can be observed that the
periodicity of ‘j’ and ‘h’ items have been updated from 3 and 4 to 7 and 6,
respectively. The items having f < minSup or p > maxPer are considered as
non-periodic-frequent items and pruned from the PF-list. The remaining items
are considered as periodic-frequent items and sorted in descending order of their
f (or support) value (line 13 in Algorithm 1). Figure 1(e) shows the sorted list of
periodic-frequent items. Let PI denote the sorted set of periodic-frequent items.

Using the FP-tree construction technique, only the items in the PI will take
part in the construction of PF-tree. The tree construction starts by inserting
the first transition, ‘1 : a, b’, according to PF-list order, as shown in Figure
2(a). The tail-node ‘b : 1’ carries the tid of the transaction. After removing
the non-periodic-frequent item ‘i’, the second transaction is inserted into the
tree with node ‘d : 2’ as the tail-node (see Figure 2(b)). After inserting all the
transactions in the database, we get the final PF-tree as shown in Figure 2(c).
For the simplicity of figures, we do not show the node traversal pointers in trees,
however, they are maintained in a fashion like FP-tree does.

Mining PF-tree. To discover the patterns from PF-tree, PFP-growth employs
the following steps:

i. Choosing the last item ‘i’ in the PF-tree as an initial suffix item, its prefix-tree
(denoted as PTi) constituting with the prefix sub-paths of nodes labeled ‘i’
is constructed. Figure 3(a) shows the prefix-tree for the item ‘f ’, say PTf .

ii. For each item ‘j’ in PTi, we aggregate all of its node’s tid-list to derive the
tid-list of the pattern ‘ij’, i.e., TIDij . Next, we perform a complete search on
TIDij to measure the support and periodicity of the pattern ‘ij’. Next, we
determine whether ‘ij’ is a periodic-frequent pattern or not by comparing its
support and periodicity against minSup and maxPer, respectively. If ‘ij’ is
a periodic-frequent pattern, then we consider ‘j’ is periodic-frequent in PTi.

382 R.U. Kiran and M. Kitsuregawa

Algorithm 1. PF-list (TDB: transactional database, minSup: minimum sup-
port and maxPer: maximum periodicity)

1. Let tcur denote the tid of current transaction. Let idl be a temporary array that
explicitly records the tids of last occurring transactions of all items in the PF-list.

2. for each transaction tcur in TDB do
3. if tcur is i’s first occurrence then
4. Set f = 1, idl = tcur and p = tcur.
5. else
6. Set f = f + 1, pcur = tcur − idl and idl = tcur.
7. if pcur > p then
8. p = pcur.
9. end if
10. end if
11. end for
12. Calculate pcur value of every item in the list as |TDB| − idl. Next, update the p

value of every item with pcur if pcur > p.
13. Prune the items in the PF-list that have f < minSup or p > maxPer. Consider

the remaining items as periodic-frequent items and sort them with respect to their
f value.

Example 2. Let us consider the last item ‘e’ in the PTf . The set of tids
containing ‘e’ in PTf is {3, 6, 9}. Therefore, the tid-list of the pattern ‘ef ’,
i.e., TIDef = {3, 6, 9}. A complete search on TIDef gives S(ef) = 3 and
Per(ef) = 3. Since S(ef) ≥ minSup and Per(ef) ≤ maxPer, the pattern
‘ef ’ is considered as a periodic-frequent pattern. In other words, ‘e’ is con-
sidered as a periodic-frequent item in PTf . Similar process is repeated for
the other items in PTf . The PF-list in Figure 3(a) shows the support and
periodicity of each item in PTf .

iii. Choosing every periodic-frequent item ‘j’ in PTi, we construct its condi-
tional tree, CTi, and mine it recursively to discover the patterns.

Example 3. Figure 3(b) shows the conditional-tree, CTf , derived from PTf .
It can be observed that the items ‘a’, ‘b’, ‘c’ and ‘d’ in PTf are not considered
in the construction of CTf . The reason is that they are non-periodic-frequent
items in PTf .

iv. After finding all periodic-frequent patterns for a suffix item ‘i’, we prune
it from the original PF-tree and push the corresponding nodes’ tid-lists to
their parent nodes. Next, once again we repeat the steps from i to iv until
the PF -list = ∅.
Example 4. Figure 3(c) shows the PF-tree generated after pruning the item
‘f ’ in Figure 2(c). It can be observed that the tid-list of all the nodes con-
taining ‘f ’ have been pushed to their corresponding parent nodes.

Novel Techniques to Reduce Search Space 383

i f p
a 2 5
b 1 6
c 1 7
d 1 6
e 3 3

{}
null

a

b:4

d

e:6

c

e:3e:9

i f p
e 3 3

{}
null

e:3,6,
 9

(a) (b)

i f p
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3

{}
null

a

b:1,4,
 7

c:10

c

d:2

d

e:6

c

e:3 d

e:8

b

c

d:5

e:9

(c)

Fig. 3. Mining periodic-frequent patterns using ‘f ’ as a suffix item. (a) Prefix-tree of
f , i.e., PTf (b) Conditional tree of ‘f ’, i.e., CTf and (c) PF-tree after removing item
‘f ’.

2.2 Performance Issues

We have observed that PFP-growth suffers from the following two performance
issues:

1. The PFP-growth scans the database and constructs the PF-list with every
item in the database. The non-periodic-frequent items are pruned from the
list only after the scanning of database. We have observed that this approach
can cause performance problems, which involves the increased updates and
search costs for the items in the PF-list.

Example 5. In Table 1, the items ‘g’ and ‘h’ have initially appeared in the
transaction whose tid = 4. Thus, their first period is going to be 4, which
is greater than the maxPer. In other words, these two items were non-
periodic-frequent by the time they were first identified in the database. Thus,
these two items need not have been included in the construction of PF-list.
However, PFP-growth considers these items in the construction of PF-list.
This results in the performance problems, which involves increased updates
and search cost for the items in the PF-list.

2. Another performance issue of PFP-growth lies at the Step ii of mining PF-
tree. That is, for every item ‘j’ in PTi, PFP-growth performs a complete
search on its tid-list to determine whether it is periodic-frequent or not. In
very large databases, the tid-list of a pattern (or for an item ‘j’ in PTi)
can be generally long. In such cases, performing a complete search on a
pattern’s tid-list to determine whether it is periodic-frequent or not can be a
computationally expensive process. Thus, PFP-growth is a computationally
expensive algorithm.

Example 6. Let us consider the item ‘a’ in PTf . The tid-list of ‘a’ in PTf ,

i.e., TIDaf = {4, 9}. Its periods are: paf1 = 4 (= 4 − tidi), p
af
2 = 5 (=

9 − 4) and paf3 = 1 (= tidl − 9). The PFP-growth measures periodicity =
5 (= max(4, 5, 1)), and then determines ‘a’ is not a periodic-frequent item
in PTf . In other words, PFP-growth performs a complete search on the tid-
list of ‘af ’ to determine it is not a periodic-frequent pattern. However, such
a complete search was not necessary to determine ‘af ’ as a non-periodic-
frequent pattern. It is because its first period, i.e., paf1 > maxPer.

In the next section, we discuss our approach to address the above two perfor-
mance issues of PFP-growth.

384 R.U. Kiran and M. Kitsuregawa

3 Proposed Algorithm

In this section, we first describe our basic idea. Next, we explain our PFP-
growth++ algorithm to discover the patterns.

3.1 Basic Idea: The Local-Periodicity of a Pattern

Our idea to reduce the computational cost of mining the patterns is as follows.

“ Apply greedy search on a pattern’s tid-list to derive its local-periodicity.
For a pattern, the local-periodicity represents a sub-optimal solution,
while the periodicity corresponds to the global optimal solution. If
the local-periodicity of a pattern fails to satisfy the maxPer, then
we immediately determine it as a non-periodic-frequent pattern, and
avoid further search on the tid-list to measure its actual periodicity.
Thus reducing the computational cost of mining the patterns.”

Definition 1 defines the local-periodicity of a pattern X . Example 7 illustrates
the definition. The correctness of our idea is shown in Lemma 1, and illustrated
in Example 8.

Definition 1. (Local-periodicity of pattern X.) Let PX = {pX1 , pX2 , · · · , pXn },
n = S(X) + 1, denote the complete set of periods for X in TDB. Let ̂PX =
{pX1 , pX2 , · · · , pXk }, 1 ≤ k ≤ n, be an ordered set of periods of X such that
̂PX ⊆ PX. The local-periodicity of X, denoted as loc-per(X), refers to the max-

imum period in ̂PX . That is, loc-per(X) = max(pX1 , pX2 , · · · , pXk).

Example 7. Continuing with Example 1, the set of all periods for ‘ab’, i.e., P ab =

{1, 3, 3, 0}. Let ̂P ab = {1, 3} ⊂ P ab. The local-periodicity of ‘ab’, denoted as

loc-per(ab) = max(pabj |∀pabj ∈ ̂P ab) = max(1, 3) = 3.

Lemma 1. For the pattern X, if loc-per(X) > maxPer, then X is a non-
periodic-frequent pattern.

Proof. For the pattern X , Per(X) ≥ loc-per(X) as ̂PX ⊆ PX .Therefore, if
loc-per(X) > maxPer, then Per(X) > maxPer. Hence proved.

Example 8. In Table 1, the pattern ‘af ’ occurs in tids of 4 and 9. Therefore,
TIDaf = {4, 9}. The first period of ‘af ,’ i.e., paf1 = 4 (= tidi− 4). At this point,

the loc-per(af) = paf1 = 4. Since loc-per(af) > maxPer, it is clear that ‘af ’ is
a non-periodic-frequent pattern as Per(af) ≥ loc-per(af) > maxPer.

If X is a periodic-frequent pattern, then its local-periodicity equals the pe-
riodicity. Thus, we do not miss any knowledge pertaining to periodic-frequent
patterns. The correctness of this argument is based on Property 1, and shown
in Lemma 2.

Property 1. For a pattern X , loc-per(X) ≤ Per(X) as ̂PX ⊆ PX .

Novel Techniques to Reduce Search Space 385

Lemma 2. If X is a periodic-frequent pattern, then loc-per(X) = Per(X).

Proof. If X is a periodic-frequent pattern, then we perform a complete search

on its tid-list, i.e., TIDX . Thus, ̂PX = PX . From Property 1, it turns out that
loc-per(X) = Per(X). Hence proved.

Overall, our idea of using the greedy search technique facilitates the user to
find the periodic-frequent patterns with an optimal solution, while pruning the
non-periodic-frequent patterns with a sub-optimal solution. Thus, our idea re-
duces the computational cost of mining the patterns without missing any knowl-
edge pertaining to periodic-frequent patterns.

Two novel pruning techniques have been developed based on the concept of
local-periodicity. The first pruning technique addresses the issue of pruning non-
periodic-frequent items (or 1-patterns) effectively. The second pruning technique
addresses the issue of pruning non-periodic-frequent k-patterns, k ≥ 2. These
two techniques have been discussed in subsequent subsection.

3.2 PFP-Growth++

The proposed algorithm also involves the following steps: (i) construction of PF-
tree++ and (ii) Mining PF-tree++ recursively to discover the patterns. We now
discuss each of these steps.

Construction of PF-tree++. The structure of PF-tree++ consists of two
components: (i) PF-list++ and (ii) prefix-tree. The PF-list++ consists of three
fields – item name (i), total support (f) and local-periodicity (pl). Please note
that PF-list++ do not explicitly store the periodicity of an item i as in
the PF-list. The structure of prefix-tree in PF-tree++, however, remains the
same as in PF-tree. The structure of prefix-tree has been discussed in Section 2.

Since periodic-frequent patterns satisfy the anti-monotonic property, periodic-
frequent items (or 1-patterns) play a key role in discovering the patterns effec-
tively. To discover these items, we employ a pruning technique which is based
on the concepts of 2-Phase Locking [6] (i.e., ‘expanding phase’ and ‘shrinking
phase’). We now discusses the pruning technique:

– Expanding phase: In this phase, we insert every new item found in a
transaction into the PF-list++. Thus, expanding the length of PF-list++.
This phase starts from the first transaction (i.e., tid = 1) in the database and
ends when the tid of the transaction equals to maxPer (i.e., tid = maxPer).
If the tid of a transaction is greater than the maxPer, then we do not insert
any new items found in the corresponding transaction into the PF-list++.
It is because these items are non-periodic-frequent items as their first period
(or local-periodicity) fails to satisfy the user-defined maxPer threshold.

– Shrinking phase: In this phase, we delete the non-periodic-frequent items
from the PF-list++. Thus, shrinking the length of PF-list++. The non-
periodic-frequent items are those items that have a period (or local-periodicity)

386 R.U. Kiran and M. Kitsuregawa

greater than the maxPer. This phase starts right after the completion of ex-
pansion phase (i.e., when the tid of a transaction equal to maxPer + 1) and
continues until the end of database.

i f p id1
a 1 1 1
b 1 1 1

i f p id1

a 2 1 2
b 1 1 1
c 1 2 2
d 1 2 2

i f p id1

a 2 1 2
b 1 1 1
c 2 2 3
d 1 2 2

e 1 3 3
f 1 3 3

(a) (b) (c)

i 1 2 2 i 1 2 2

j 1 3 3

l l l i f p id1
a 3 3 4
b 2 3 4
c 2 2 3
d 1 2 2

e 1 3 3
f 2 3 4

(d)

i 1 2 2

j 1 3 3

l i f p id1
a 4 3 7
b 4 3 7
c 3 2 5
d 3 3 6
e 2 3 6
f 3 3 6

i f p id1
a 6 3 10
b 5 3 10
c 5 3 10
d 4 3 8
e 4 3 9
f 4 3 9

i f p
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

(e) (f)

j 1 3 3 j 1 3 3 j 1 7

l l l

(g)

i f p
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

l

(h)

Fig. 4. The construction of PF-list++. (a) After scanning the first transaction (b)
After scanning the second transaction (c) After scanning the third transaction (d)
After scanning the fourth transaction (e) After scanning the seventh transaction (f)
After scanning all transactions (g) Measuring actual periodicity for items and (h) The
sorted list of periodic-frequent items.

Algorithm 2 shows the construction of PF-list++ using the above two phases.
We illustrate the algorithm using the database shown in Table 1. The ‘expanding
phase’ starts from the first transaction. The scan on the first transaction with
tcur = 1 results in inserting the items ‘a’ and ‘b’ in to the list with f = 1, pl = 1
and idl = 1 (lines 4 to 6 in Algorithm 2). The resultant PF-list++ is shown in
Figure 4(a). The scan on the second transaction with tcur = 2 results in adding
the items ‘c’, ‘d’ and ‘i’ into the PF-list++ with f = 1, idl = 2 and pl = 2.
Simultaneously, the f and idl values of ‘a’ are updated to 2 and 2, respectively
(lines 7 and 8 in Algorithm 2). The resultant PF-list++ was shown in Figure
4(b). Similarly, the scan on the third transaction with tcur = 3 results in adding
the items ‘e’, ‘f ’ and ‘j’ into the PF-list++ with f = 1, idl = 3 and pl = 3. In
addition, the f , p and idl values of ‘c’ are updated to 2, 2 and 3, respectively.
Figure 4(c) shows the PF-list++ generated after scanning the third transaction.
Since maxPer = 3, the expanding phase ends at tcur = 3. The ‘shrinking phase’
begins from tcur = 4. The scan on the fourth transaction, ‘4 : a, b, f, g, h’, updates
the f , pl and idl of the items ‘a’, ‘b’ and ‘f ’ accordingly as shown in Figure 4(d).
Please observe that we have not added the new items ‘g’ and ‘h’ in the PF-
list++ as their period (or local-periodicity) is greater than the maxPer (lines 11
to 16 in Algorithm 2). Similar process is repeated for the other transactions in
the database, and the PF-list++ is constructed accordingly. Figure 4(e) shows
the PF-list++ constructed after scanning the seventh transaction. It can be
observed that the non-periodic-frequent item ‘i’ was pruned from the PF-list++.
It is because its local-periodicity (or pl = 5 (= tcur − idl)) has failed to satisfy
the maxPer (line 15 in Algorithm 2). Figure 4(f) shows the initial PF-list++
constructed after scanning the entire database. Figure 4(g) shows the updated
periodicity of all items in the PF-list++ (line 19 in Algorithm 2). It can be
observed that the pl value of ‘j’ has been updated from 3 to 7. Figure 4(h) shows

Novel Techniques to Reduce Search Space 387

the set of periodic-frequent items sorted in descending order of their frequencies.
Let PI denote this sorted list of periodic-frequent items.

Using FP-tree construction technique, we perform another scan on the
database and construct prefix-tree in PI order. The construction of prefix-tree
has been discussed in Section 2. Figure 5 shows the PF-tree++ generated af-
ter scanning the database shown in Table 1. Since the local-periodicity of a
periodic-frequent item (or 1-pattern) is same as its periodicity (see Lemma 2),
the constructed PF-tree++ resembles that of the PF-tree in PFP-growth. How-
ever, there exists a key difference between these two trees, which we will discuss
while mining the patterns from PF-tree++.

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3
f 4 3

{}
null

a

b:1,7

c:10 f:4

c

d:2

d

e

f:6

c

e d

e:8f:3

b

c

d:5

e

f:9

pl

Fig. 5. The PF-tree++ gener-
ated after scanning every trans-
action in the database

i f p
a 2 4
b 1 4
c 1 7
d 1 6
e 3 3

{}
null

a

b:4

d

e:6

c

e:3e:9

i f
e 3 3

{}l pl
null

e:3,6,
 9

i f
a 6 3
b 5 3
c 5 3
d 4 3
e 4 3

{}
null

a

b:1,4,
 7

c:10

c

d:2

d

e:6

c

e:3 d

e:8

b

c

d:5

e:9

(c)

pl

(b)(a)

Fig. 6. Mining periodic-frequent patterns using ‘f ’
as suffix item. (a) Prefix-tree of suffix item ‘f ’, i.e.,
PTf (b) Conditional tree of suffix item ‘f ’, i.e., CTf

and (c) PF-tree++ after pruning item ‘f ’.

Mining PF-tree++. Choosing the last item ‘i’ in the PF-list++, we construct
its prefix-tree, say PTi, with the prefix sub-paths of nodes labeled ‘i’ in the PF-
tree++. Since ‘i’ is the bottom-most item in the PF-list++, each node labeled
‘i’ in the PF-tree++ must be a tail-node. While constructing the PTi, we map
the tid-list of every node of ‘i’ to all items in the respective path explicitly in
a temporary array. It facilitates the construction of tid-list for each item ‘j’ in
the PF-list++ of PTi, i.e., TID

ij . The length of TIDij gives the support of
‘ij’. Algorithm 3 is used to measure the local-periodicity of ‘ij.’ This algorithm
applies greedy search on the tid-list to identify whether j is periodic-frequent or
not in PTi. The pruning technique used in this algorithm is as follows:

“If loc-per(X) > maxPer, then X is a non-periodic-frequent pattern.”

If j is periodic-frequent in PTi, then its pl denotes its actual periodicity in the
database. However, if ‘j’ is non-periodic-frequent in PTi, then its pl denotes the
local-periodicity (or the period) which has failed to satisfy the maxPer. The
correctness of this technique has already been shown in Lemma 2.

Figure 6(a) shows the prefix-tree of item ‘f ’, PTf . The set of items in PTf

are ‘a’, ‘b’, ‘c’, ‘d’ and ‘e.’ Let us consider an item ‘a’ in PTf . The tid-list of the
nodes containing ‘a’ in PTf gives TIDaf = {4, 9}. The support of ‘af ’, S(af) =
2(= |TIDaf |). As S(af) ≥ 2 (= minSup), we determine ‘af ’ as a frequent
pattern. Next, we pass TIDaf as an array in Algorithm 3 to find whether ‘af ’ is

388 R.U. Kiran and M. Kitsuregawa

a periodic-frequent or a non-periodic-frequent pattern. The first period, pcur =
4 (= 4 − 0) (line 1 in Algorithm 3). As pcur > maxPer, we determine ‘af ’
as a non-periodic-frequent pattern and return pl = pcur = 4 (lines 2 to 4 in
Algorithm 3). Thus, we prevent the complete search on the tid-list of a non-
periodic-frequent pattern. Similar process is applied for the remaining items in
the PTf . The PF-list++ in Figure 6(a) shows the support and local-periodicity
of items in PTf . It can be observed that the pl value of non-periodic-frequent
items, ‘a’ and ‘b’, in PTf are set to 4 and 4, respectively. Please note that these
values are not their actual periodicity values. The actual periodicity of ‘a’ and
‘b’ in PTf are 5 and 6, respectively (see Figure 3(a)). This is the key difference
between the PFP-tree++ and PFP-tree.

The conditional tree, CTi, is constructed by removing all non-periodic-frequent
items from the PTi. If the deleted node is a tail-node, its tid-list is pushed up to
its parent node. Figure 6(b), for instance, shows the conditional tree for ‘f ’, say
CTf , from PTf . The same process of creating prefix-tree and its corresponding
conditional tree is repeated for the further extensions of ‘ij’. Once the periodic-
frequent patterns containing ‘f ’ are discovered, the item ‘f ’ is removed from the
original PF-tree++ by pushing its node’s tid-list to its respective parent nodes.
Figure 6(c) shows the resultant PF-tree++ after pruning the item ‘f ’. The whole
process of mining for each item in original PF-tree++ is repeated until its PF-
list++ 	= ∅. The above bottom-up mining technique on support-descending PF-
tree++ is efficient, because it shrinks the search space dramatically with the
progress of mining process.

4 Experimental Results

The algorithms, PFP-growth and PFP-growth++, are written in Java and run
with Ubuntu 10.04 operating system on a 2.66 GHz machine with 4GB memory.
The runtime specifies the total execution time, i.e., CPU and I/Os. We pur-
sued experiments on synthetic (T10I4D100K and T10I4D1000K) and real-world
(Retail and Kosarak) datasets. The T10I4D100K dataset contains 100,000 trans-
actions with 1000 items. The T10I4D1000K dataset contains 1,000,000 transac-
tions with 1000 items. The Retail dataset [7] contains 88,162 transactions with
16,470 items. The Kosarak dataset is a very large dataset containing 990,002
transactions and 41,270 distinct items.

The maxPer threshold varies from 0% to 100%. In this paper, we vary the
maxPer threshold from 1% to 10%. The reason is as follows. Very few (almost
nil) periodic-frequent patterns are discovered in these databases for the maxPer
values less than the 1%. Almost all frequent patterns are discovered as periodic-
frequent patterns when the maxPer values are greater than the 10%.

4.1 Discovering Periodic-Frequent Patterns

Figure 7(a) and (b) respectively show the number of periodic-frequent patterns
generated in T10I4D100K and Retail datasets at different maxPer thresholds.

Novel Techniques to Reduce Search Space 389

Algorithm 2. PF-list++ (TDB: transactional database, minSup: minimum
support and maxPer: maximum periodicity)

1. for each transaction t ∈ TDB do
2. if tcur < maxPer then
3. /*Expanding phase*/
4. if tcur is i’s first occurrence then
5. Insert i into the list and set f = 1, idl = tcur and pl = tcur.
6. else
7. Calculate pcur = tcur − idl. Set f = f + 1, idl = tcur and pl = (pcur >

pl)?pcur : pl.
8. end if
9. else
10. /*Shrinking phase*/
11. Calculate pcur = tcur − idl.
12. if pcur < maxPer then
13. Set f = f + 1, idl = tcur and pl = (pcur > pl)?pcur : pl.
14. else
15. Remove i from PF-list++.
16. end if
17. end if
18. end for
19. For each item in the PF-list++, we re-calculate pcur value as |TDB| − idl, and

prune the non-periodic-frequent items.

The minSup values are set at 0.01% and 0.01% in T10I4D100K and Retail
datasets, respectively. The usage of a low minSup value in these datasets facil-
itate us to discover periodic-frequent patterns involving both frequent and rare
items. It can be observed that the increase in maxPer has increased the number
of periodic-frequent patterns. It is because some of the periods of a patterns that
are earlier considered aperiodic have been considered periodic with the increase
in maxPrd threshold.

4.2 Runtime for Mining Periodic-Frequent Patterns

Figure 8(a) and (b) shows the runtime taken by PFP-growth and PFP-growth++
algorithms to discover periodic-frequent patterns at different maxPer thresholds
in T10I4D100K and Retail datasets, respectively. The following three observa-
tions can be drawn from these figures: (i) Increase in maxPer threshold has
increased the runtime for both the algorithms. It is because of the increase in
number of periodic-frequent pattern with the increase in maxPer threshold. (ii)
At any maxPer threshold , the runtime of PFP-growth++ is no more than the
runtime of PFP-growth. It is because of the greedy search technique employed by
the PFP-growth++ algorithm. (iii) At a lowmaxPer value, the PFP-growth++
algorithm has outperformed the PFP-growth by an order of magnitude. It is be-
cause the PFP-growth++ has performed only partial search on the tid-lists of
non-periodic-frequent patterns.

390 R.U. Kiran and M. Kitsuregawa

Algorithm 3. CalculateLocalPeriodicity (TID: an array of tid’s containing X .)

1. Set pl = −1 and pcur = TID[0] (= TID[1]− 0).
2. if pcur > maxPer then
3. return pcur; /*(as pl value).*/
4. end if
5. for i = 1; i < TID.length− 1;++i do
6. Calculate pcur = TID[i+ 1]− TID[i].
7. pl = (pcur > pl)?pcur : pl

8. if pl > maxPer then
9. return pl;
10. end if
11. end for
12. Calculate pcur = |TDB|−TID[TID.length], and repeat the steps numbered from

7 to 10.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1% 2.5% 5% 7% 10%

maxPrd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1% 2.5% 5% 7% 10%

maxPrd

nu
m

be
r

of
 p

at
te

rn
s

(a) T10I4D100K (b) Retail

nu
m

be
r

of
 p

at
te

rn
s

Fig. 7. Periodic-frequent patterns discov-
ered at different maxPer thresholds in var-
ious datasets.

 0

 10

 20

 30

 40

 50

 1% 2.5% 5% 7.5% 10%
 0

 10

 20

 30

 40

 50

 1% 2.5% 5% 7.5% 10%

maxPrd

R
u
n
tim

e
 (

se
c)

maxPrd

R
u
n
tim

e
 (

se
c)

(a)T10I4D100K (b)Retail

PF-growth

PF-growth++

PF-growth

PF-growth++

Fig. 8. Runtime comparison of PF-
growth and PF-growth++ algorithms at
different maxPer thresholds in various
datasets.

4.3 Scalability Test

We study the scalability of PFP-growth and PFP-growth++ algorithms on
execution time by varying the number of transactions in T 10I4D1000K and
Kosarak datasets. In the literature, these two datasets were widely used to study
the scalability of algorithms. The experimental setup was as follows. Each dataset
was divided into five portions with 0.2 million transactions in each part. Then, we
investigated the performance of both algorithms after accumulating each portion
with previous parts. We fixed the minSup = 1% and maxPer = 2.5%.

Figure 9(a) and (b) shows the runtime requirements of PFP-growth and PFP-
growth++ algorithms in T 10I4D1000K and Kosarak datasets, respectively. It
can be observed that the increase in dataset size has increased the runtime of both
the algorithms. However, the proposed PFP-growth++ has taken relatively less

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

R
un

tim
e

(s
)

Database size (100K)

PFP-growth

(a) T10I4D1000K

 0

 50

 100

 150

 200

 250

 2 4 6 8 9.9

R
un

tim
e

(s
)

Database size (100K)

(b) Kosarak

PFP-growth++

PFP-growth

PFP-growth++

Fig. 9. Scalability of PFP-growth and PFP-growth++ algorithms

Novel Techniques to Reduce Search Space 391

runtime than the PFP-growth. In particular, as the dataset size increases, the pro-
posed PFP-growth++ algorithm has outperformed PFP-growth by an order of
magnitude. The reason is as follows. The tid-list of a pattern gets increasedwith the
increase in the database size. The complete search on the tid-list of both periodic-
frequent and non-periodic-frequent patterns by PFP-growth has increased its run-
time requirements. The partial search on the tid-list of a non-periodic-frequent
pattern has facilitated the PFP-growth++ to reduce its runtime requirements.

5 Conclusions and Future Work

In this paper, we have employed greedy search technique to reduce the computa-
tional cost of mining the periodic-frequent patterns. The usage of greedy search
technique facilitated the user to find the periodic-frequent patterns with the
global optimal solution, while pruning the non-periodic-frequent patterns with
a sub-optimal solution. Thus, reducing the computational cost of mining the
patterns without missing any useful knowledge pertaining to periodic-frequent
patterns. Two novel pruning techniques have been introduced to discover the
patterns effectively. A pattern-growth algorithm, known as PFP-growth++, has
been proposed to discover the patterns. Experimental results show that the pro-
posed PFP-growth++ is runtime efficient and scalable as well.

As a part of future work, we would like to extend the proposed concepts to
mine partial periodic-frequent patterns in a database. In addition, we would like
to investigate alternative search techniques to further reduce the computational
cost of mining the patterns.

References

1. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent
patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone,
N., Ho, T.-B. (eds.) PAKDD2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg
(2009)

2. Kiran, R.U., Reddy, P.K.: An alternative interestingness measure for mining
periodic-frequent patterns. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part I. LNCS, vol. 6587, pp. 183–192. Springer, Heidelberg (2011)

3. Rashid, M. M., Karim, M. R., Jeong, B.-S., Choi, H.-J.: Efficient mining regularly
frequent patterns in transactional databases. In: Lee, S.-g., Peng, Z., Zhou, X.,
Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part I. LNCS, vol. 7238,
pp. 258–271. Springer, Heidelberg (2012)

4. Uday Kiran, R., Krishna Reddy, P.: Towards efficient mining of periodic-frequent pat-
terns in transactional databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G.
(eds.) DEXA2010, Part II. LNCS, vol. 6262, pp. 194–208. Springer, Heidelberg (2010)

5. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern
from transactional databases without support threshold. In: Papasratorn, B., Chuti-
maskul, W., Porkaew, K., Vanijja, V. (eds.) IAIT 2009. CCIS, vol. 55, pp. 18–29.
Springer, Heidelberg (2009)

6. Gray, J.: Notes on data base operating systems. In: Advanced Course: Operating
Systems, pp. 393–481 (1978)

7. Brijs, T., Goethals, B., Swinnen, G., Vanhoof, K., Wets, G.: A data mining frame-
work for optimal product selection in retail supermarket data: The generalized prof-
set model. In: KDD, pp. 300–304 (2000)

	Novel Techniques to Reduce Search Spacein Periodic-Frequent Pattern Mining
	1 Introduction
	2 PFP-Growth and Its Performance Issues
	2.1 PFP-Growth
	2.2 Performance Issues

	3 Proposed Algorithm
	3.1 Basic Idea: The Local-Periodicity of a Pattern
	3.2 PFP-Growth++

	4 Experimental Results
	4.1 Discovering Periodic-Frequent Patterns
	4.2 Runtime for Mining Periodic-Frequent Patterns
	4.3 Scalability Test

	5 Conclusions and Future Work
	References

