
World Wide Web (2014) 17:595–626
DOI 10.1007/s11280-012-0195-z

Exploration on efficient similar sentences extraction

Yanhui Gu ·Zhenglu Yang ·Guandong Xu ·
Miyuki Nakano ·Masashi Toyoda ·
Masaru Kitsuregawa

Received: 18 July 2012 / Revised: 17 November 2012 /
Accepted: 21 November 2012 / Published online: 6 January 2013
© Springer Science+Business Media New York 2013

Abstract Measuring the semantic similarity between sentences is an essential issue
for many applications, such as text summarization, Web page retrieval, question-
answer model, image extraction, and so forth. A few studies have explored on
this issue by several techniques, e.g., knowledge-based strategies, corpus-based
strategies, hybrid strategies, etc. Most of these studies focus on how to improve
the effectiveness of the problem. In this paper, we address the efficiency issue,
i.e., for a given sentence collection, how to efficiently discover the top-k semantic
similar sentences to a query. The previous methods cannot handle the big data
efficiently, i.e., applying such strategies directly is time consuming because every
candidate sentence needs to be tested. In this paper, we propose efficient strategies
to tackle such problem based on a general framework. The basic idea is that for
each similarity, we build a corresponding index in the preprocessing. Traversing these
indices in the querying process can avoid to test many candidates, so as to improve

Y. Gu · Z. Yang (B) · M. Nakano · M. Toyoda · M. Kitsuregawa
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
e-mail: yangzl@tkl.iis.u-tokyo.ac.jp

Y. Gu
e-mail: guyanhui@tkl.iis.u-tokyo.ac.jp

M. Nakano
e-mail: miyuki@tkl.iis.u-tokyo.ac.jp

M. Toyoda
e-mail: toyoda@tkl.iis.u-tokyo.ac.jp

M. Kitsuregawa
e-mail: kitsure@tkl.iis.u-tokyo.ac.jp

G. Xu (B)
Advanced Analytics Institute, University of Technology Sydney,
Sydney, New South Wales, Australia
e-mail: guandong.xu@uts.edu.au

596 World Wide Web (2014) 17:595–626

the efficiency. Moreover, an optimal aggregation algorithm is introduced to assemble
these similarities. Our framework is general enough that many similarity metrics can
be incorporated, as will be discussed in the paper. We conduct extensive experimen-
tal evaluation on three real datasets to evaluate the efficiency of our proposal. In
addition, we illustrate the trade-off between the effectiveness and efficiency. The
experimental results demonstrate that the performance of our proposal outperforms
the state-of-the-art techniques on efficiency while keeping the same high precision
as them.

Keywords semantic similarity ·query aggregation · top-k

1 Introduction

Measuring semantic similarity between sentences is an essential issue because it is
the basis of many applications, such as snippet extraction, image retrieval, question-
answer model, document retrieval, and so forth [5, 8, 39, 41, 47, 62, 63].

Traditional techniques, for measuring similarity between documents (long texts),
e.g., TF-IDF [27], have been introduced based on an intuitive assumption that
many common words exit in similar documents [52–54]. However, these methods
are inappropriate for measuring similarities between sentences because for short
texts common words are few or even null [35, 40, 51, 57]. To tackle this challenge,
many strategies have been proposed, which can be classified into four kinds of
techniques to measure the similarity between sentences: (1) knowledge-based strat-
egy [13, 40, 57]; (2) string similarity based strategy [7, 33, 42, 43, 59]; (3) corpus-
based strategy [24, 30, 31, 58]; and (4) hybrid strategy [24, 35, 58]. Knowledge-based
strategy (e.g., WordNet [32]) utilizes the labeled (or semi-labeled) data for text
related research tasks. In [57], the authors firstly create semantic networks from word
thesauri and then measure the relatedness between words. Finally, they compute
the similarities between sentences based on the semantic network. The hierarchy
property of WordNet has been explored in [35]. The similarity is estimated from
the hierarchy based on a node counting strategy. String similarity based strategy
measures the difference of the character position between two words [7, 33]. For
instance, edit distance (a.k.a, the Levenshtein distance) is a classical string metric for
measuring the syntax difference between two sequences. There are many algorithms
which have used q-gram based strategies [42, 43, 59] to measure the edit distance.
Corpus based strategy estimates the statistical information of large corpus to calcu-
late the similarity between two texts, i.e., LSA (Latent Semantic Analysis) [12, 31]
and HAL (Hyperspace Analogues to Language) [4]. In the LSA approach, a few of
representative words will first need to be identified from a large number of contexts,
i.e., corpus. Then the SVD (Singular Value Decomposition) technique will be applied
to reduce the dimensionality. A vector for each sentence is formed in the reduced
dimension space and finally similarity is measured by computing the similarity
between these two vectors [12]. HAL builds a word-by-word matrix based on word
co-occurrences within a moving window of a predefined width. The similarity can be
measured based on the matrix. In [13], the author represents the meaning of texts
in a high-dimensional space of concepts derived from Wikipedia and apply machine

World Wide Web (2014) 17:595–626 597

learning techniques to explicitly represent the meaning of any text as a weighted
vector of Wikipeida-based concept to measure the similarities between texts. Hybrid
strategy integrates several (or all) techniques mentioned above [24, 35, 58].

Currently, searching similar sentences from big data is an important issue [2, 37,
70]. From a given sentence collection, this kind of queries asks for those sentences
which are most semantically similar to a given one. The problem can be solved as
follows: we firstly measure the semantic similarity score between the query and each
sentence in the data collection using the state-of-the-art techniques [24, 35, 40, 51, 57],
then sort them with regard to the score and finally return the top-k ones. Almost
all the previous studies focus on improving the effectiveness (i.e., precision) of the
problem and the datasets conducted are small. However, when the size of the data
collection increases, the scale of the problem will dramatically increase and the state-
of-the-art techniques will be impractical [14, 15, 21, 22, 28, 44, 48, 67]. As far as we
know, this paper is the first study that aims to address the efficiency issue in the
literature. Moreover, most of the previous strategies applied the threshold-based
strategy [24, 35, 57], that a threshold is predefined to filter out those dissimilar
sequences. However, this threshold is difficult for users to determine. For real
applications (e.g., Google), users may prefer the top-k results.

Naively testing every candidate sentence is time consuming, especially when the
size of the sentence collection is huge. To tackle this issue, we introduce efficient
strategies to evaluate as few candidates as possible. Moreover, we aim to progres-
sively output the top-k results, i.e., the top-1 result should be output almost instantly,
then the top-2 and more results will be obtained as the execution time becomes
longer. This satisfies the requirement of the real applications [19]. As such, these
issues are the challenges of the paper, which have not been studied before.

It should be noted that other optimization strategies such as caching [50], parallel
processing [61] may improve the efficiency. However, all of these approaches need
additional techniques and such extension is out of the scope of this paper. Our
contributions of this paper are listed as follows:

– We propose to tackle the efficiency issue for searching top-k semantic similar sen-
tences, which is different from the previous works that focus on the effectiveness
aspect. This is a very important issue because in many real applications the data
becomes too huge to be practically dealt with. Based on the most comprehensive
work [24], we maintain the same effectiveness (i.e., precision) while aiming at
improving the efficiency.

– We propose efficient strategies to extract the top-k results. For each similarity
measurement, we introduce a corresponding strategy to minimize the number of
candidates to be evaluated. A rank aggregation method is introduced to progres-
sively obtain the top-k results when assembling the features. Detail analysis on
time and space complexity is presented. Moreover, we illustrate the workflow of
our proposal by using an concrete example.

– We conduct comprehensive experiments and evaluate the performance of the
proposed strategies. The results show that the proposed strategies outperform
the state-of-the-art method. We also illustrate the trade-off between effectiveness
and efficiency on different datasets.

– Our introduced framework is general enough that more similarity metrics can be
incorporated and will be discussed in this paper.

598 World Wide Web (2014) 17:595–626

2 Related work

There are many studies [3, 13, 34, 43, 46, 49, 56, 59] introduced to measure the
similarities between words, i.e., string similarity or semantic similarity. To estimate
the string similarity between two words, quite a few metrics are introduced, e.g.,
edit-distance [1], hamming distance [16], Damerau Levenshtein distance [9], Jaro
distance [25], etc. On the other hand, there are many strategies proposed for mea-
suring the semantic similarity between two words. Based on the different strategies
applied, the existing work can be classified into external resources based [32, 34, 56]
and statistics information based [3, 12, 13, 31]. String similarity only measures
the difference of positions between words, while semantic similarity can measure
the latent meaning between two words. Therefore, taking into account the string
similarity and semantic similarity comprehensively seems to be an optimal solution,
as demonstrated in [24, 34, 35, 46, 58].

Text is composed of words. Measuring similarity between long texts has been
extensively studied [18, 30, 36, 38] while just a few of them can be directly applied to
the sentence similarity measurement because of the short length property [24, 35, 40].
Based on the different strategies applied, the existing work on measuring similarity
between sentences can be classified into several categories:

Word co-occurrence or vector-based model strategy. This strategy is commonly
used in information retrieval systems [38]. The basic idea is that, the text is first
represented as a bag of words in a vector-based model. Thereafter, the traditional
similarity measurements, i.e., cosine, Jaccard, etc., can be applied. However, this
kind of term-wise similarity strategy which directly applies the classic document
similarity approaches [6, 54] often obtains inadequate results for sentences because
of the length of short text (i.e., sentences) and the limited common terms between
sentences [24, 35, 40, 57]. Therefore, measuring the similarity between sentences
should capture more semantic context.

String similarity based strategy. Many strategies estimate the string similarity be-
tween two texts [7, 33]. For instance, edit distance (a.k.a, the Levenshtein distance) is
a classical string metric for measuring the syntax difference between two sequences.
There are many algorithms which have used q-gram based strategies [42, 43, 59]
to compute the edit distance between words. In [66] the authors proposed several
strategies, e.g., adaptive q-gram selection, to efficiently retrieval the top-k results.
In [55], the authors introduced deliberated techniques, e.g., divide-skip-merge, to
extract similar strings.

Knowledge-based strategy. Knowledge base (sometimes called word thesauri), e.g.,
WordNet [32], contains the labeled (or semi-labeled) data for text related research
tasks. In [57], they firstly create semantic networks from word thesauri and then
measure the relatedness between words based on these semantic networks. The
text-to-text semantic relatedness is composed of word-to-word similarity, which is
computed by measuring the semantic relatedness between words in the networks.
The hierarchy property of WordNet has been explored in [35]. The word pair

World Wide Web (2014) 17:595–626 599

similarity is estimated from the hierarchy based on a node counting strategy, i.e.,
calculating the number of nodes between the target words.

Corpus-based strategy. Large corpus is taken into account as a third-party resource
which can fairly reflect the distribution of texts. This statistical information is thus,
can be used to calculate the similarity between two words or texts. Some well known
methods in corpus-based similarity are LSA (Latent Semantic Analysis) [12, 31]
and HAL (Hyperspace Analogues to Language) [4]. In the LSA approach, a few
of representative words will first need to be identified from a large number of
contexts, i.e., corpus. Then the SVD (Singular Value Decomposition) technique will
be applied to reduce the dimensionality. A vector for each sentence is formed in
the reduced dimension space and finally similarity is measured by computing the
similarity between these two vectors [12]. Because of the computation limitation
of SVD, the dimension size of the context matrix is limited to several hundred.
Since LSA ignores the syntactic information, it is more appropriate for large texts
instead of the sentences [31]. HAL is closely related to LSA and it captures the
meaning of a word or text by using lexical co-occurrence. Unlike LSA, which builds
an information matrix of words based on text units of paragraphs or documents,
HAL builds a word-by-word matrix based on word co-occurrences within a moving
window of a predefined width. Therefore its drawback may be due to the building
of the memory matrix and its approach to forming sentence vectors, i.e., the word-
by-word matrix does not capture sentence meaning well and the sentence vector
becomes diluted since a large number of words are added to it [4]. ESA (Explicit
Semantic Analysis) [13] represents the meaning of texts in a high-dimensional space
of concepts derived from Wikipedia. It applies machine learning techniques to
explicitly represent the meaning of any text as a weighted vector of Wikipeida-based
concept.

Hybrid strategy. To tackle the drawback of single strategy, the hybrid strategy was
proposed [24, 35, 58]. The combination of knowledge based strategy and word order
based strategy was proposed in [35]. In this paper, the authors present a method
for measuring the semantic similarity between sentences which is based on semantic
and word order information. They apply the knowledge base as the outer semantic
resource. In [24], the authors apply the string based strategy, the word order based
strategy, and the corpus strategy. The three strategies are linearly aggregated to
measure the similarity between sentences. The string similarity measures the gram
level relatedness while the corpus based strategy takes into account the seman-
tic relatedness between two words. The word order based strategy measures the
syntax similarity between sentences based on the order of the common words in
sentences.

However, all the existing approaches have not taken into account the efficiency
issue, which is an important issue for large data [14, 15, 21, 22, 28, 44, 48, 67].
When searching the top-k similar sentences, these techniques need to evaluate all
the candidate sentences in the data collection, which are very time consuming.

Materializing all the similarities of sentence pairs in the preprocessing may be
a possible solution. However, the data is frequently updated, e.g., the Web data.
Storing and computing frequently all the similarities is time and space consuming.

600 World Wide Web (2014) 17:595–626

Moreover, due to the unpredictable property of user input, e.g., misspelled sentences,
we can not preserve all the similarities, e.g., string similarity, beforehand. As a
consequence, computing the similarities on-the-fly seems to be a practical solution
to the similar sentences extraction.

Some studies [17, 46] were introduced from another perspective. They regard
that the previous approaches only consider the resources as a static collection
of texts or concepts. There is additional resource of rich information about the
semantic similarity of words which can be revealed by studying the patterns of word
occurrence over time. Therefore, they compute the word similarity using temporal
semantic analysis.

The research introduced in this paper (searching semantic similar sentences)
is related to the linguistic aspect of the faceted search and interactive semantics.
Faceted search (i.e., faceted browsing) is a search paradigm which is developed
originally in the field of information retrieval [29, 70–72]. The idea of the scheme
is to analyze and index search items along multiple orthogonal taxonomies that are
called subject facets. This basic idea has been developed into semantic faceted search
later, where the facets are based on ontological structures, e.g., subclass and part-
of hierarchies. Therefore, searching in a faceted semantic space seeks to improve
the search accuracy by understanding the intention of users and the contextual
meaning of terms either on the Web [75] or within a closed system. The semantics
can be represented in a space [68, 73] or by links [69]. To discover more accurate
results, the interactive semantic techniques were introduced in [70]. Different from
the traditional dataspace, the model based on the probabilistic resource space
was proposed in [74]. In the context of faceted search and semantic interaction,
semantic similarity and query efficiency are two important factors needed to be
fully addressed. Semantic similarity is the foundation of all semantic computation,
no matter which types the data objects are, e.g., words, sentences and documents.
Query efficiency is another key issue involved in search especially for large data.
The study proposed in this paper aims to address the above two issues, especially in
applications of semantic similar sentence extraction. Our proposed techniques in this
paper can be seamlessly coupled with the traditional strategies to tackle the issues of
faceted search and interactive semantics.

3 Problem statement

The issue we aim to tackle is to extract the top-k similar sentences to a query.
Formally, for a query sentence Q, finding a set of k sentences P in a given sentence
collection S which are most similar to Q, i.e., ∀p ∈ P and ∀r ∈ (S − P) will yield
sim(Q, p) ≥ sim(Q, r).

To measure the similarity sim(Q, P) between two sentences, we apply the state-of-
the-art strategies by assembling multiple similarity metric features together [24, 35].
Because we focus on tackling the efficiency issue in this paper, we select several
representative features based on the framework which was introduced in [24]. Note
that a sentence is composed of a set of words and therefore, the similarity score
between two sentences is the overall scores of all the word pairs whose components
belong to each sentence, respectively. See [24] for detail on computing sentence

World Wide Web (2014) 17:595–626 601

similarity based on word similarity. We will introduce the representative word
similarity in the next section.

3.1 Similarity measurement strategies

3.1.1 String-based similarity

String similarity measures the difference of syntax between strings. An intuitive
idea is that two strings are similar to each other if they have enough common
subsequences (i.e., LCS [20]). We focus on three representative string similarity
measurement strategies, i.e., NLCS, NMCLCS1 and NMCLCSn1 which are denoted
as SimNLCS, SimNMCLCS1 and SimNMCLCSn .

NLCS LCS is a common string similarity measurement strategy and it measures
the longest common subsequence of two strings. NLCS is the normalized LCS of two
words wi and wj, defined as follows:

SimNLCS(wi, wj) = length2(LCS)

length(wi) · length(wj)
(1)

NMCLCS1 NMCLCS1 measures the similarity between two strings where they
have the maximal consecutive LCS from the first character. Different from NLCS,
NMCLCS1 has two properties: (1) the longest common subsequence in NMCLCS1

should be consecutive; and (2) the common subsequence should start from the
first character of each string. The NMCCLS1similarity is calculated based on the
following formula:

SimNMCLCS1(wi, wj) = length2(MCLCS1)

length(wi) · length(wj)
(2)

NMCLCSn Similar to NMCLCS1, NMCLCSn measures the similarity between two
strings where they have the maximal consecutive common subsequence. The only
difference here is that it can start at any position, defined as follows:

SimNMCLCSn(wi, wj) = length2(MCLCSn)

length(wi) · length(wj)
(3)

For detail information about these string similarities, refer [24].

3.1.2 Corpus-based similarity

Corpus-based similarity measurement strategy is to recognize the degree of similarity
between words using large corpora [31]. There are several kinds of strategies: PMI-
IR [58], LSA [30], HAL [4], chi-square, log-likelihood, and so forth. In this paper,

1NLCS: Normalized Longest Common Substring, NMCLCS1: Normalized Maximal Consecutive
LCS starting at character 1, NMCLCSn: Normalized Maximal Consecutive LCS starting at any
character n [24].

602 World Wide Web (2014) 17:595–626

we use the SOC-PMI (Second Order Co-occurrence PMI) [23, 24] which employs
PMI-IR to take into account the important neighbor words in a context window of
the two target words from a large corpus. The PMI-IR between two words, word w1

and w2, is defined as follows [58]:

f pmi(w1, w2) = log2
p(w1, w2)

p(w1) · p(w2)
(4)

where, p(wi) is the probability that wi occurs in corpus and p(w1, w2) is the proba-
bility that w1 and w2 co-occur. Since probability is a measure of the expectation that
an event will occur or a statement is true, e.g., in (4), we have p(wi) = f (wi)

m , where
f (wi) is the frequency that wi occurs in the whole corpus, m is the size of corpus. So,
(4) can be represented as follows:

f pmi(w1, w2) = log2

f (w1,w2)

m
f (w1)

m · f (w2)

m

= log2
f (w1, w2) · m
f (w1) · f (w2)

(5)

The main characteristic of the SOC-PMI method is that we can determine the
semantic similarity of two words even though they do not co-occur within the window
size in the corpus at all. In fact, we are considering the second order co-occurrences,
as we are judging by the co-occurrences of the neighbor words, but not only the co-
occurrence of the two target words. PMI-IR and many other corpus-based semantic
similarity measures do not have such characteristic. However, SOC-PMI applies the
basic PMI-IR in measuring each pair of words and the intuitive idea is that the
neighbors of the two target words have abundant semantic context and should be
considered. Equation (5) is used to calculate the similarities between word pairs (i.e.,
including neighbor words), and then high PMI scores are aggregated to obtain the
final SOC-PMI score. Refer [23] for detail.

3.2 A general framework

To measure the overall similarity between two sentences, a general framework is
presented by incorporating all the similarity measure strategies. As far as we know,
[24] is the most comprehensive approach which incorporates several representative
similarity metrics (i.e., string similarity and semantic similarity2). Due to lack of large
labeled data, the existing state-of-the-art assembling techniques commonly set the
weight values arbitrarily [24, 35, 40, 51]. We apply the same strategy (i.e., the same
weigh value α, αstring = αsemantic = 1

2). While obtaining optimal values of these weights
is certainly an interesting issue, it is out of the scope of this paper. We argue that this
work is orthogonal to the existing effectiveness-oriented studies in a complementary
manner. As the experiments shows, our approach can obtain the same high precision
as the state-of-the-art ones.

2The common word order similarity is neglected here because [24] has demonstrated that it has no
influence on the overall score.

World Wide Web (2014) 17:595–626 603

query sentence:

(SOC-PMI)

String

Sentence collection

ID

NLCS

cheapest online hosting in Japan

Japan hosted the 50th World Table Tennis Championships.

S1

S5

S6

S4

S8
S7

S3

S2

Domain is free for the first year.

Sean is living with a host family in Tokyo now.

He is always playing online games after shool.

My impression of Japan is Sumo, Mount Fuji, Sushi, etc.

It is the best web hosting company in 2011.

It is the higest cost-effective web hosting service in Nihon.
Lunch of this cafe doesn’t cost you much.

sentence

MCLCS1

MCLCSn

S7

S1

S5
S6

S4

S8

S3
S2

ID Score

Similarity

Semantic
Similarity

Bases

Bases

0.6111
0.5860
0.5704
0.4141
0.3725
0.2600
0.1878
0.1654

0.4538

0.4209

0.3568

0.3297
0.2102

0.1562

0.1454

0.1006

0.8012

0.7839

0.7362
0.5421

0.4985
0.3098

0.2302

0.2194

0.5683

0.5601

0.4291

0.3920
0.2622

0.1994

0.1844

0.1783

0.2912

0.2501

0.2421

0.2105
0.1654

0.1105

0.1052

0.1012

0.4561

0.4523
0.4317

0.3912

0.1587

0.1579

0.1567

0.0122

S7

S1

S5
S6

S4

S8

S3
S2

ID Score

S7

S1

S5
S6

S4

S8

S3
S2

ID Score

S7

S1

S5
S6

S4

S8

S3
S2

ID Score

S7

S1

S5
S6

S4

S8

S3
S2

ID Score S8

S3

S6
S1

S2

S4

S5
S7

ID Score
Sorted Score

Figure 1 The implementation of the top-k similar sentences searching framework.

The string similarity is further composed of three different measurements, i.e.,
NLCS, NMCLCS1, and NMCLCSn. Figure 1 illustrates the general framework for
searching the top-k similar sentences. Suppose we have 8 sentences in the sentence
collection, for a given query sentence “cheapest online hosting in Japan”, the existing
strategies compute the similarity scores of all the sentence pairs between the query
and each sentence in the collection. Then linearly aggregate the similarity scores
based on sentence IDs. Finally, the top-k value can be retrieved after sorting these
similarity scores. However, it is very time consuming especially when the data
collection is large. Therefore, efficient strategies on searching top-k semantic similar
sentences are necessary.

4 Proposed approaches

In this section, we propose efficient strategies for extracting the top-k similar
sentences. The key idea is that by building appropriate index in the preprocessing,
we only need to test a small part candidates of the whole data collection. The opti-
mizations on the two similarity features are fulfilled on the word level (Sections 4.1
and 4.2). Efficient computation on sentence similarity is presented in Section 4.3. The
optimization on assembling similarity features is introduced in Section 4.4.

4.1 Optimization on string-based similarity

We employ NLCS, NMCLCS1 and NMCLCSn as our string-based similarity fea-
tures [24]. Discussion on other similarities will be presented in Section 6.

• NLCS The basic idea for improving the efficiency of similar word extraction, is to
test as few candidates as possible. To address this issue, in the preprocessing we need

604 World Wide Web (2014) 17:595–626

to build an effective index which facilitates the candidate test process. A well known
technique is n-gram (or q-gram [59]) model, which is utilized in our framework.
Moreover, because our purpose is to search the top-k similar words, we can further
improve the efficiency based on the property of the similarity.

From (1) we know that NLCS is based on two factors: (1) length of LCS; and (2)
length of the candidate word wi (length of the query is not taken into account because
we cannot know it in the preprocessing). The similarity increases when length(LCS)
increases or length(wi) decreases. Based on this property, we have the following
lemma.

Lemma 1 (Lower bound of gram length) Let P be the top-k similar word to the query
Q so far. Q and P have the NLCS score as τtop−k. We denote the set R be the untested
words and the gram set G be the untested grams. If ∀g ∈ G and ∀r ∈ R, |gr| < |Q| ·
τtop−k, then the top-k similar words w.r.t. string similarity score have been found.

Proof (Sketch of Proof) (Proof by Contradiction) Assume there is one candidate
word r with gram |gr| < |Q| · τtop−k in R and it is ranked in the top-k list. Then

we have Sim(Q, r) ≥ τtop−k, |gr |2
|Q||r| ≥ τtop−k, |gr|2 ≥ |Q| · |r| · τtop−k, since |r| ≥ |gr| in

any case, so |Q| · |r| · τtop−k ≥ |Q| · |gr| · τtop−k, accordingly |gr|2 ≥ |Q| · |gr| · τtop−k,
we can get |gr| ≥ |Q| · τtop−k, which contradicts the assumption. ��

This lemma tells us that we can sort all the grams in descending order of their
lengths in the index. Moreover, for each gram, we sort all the corresponding words
(which include this gram) in ascending order of their lengths. To search the top-k
similar words, we start from the word list which has the longest gram. In the list,
we first test shorter words. A concrete example is presented in Figure 2 to illustrate
the process. Suppose we want to obtain the top-1 similar word to the query host. By
extracting the corresponding gram lists (i.e., decompose the query into grams) from
the index, we first test the word hoster, where SimNLCS(host, hoster) = 16

24 . The lower
bound is therefore, equal to 16

6 = 2.67. So the grams whose lengths are less than
2.67 can be omitted and those related words (e.g., ho) do not need to be tested. The
pseudo code is shown in Algorithm 1. Line 1 is to index for the whole data collection
and lines [2–5] is query preprocessing. The query includes parsing query into grams
and extracting the corresponding gram lists GQ from the whole gram G. We compute
the threshold τ in lines [6–8] and put it into a max_queue which is illustrated in lines
[10–14]. The top value will be outputted if the inequality |g| < |Q| · τtop−1 is satisfied.
If not, we test the other words and compute the new threshold τ which is presented
in lines [17–21]. The algorithm will terminated when all results are retrieved.

• NMCLCS1 This similarity measures the maximal common consecutive prefix
substrings of two strings. We give an analysis similar to that of NLCS. From (2), we
can see that NMCLCS1 is determined by two factors: length of MCLCS1 and length
of candidate word in the collection. The NMCLCS1 similarity increases when the
length of MCLCS1 increases or the length of the candidate decreases. Therefore, we
can build a gram index that all the grams are in descending order of their lengths.
For each gram, the related words are sorted in ascending order of their lengths.

World Wide Web (2014) 17:595–626 605

The difference for indices between NLCS and NMCLCS1 is that the grams for the
latter are only a part of the former (i.e., those grams should start at the beginning
of each string). The lower bound used to terminate the process is |Q| · τtop−k. The
computation of τtop−k is based on (2). The algorithm of searching top-k similar words
for NMCLCS1 is very similar to that for NLCS. We can modify the code on lines [1,
7, 20] in Algorithm 1 accordingly and the pseudo code is shown in Algorithm 2. The
only difference between Algorithms 1 and 2 is how to parse words into grams.

Figure 2 Illustration on
boundary of NLCS. grams

host
hos
hot
ost
ho
...

hoster, hosting,...
hos, hosp, hose,...
hotel,hornet,...
oscillaroty,...
...

ascending order

d
es

ce
n

d
in

g
 o

rd
er

lower bound=16/6

query: host

606 World Wide Web (2014) 17:595–626

• NMCLCSn NMCLCSn measures the maximal common consecutive substring
which can starts at any position n. The index for NMCLCSn is similar to that for
NMCLCS1 (i.e., the order for grams and the order for related words). The only
difference is the strategy for decomposing words into grams. NMCLCSn parses
words into consecutive grams which can start at any positions. The lower bound used
to terminate the process is also |Q| · τtop−k, where τtop−k is calculated by (3). The
algorithm for NMCLCSn is similar to that for the above mentioned string similarities,
with modification according to the definition of NMCLCSn.

4.2 Optimization on corpus-based similarity

Traditional corpus-based similarity measurement is to submit the query and each
candidate into the large corpus (e.g., BNC3) and then compute the similarity.
However, computing all the query and candidate pairs may cause large computation
cost. We apply SOC-PMI [24] as the corpus-based similarity evaluator. SOC-PMI
linearly aggregates the top large PMI values (i.e., (5)) of each pair words with their
neighbors. We introduce an efficient technique which was first presented in [65].

Lemma 2 (Upper bound of word frequency) Let Q be the query word and P be
the top-k similar word so far. Q and P have the similarity score τtop−k. If ∀r ∈ R,
f (r) > m

2τtop−k , the top-k similar words have been found. Here R is the remaining
untested words and m is the size of the corpus.

Proof (Sketch of Proof) (Proof by Contradiction) Assume there is one candidate
word r which has f (r) > m

2τtop−k in untested set R and it is in the ranked top-k list. Then

we have τtop−k ≤ log2
f (Q,r)·m
f (Q)· f (r) , since f (Q) ≥ f (Q, r) in any case, we have τtop−k ≤

log2
f (Q)·m

f (Q)· f (r) , hence f (r) ≤ m
2τtop−k , which contradicts the assumption. ��

Based on this lemma, we sort all the candidates in ascending order of their
frequencies in the preprocessing and measure the similarity while querying one
by one. When we find the frequency of current candidate word is greater than

3British National Corpus, http://www.natcorp.ox.ac.uk/

http://www.natcorp.ox.ac.uk/

World Wide Web (2014) 17:595–626 607

m
2top−k , we can terminate the process and avoid to test the remaining candidates. The
pseudo code is presented in Algorithm 3. Based on the analysis of this algorithm,
we first index all the words in a ascending order listed by their frequency in corpus
in preprocessing which is illustrated in lines [1–2]. We also set the initial value of
τtop−k. Lines [6–7] presents that the max_queue pops top − 1 out if |q| > 0. If not,
we compare the frequency of the word in G[i] and compute the new boundary.
Moreover, the old τtop−1 is replaced by new τ which is illustrated in lines [8–15]. The
algorithm terminates when all the top-k values are outputted. For each word pair, we
can apply such algorithm to evaluate the pairs between neighbors. The final results
are obtained by linearly aggregated the top large PMI values.

4.3 Sentence similarity computation

We have introduced how to measure the similarity score between two words. Here
we take an example to illustrate how to get the similarity score between two

cheap
0.3425

online hosting Japan
domain

free
use
year

0.6302
0.3719
0.3657

0.7012
0.6125
0.4872
0.4214

0.7321
0.5785
0.4875
0.4952

0.2974
0.3214
0.3042
0.4321

0.3425
0.6302
0.3719
0.3657

0.7012
0.6125
0.4872
0.4214

0.5785
0.4875
0.4952

0.2974
0.3214
0.3042
0.4321

0.3719
0.3657

0.6125
0.4872
0.4214

0.3214
0.3042
0.4321

0.4214
0.3042
0.4321

(a)

(b) (c)

(d) (e)

Figure 3 Similarity measurement between two sentences.

608 World Wide Web (2014) 17:595–626

Figure 4 Efficient searching
top-k semantic sentences
framework.

Ite
ra

tio
n

(1
)

S7 0.6185

String Similarity Semantic Similarity
threshold

max_queue

S3 0.6111

S7 0.5860

Ite
ra

tio
n

(2
)

S7 S3 0.6111

S7 0.5860

 score

0.6024

S5 0.5704

Ite
ra

tio
n

(3
)

0.5465

0.4358

0.4358

ID scoreID

S3

S3

0.8012

0.8012

S3 0.4209 S5 0.7839

S7 0.4358 S3 0.8012

S3 0.4209 S5 0.7839
S5 0.3568 S7 0.7362

output

outputS7 0.5860

S5 0.5704

 scoreID

S3

S7 S5

sentences [24]. Let P = “Cheapest online hosting in Japan.”, Q = “Domain is free for
the f irst year”. After removing all stop words and lemmatizing, we obtain P = {cheap
online hosting Japan} and Q = {domain free use year}. Through similarity measuring
on each combination of word pair for the sentences, we construct a similarity matrix
which is illustrated in Figure 3. Here, each element in the matrix denotes the final
similarity score of the word pair, i.e., the linear aggregation of string-based similarity
and corpus-based similarity. To obtain the similarity between two sentences, we first
find the maximal-valued element which is regarded as the representative word. Then
the related row and column which includes this representative word are removed. We
recursively execute this process and finally all the similarities of the representative
words have been extracted. The similarity between these two sentences is computed
as follows:

S(P, Q) = �
|min(|P|,|Q|)|
i=1 ρi(|P| + |Q|)

2|P| ∗ |Q| (6)

where ρi is the value of the representative word of round i, |P| and |Q| are the length
of P and Q respectively. Therefore we have

S(P, Q) = (0.7321 + 0.6302 + 0.4872 + 0.4321)(4 + 4)

2 ∗ 4 ∗ 4
= 0.5704.

4.4 Assembling similarity features

We introduce an efficient assembling approach to hasten the process of searching
top-k similar sentences based on the rank aggregation algorithm [11]. The key idea
is as follows. Suppose there are two ordered lists (in descending order) A and B. We
denote Ai as the element which ranked i in the A list. Let ti be the threshold that
ti = wA · SimAi + wB · SimBi , where w is the weight value4. If an element P whose
total score is not smaller than ti, there is at least in one list that the rank of P is higher
than or equal to i. This intuition introduces a possible way to progressively output the
top-k results. To illustrate the process, we use the concrete example (i.e., Figure 1)
to explain the process, as shown in Figure 4.

We use a max_queue to store the intermediate candidates. In the first iteration,
we obtain the top-1 sentences with their scores in the features, i.e. S7: 0.4358 and
S3: 0.8012. Next the threshold is computed, i.e., 0.6185. Because the overall scores

4The weights are set to 1/2, respectively, as explained in Section 3.

World Wide Web (2014) 17:595–626 609

of the two accessed sentences are smaller than the threshold, no result is output in
this round. In the second iteration (i.e., testing on top-2 sentences in both lists), the
threshold is computed as 0.6024. Because the score of S3 is 0.6111 which is larger than
the threshold, S3 can be output immediately. We can see that for this example, the
performance of obtaining the top-1 result is very efficient because we do not need to
evaluate many candidates. The remaining processes are executed in a similar way, as
illustrated in Figure 4.

Because of the general property of the rank aggregation algorithm [11], the
element in the lists can be word. As such, we apply the threshold-based strategy
in assembling different string similarities (i.e., NLCS, NMCLCS1, and NMCLCSn),
and assembling words into sentence to obtain the top elements. We take an concrete
example to illustrate our proposal which is presented in Figure 5. We use the same
data collection which has been introduced in Figure 1. For example, the query
sentence is: “Cheapest online hosting in Japan”. After removing the stopwords and
stemming, the query is: “cheap online host Japan”. From Figure 5 we can see the
hierachical structure of our framework. If we want to retrieval top-1 result from the
data collection, we firstly should know the ranked list of string similarity base and
semantic similarity base respectively. The top-1 result comes from these two ranked
list based on the property of threshold algorithm. However, we cannot know such
ranking directly because string similarity base is composed of three different string

String Similarity base Semantic Similarity base

S7

S3

...

NLCS NMCLCS1 NMCLCSn

cheap online host

...

S7

S3

...

top-1 result:

w
or

d
le

ve
l

se
nt

en
ce

 le
ve

l
se

nt
en

ce
 le

ve
l

query sentence:
cheapest online hosting in Japan

S3

S5
...

S7

S5

...

S3

S7

...

Japan
Japan

S1,S6

...

online

S8

...

host

S2,S6,S7

...

S1,S6

cheap online host

...

Japan

...

cheap online host

...

Japan

...

cheap online host

...

Japan

effective

S3

...

web

... ...

It is the higest cost-effective web hosting service in Nihon.

w
or

d
le

ve
l

It is the higest cost effective web hosting service in Nihon.

It is the higest cost effective web hosting service in Nihon. It is the best web hosting company in 2011.

Domain is free for the first year.

S2 S3 S5

company

S7
lunch

S4
service

S3

nihon
S3
domain

S5
host

S7

cost

S3,S4
good

S7
year

S5

company

S7
play

S8
family

S2

cost

S3,S4

class

S8
company

S7

host

S2,S6,S7
high

S3

web

S3,S7
online

S8
cost

S3
live

S2
host

S2,S6,S7

nihon

S5
hosting

S3
web

S3,S7

host

S2,S6,S7
cost

S3,S4

good

S7

company

S7
restaurant

S4
nihon

S3

online
S8

web

S3,S7
host

S2,S6,S7

...

...

Japan

S1,S6
Japan

S1,S6
Japan

year

S5

...

...
...
...

...

...

...

...
company

S7
nihon

S3

cost

S3,S4
live

S2

host

S5
game

S8
service

S3

family

S2
service

S3
lunch

S4

Tokyo

S2
Fuji

S1
Sumo

S1

domain

S5
nihon

S3S3
free

S5

S3

Figure 5 The framework of the top-k similar sentences extraction.

610 World Wide Web (2014) 17:595–626

measurement strategies, i.e., NLCS, NMCLCS1 and NMCLCSn. Unfortunately, we
cannot know the ranked list of NLCS directly because NLCS has the lower layer, i.e.,
word level. Here, the words are query words and each query word corresponds a list.
We take an example to illustrate how to obtain top-1 result of NLCS. Be different
with the traditional threshold algorithm, our method here should take the sentence
ID into consideration. For list cheap, white rectangle denotes the word and grey
one indicates its’ corresponding sentence ID. We can see that, “Japan” appears in
both list cheap and list Japan. However, such top value only one word of sentence
S1 and S6 but no other words of these two sentences can achieve top value in the
other lists. Although word “company” for S7 stands the second position in list cheap,
“host” for S7 in list online and “good” for S7 in list host make sentence S7 dominate
the other sentences and it becomes the top-1 value of NLCS. Accordingly, we can
obtain the other two top-1 value of NMCLCS1 and NMCLCSn. However, sometimes
we may go deeply to get the corresponding words for a related sentence, e.g., list
cheap of NMCLCS1 (We use ellipsis to illustrate tested words because of the figure
length limitation.), we still can obtain top-k value by accessing a small part of such
list. For semantic similarity base, the top-k value can be retrieved from 4 words lists
directly. The final top-1 value comes from two similarity bases and it is S3 in this
example.

4.5 Space and time complexity

In this section, we present the complexity analysis on space and time for the
introduced strategies.

4.5.1 Space complexity

For the space complexity, let n be the size of data collection, m be the number of
features considered, p be the average length of sentences and l be the average length
of words.

NLCS Based on the definition of NLCS in (1), we should know all the possible
cases of grams, i.e., we should take all cases into consideration. For example, word
host, the indices of NLCS should be:

h, o, s, t, ho, hs, ht, os, ot, st, hos, hot, ost, host.

So, we should index all these grams for NLCS. However, the number of the index
grams is related with the length of gram. Therefore, it is a combinations problem for
each gram. We take host as an example. When length is “1”, the number of indices
is “4”, i.e., C1

4. Accordingly, the number of indices are C2
4, C3

4, C4
4 when gram length

are “2”, “3” and “4” respectively. Therefore, the total number of indices are: C1
4 +

C2
4 + C3

4 + C4
4. It can be regarded as a summation of binomial coefficients problem.

In general, the total number of indices are: C1
l + C2

l + ... + Cl
l . So, the space cost of

NLCS is: SNLCS = n ∗ (2l − 1), the space complexity is O(n ∗ 2l).

NMCLCS1 Because NMCLCS1 only need the grams which have the same first
character. So, for word host, the indices of NMCLCS1 should be: h, ho, hos, host.

World Wide Web (2014) 17:595–626 611

From this example we can easily see that the number of indices is the same as the
word length. In general, the space cost of NMCLCS1 is: SNMCLCS1 = n ∗ l, the space
complexity is O(n ∗ l).

NMCLCSn NMCLCSn contains all the possible consecutive grams. So the index of
NMCLCSn for word host are:

h, o, s, t, ho, os, st, hos, ost, host.

Be different with NLCS, we should only index the consecutive grams. We also take
host as an example. When length is “1”, the number of indices is “4”. Accordingly,
when length is “2”, “3”, “4”, the number of indices is “3”, “2” and “1” respectively.
The total number of indices can be presented as: 4 + (4 − 1) + (4 − 2) + (4 − 3).
Generally, the total number of indices is: n + (n − 1) + ... + (n − (n − 1)), i.e., n +
(n − 1) + ... + 1. So, it is a summation of arithmetic sequence problem. Therefore,
the space cost is: SNMCLCSn = n ∗ l(l+1)

2 , the space complexity is: O(n ∗ l2).

Semantic From the analysis of [65], we can see that, for a given word, we should
index all the frequency of the words in the data collection. The space complexity for
semantic is the size of data collection, i.e., O(n).

Therefore, the whole space cost is to integrate all the similarity cost above, which
is: O(n ∗ (2l + l2)).

4.5.2 Time complexity

Online query processing In our proposed algorithm, let n be the size of data
collection, m be the number of features considered, p be the average length of
sentences and l be the average length of words, the performance cost of our
proposed algorithm is list as follows: we retrieval top-k values based on threshold
algorithm [11]. Based on the property of the threshold algorithm, our measure of
cost corresponds intuitively to the cost of access ranked lists, i.e., sorted access cost
and random access cost. The sorted access cost is the total number of items obtained
under sorted access. For example, in our proposed strategy, we have two lists, and
the algorithm requests altogether the top-nl1 items from the first list and the top-
nl2 items from the second list, then the sorted access cost is nl1 + nl2 . Similarily, the
random access cost is the total number of items obtained under random access. Based
on the property of the threshold algorithm [11], the time complexity is O(n

m−1
m k

1
m).

Of f line Preprocessing We should index all the words of the data collection based
on order of each strategy. Since there are 4 types of indices, i.e., NLCS, NMCLCS1,
NMCLCSn and semantic, we introduce the analysis one by one. For NLCS, the
indices are related with the length of word (we set l in this paper). For exam-
ple, we have a word host. Based on the property of NLCS, we parse host into
h,o,s,t,ho,hs,ht,os,ot,st,hos,hot,ost,host. Based on the space cost analysis, the time cost
of preprocessing on NLCS is: O(2l − 1) and time complexity is: O(2l). Be similar to
NLCS, NMCLCS1 and NMCLCSn are O(l) and O(l2) respectively. The time cost
for semantic is only related with the size of data collection. For each word, the time
complexity is: O(1). So, O(n) is the time cost for semantic preprocessing. Therefore,
for total n words, the time complexity of preprocessing is: O(n ∗ (2l + l2)).

612 World Wide Web (2014) 17:595–626

5 Experimental evaluation

To evaluate our approach, we conducted extensive experiments by using 16-core
Intel(R) Xeon(R) E5530 server running Debian 2.6.26-2. All the algorithms were
written in C language and compiled by GNU gcc. The baseline algorithm is
implemented according to the state-of-the-art work [24]. Be the same parame-
ters setting as [24], the total similarity is defined as: Sim = 0.5 ∗ Simstring + 0.5 ∗
Simsemantic. For Simstring = 1

3 ∗ SimNLCS+ 1
3 ∗ SimNMCLCS1+ 1

3 ∗ SimNMCLCSn , Sim =
1
6 ∗ SimNLCS+ 1

6 ∗ SimNMCLCS1+ 1
6 ∗ SimNMCLCSn+ 1

3 ∗ Simsemantic.
In the whole experimental evaluation, we use three different datasets, i.e., the

benchmark dataset which was used in [24, 35], BNC dataset (extracted from British
National Corpus) and MSC dataset [10] (extracted from Microsoft Research Para-
phrase Corpus). Table 1 shows the statistics of these three datasets. In this table,
type A indicates the original dataset and B is after preprocessing(i.e., removing
stopwords).

5.1 Evaluation on efficiency

5.1.1 Ef fect of size of data collection

To evaluate the efficiency of our proposal, we conducted experiments on the datasets
come from BNC and MSC. We randomly extracted 1k, 5k, 10k, 20k sentences from
BNC and divided MSC into different size parts, i.e.,10 %, 20 %, 50 %, 100 % as our
datasets. Figure 6 shows the top-5 results under 10 randomly selected queries. We
can see that our proposal is much faster than the baseline strategy for both datasets
because the proposal largely reduces the number of candidates tested. With the size
of data collection increasing, the query time of our proposal is increasing linearly and
scaling well.

5.1.2 Ef fect of k value

The effect of k is evaluated in this section. We randomly chose 10 queries from the
data collections. The size of BNC was fixed to 5k and the whole MSC was used. From
Figure 7 we can see that the baseline needs to access all the candidate sentences and

Table 1 Dataset statistics.

MSC Benchmark BNC

Labeled? YES (“0” or “1”) YES (Concrete value) NO

Size (num. of sentences) 11.2k* 49* 20k

Type (A) (B) (A) (B) (A) (B)

Avg. sentence length 15.23 9.31 14.12 6.2 11.72 7.19
Min. sentence length 5 3 5 2 3 2
Max. sentence length 41 25 33 12 107 38
Max word length 13 13 14 14 17 17
∗The number is the distinct sentence number in both datasets. The original data of MSC is 5,801
sentence pairs. We have removed the duplicated sentences and 11,242 sentences are remained. The
original data of benchmark dataset includes 65 sentence pairs.

World Wide Web (2014) 17:595–626 613

(a) BNC dataset

(b) MSC dataset

Figure 6 Effect on size of data collection.

thus, the query time is the same for all the situations. For our proposal, the top-1
result can be returned almost instantly. When k increases, the query time increases
because more candidates need to be evaluated.

5.1.3 Ef fect of sentence length

We evaluate the effect of the sentence length. There are two types of lengths, i.e.,
query sentence length and average sentence length in the data collection. Figure 8a
illustrates the effect on the query sentence length for the BNC and MSC datasets.
We can see that the query time increases when the query length increases. The
reason is that more candidates are tested. We randomly chose sentences with the
average length be 2, 4, 6, 8 from BNC and MSC. The query length was kept as
4. From the results we can see that, the query time does not increase when the
average sentence length increases. The reason is that the similarity between two
sentences mainly depends on the length of the shorter one. Figure 8b shows the
results w.r.t. different lengths of sentences in the data collection. We can see that
when the average sentence length is larger than the query length, the query time
does not change.

614 World Wide Web (2014) 17:595–626

(a) BNC dataset

(b) MSC dataset

Figure 7 Effect of k-value.

5.2 Evaluation on effectiveness

In the former experiments, we have demonstrated that our proposal outperforms
the state-of-the-art technique with regard to the efficiency issue. In this section, we
evaluate the effectiveness of our proposal. We conduct experiments on two labeled
datasets, i.e., the benchmark dataset and MCS dataset.

5.2.1 Evaluation on precisely labeled dataset

The benchmark dataset which was used in [24, 35] and it has been labeled by concrete
value, i.e., we can easily understand the closeness between measured result and
labeled data. Here, we denote Distance as the metric which measures the closeness
between two sets of results, e.g., baseline and our proposal, where xi and yi are two
sets of results respectively. Smaller value indicates that the two results are closer to
each other.

Distance = 1
n

n−1∑

i=0

(xi − yi)
2

World Wide Web (2014) 17:595–626 615

(a) Effect on query length

(b) Effect on sentence length of data collection

Figure 8 Effect on sentence length.

Baseline
Our Proposal

Figure 9 Evaluation on effectiveness under benchmark dataset.

616 World Wide Web (2014) 17:595–626

Table 2 The selection of τ . Labeled value ≥ τ < τ

1 Hit Miss
0 Miss Hit

The experimental result conducted on the benchmark dataset is illustrated in
Figure 9. From this figure we can see that the results of both algorithms are close
to each other, which indicates that our proposal can obtain the same high precision
as the state-of-the-art technique.

5.2.2 Evaluation on rawly labeled dataset

MSC is another labeled dataset which has been extracted from news sources on
the web, along with human annotations indicating whether each pair captures a
paraphrase-semantic equivalence relationship. They apply the value 1 as similar
while the value 0 as dissimilar. However, such label data is rather raw and we cannot
apply them to judge our measured results directly.

Raw data preprocessing Since such dataset has no concrete value while only “1” or
“0”, we should distinct each value beforehand. Consider an example, there are two
cases. Case (a): the similarity score between two sentences is 0.30 while the labeled
data is 1. Case (b): the similarity score between two sentences is 0.60 while the labeled
data is 0. From this example we can see that we cannot judge 0.30 or 0.60, which one
represents “closeness”. So, how to measure our experimental results by using such
raw data. To answer this question, we apply a threshold τ as the bound, i.e., if any
measured value is greater than or equal to τ and the labeled data is “1” , we regard
it as “hit”. Similarly, if one measured value is less than τ and the labeled data is “0”,
we also regard it as “hit”, otherwise “miss”. Table 2 illustrates the strategy.

Randomly selecting 20 sentence pairs from MSC and set different τ value, we can
obtain the result which is presented in Table 3. Here we set hit ratio be the number
of hits divided by total results. With these different threshold τ , we select the optimal
one that obtains the maximal hit ratio, i.e., τ = 0.3 in this example.

Accordingly, we conducted extensive experiments to search the best τ value. Since
we know that the similarity score comes from two different parts, i.e., string similarity
and semantic similarity, and the weight α we apply before is 0.5. To evaluate the
precise hit ratio under different τ , we evaluate the whole hit ratio by using MSC
dataset under different τ and α value. Table 4 shows the experimental results.

Table 3 Different hit ratio
under different selection of τ .

Threshold Hit Miss Hit ratio (%)

0.7 0 20 0
0.6 1 19 5
0.5 9 11 45
0.4 12 8 60
0.3 17 3 85
0.2 15 5 75
0.1 14 6 70

World Wide Web (2014) 17:595–626 617

Table 4 Hit ratio under different τ and α.

τ = 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%) 0.7 (%) 0.8 (%) 0.9 (%)

α = 0 20.55 21.20 36.25 41.29 36.06 34.18 18.86 16.89 16.43
0.1 17.74 24.67 41.29 41.39 33.24 28.44 18.74 15.14 12.27
0.2 56.73 55.25 53.51 51.44 46.13 34.80 30.32 26.62 22.76
0.3 69.28 72.33 68.70 63.39 55.34 49.53 34.67 22.51 18.69
0.4 77.71 78.57 68.85 57.32 51.46 47.66 36.36 28.44 22.31
0.5 77.81 79.16 77.59 74.37 63.37 51.27 40.41 32.77 32.77
0.6 71.02 76.87 80.52 71.70 63.21 53.28 39.05 33.86 22.29
0.7 66.30 71.07 72.32 63.06 61.42 39.91 36.05 30.01 18.82
0.8 34.84 67.63 69.92 57.30 50.99 36.29 34.22 30.10 21.32
0.9 29.62 36.32 61.92 53.28 46.18 41.13 36.29 30.81 17.95
1.0 20.84 22.44 21.34 18.86 16.95 15.14 12.72 11.58 10.36

From the table, we can see, when τ = 0.3 under α = 0.6, we obtain the best hit
ratio as 80.52 %. However, the evaluation of each τ is under a fixed α, i.e., we cannot
determine the combination of τ and α which can obtain the best hit ratio. Therefore,
we should extensively train the value of α under different τ .

Training α under dif ferent τ We apply a k-fold cross-validation5 strategy to check
α under different τ . Firstly, we divide MSC dataset into k parts and apply the part
from 1 to k − 1 as the training data. Then we get α and τ under the best hit ratio and
apply these two parameters to compute the hit ratio on the kth part. In each step i,
we can get the best hit ratio Hi and the hit ratio (test) Hti. For example, in the 1st
step, the best hit ratio occurs when α = 0.6 and τ = 0.3. Then we get the 81.24 % hit
ratio in testing part which means there is no distinguish difference between training
and testing. After k steps finish, we get a list of values of α, τ and hit ratios. The finial
α and τ will be the average value. From Table 5, we can see that τ = 0.56 and α =
0.31 are the best parameters. We show the evaluation on the effectiveness for the
MSC dataset in Figure 10 under these two parameters.

5.3 Evaluation on trade-off between efficiency and effectiveness

Because the introduced framework is built based on the aggregation of different
features, i.e., string similarity and semantic similarity, the execution time is related to
the number of features used. Therefore, if we apply only one feature, the execution
time is shorter yet such strategy may affect the whole effectiveness. So we conduct a
set of experiments (illustrated in Figure 11a) to study the trade-off between efficiency
and effectiveness. In this set of experiments, we first evaluate the performance
of single feature in the baseline strategy vs. our whole framework, as illustrated
in Figure 11a. Then we explore the performance of single feature in the baseline
strategy vs. single feature in our framework as illustrated in Figure 11b.

5We apply 10-fold cross-validation in this paper.

618 World Wide Web (2014) 17:595–626

Table 5 10-fold
cross-validation on τ under
different α.

Hit ratio Parameter α Threshold τ Hit-ratio
Hi (%) (test)Hti (%)

1st 81.25 0.7 0.3 81.58
3rd 78.72 0.7 0.4 82.79
4th 80.46 0.5 0.3 80.03
5th 80.67 0.4 0.3 84.51
6th 84.18 0.4 0.4 71.26
7th 79.10 0.5 0.3 79.35
8th 82.16 0.6 0.3 77.28
9th 82.07 0.6 0.2 75.39
10th 80.42 0.6 0.3 79.00

Avg. 0.56 0.31

Figure 10 Evaluation on effectiveness under MSC.

Baseline
String

Semantic

NLCS

NMCLCS1

NMCLCSn

String

Semantic

NLCS

NMCLCS1

NMCLCSn
Our Proposal

Baseline
String

Semantic

NLCS

NMCLCS1

NMCLCSn

String

Semantic

NLCS

NMCLCS1

NMCLCSn
Our Proposal

(a) Single vs. Combination (b) Single vs. Single

Figure 11 Two different evaluation strategies on trade-off between efficiency and effectiveness.

World Wide Web (2014) 17:595–626 619

(a) NLCS vs. Our Proposal (b) NLCS vs. Our Proposal

(c) NMCLCS1 vs. Our Proposal (d) NMCLCS1 vs. Our Proposal

(e) NMCLCSn vs. Our Proposal (f) NMCLCSn vs. Our Proposal

(g) String vs. Our Proposal (h) String vs. Our Proposal

Figure 12 Evaluation on trade-off between efficiency and effectiveness (cont’d).

620 World Wide Web (2014) 17:595–626

(i) Semantic vs. Our Proposal (j)Semantic vs. Our Proposal

Figure 12 (continued)

5.3.1 Single strategy in the baseline vs. our proposal

To evaluate the effectiveness, we apply single strategy in baseline and combination
strategy6 in our proposal. Firstly, we compare the effectiveness between each strategy
in baseline and combination strategy in our proposal. We also evaluate the execution
time and index time of each pair under such strategy. The experimental result is
illustrated in Figure 12. We report three different single string strategy in Figure 12a,
c and e. String strategy and semantic strategy results are listed in Figure 12g and i,
respectively. From the figure we can see that, single strategy beats our proposal in
execution time while not in the effectiveness.

The former evaluation on effectiveness tells us that the combination strategy can
obtain more precise results. Figure 12b, d, f, h, and j present the experimental results
of execution time of single strategy in baseline and execution time of our proposal.
Since the strategies in baseline do not need to index, we report the index time of
combination strategy in our proposal. Note that in all the evaluation, we show the
performance of extracting the top-5 results with 10 randomly selected queries. Here
we take NLCS vs. combination strategy pair as an example. Figure 12b illustrates
the execution time and the index time for NLCS (i.e., the left bar) and our proposal
(i.e., the right bar). We can easily see that the execution time of NLCS is very fast
while the combination strategy consumes more time. The similar results can be seen
in Figure 12d, f and h. In Figure 12j, the execution time of single semantic strategy
is longer than that of combination strategy. Such result tells us that the optimization
on semantic similarity is crucial among all the optimization strategies.

5.3.2 Single strategy vs. single strategy

Evaluation on single strategy vs. combination strategy demonstrates the trade-off
between effectiveness and efficiency. In this section, we study the performance of
single feature in the baseline strategy vs. single feature in our framework (i.e.,
Figure 11b). Firstly, we compare the effectiveness between the two situations, as

6Combination strategy means the whole framework strategies.

World Wide Web (2014) 17:595–626 621

illustrated in Figure 13. From the figure we can see that the execution time of each
single strategy in baseline is longer than that of in our proposal (i.e., including the
execution time and index time). These results demonstrate that the optimizations of
our proposal are efficient and make effect on each feature.

(a) NLCS vs. Our NLCS′ (b) NMCLCS1 vs. NMCLCS1′

(c) NMCLCSn vs. NMCLCSn′ (d) String vs. String′

(e) Semantic vs. Semantic′

Figure 13 Evaluation on efficiency and index cost between single strategy in baseline and combina-
tion strategy in our proposal.

622 World Wide Web (2014) 17:595–626

6 Discussion

Based on the rank aggregation algorithm introduced in Section 4.4, most other (if not
all) similarity metrics can be incorporated into our general framework. The essential
issue is how to build an effective corresponding index for each similarity. In this
section, we discuss the optimizations on these similarity measurement strategies.

ESA [13] is a method which represents the meaning of texts in a high-dimensional
space of concepts derived from Wikipedia. It applies machine learning techniques
to explicitly represent the meaning of any text as a weighted vector of Wikipeida-
based concept. Since we compute the relatedness between two texts by semantic in-
terpreter, i.e., each text fragment should be represented by weighted list of Wikipedia
concepts, we can build an inverted list for all the words in the data collection by
using these concepts. Optimization techniques, such as that proposed in [55, 60], e.g.,
divide-skip-merge, can be employed to efficiently extract the top-k similar sentences.

For the information content based measurement strategy [49], the authors present
a semantic similarity measurement in an IS-A taxonomy (i.e., Wordnet). The simi-
larity of two words is estimated as the correlation degree between the description
texts on the words. We can first build a q-gram inverted list index. Each word in the
information content can be considered as a unigram. Thereafter, the optimization
strategies introduced in [66], e.g., count filtering, can be applied.

Edit distance (a.k.a, the Levenshtein distance) is a string metric for measuring
the syntax difference between two sequences. Informally, the edit distance between
two words is equal to the number of single-character edits required to change one
word into the other. Many algorithms have used q-gram based strategies [42, 43, 59]
to measure the edit distance between words. In [66] the authors proposed several
strategies, e.g., adaptive q-gram selection, to efficiently retrieval the top-k results.
These approaches can be utilized in our framework.

Edge counting strategy [26, 32, 45, 64] measures the similarity as the shortest path
between words in some knowledge base (i.e., Wordnet). To efficiently discover the
top-k similar words, in [65], the authors firstly build an index that associates nodes in
WordNet to words in the data collection. Then they expand the nodes from the query
word to retrieval the top-k results progressively. We can also apply the optimization
method to efficiently obtain the top-k sentences in a similar way.

7 Conclusion and future work

In this paper, we proposed to tackle the efficiency issue of searching top-k similar
sentences which has not been studied before. The issue is very important especially
when the data is large. Several efficient strategies are introduced to test as few
candidates as possible during the searching process. The comprehensive experi-
mental evaluation demonstrates the efficiency of the proposed techniques while
keeping the same high effectiveness as the state-of-the-art techniques. We conducted
extensive experiments on different types of datasets. To evaluate the effectiveness,
we conducted on two different types of datasets (labeled and unlabeled) and trained
the parameters for the efficiency evaluation. To understand the trade-off between
effectiveness and efficiency, we evaluated different combination of features between

World Wide Web (2014) 17:595–626 623

the baseline and our proposal. In the future, we will incorporate more similarity
metrics to evaluate the efficiency and effectiveness of the framework.

References

1. Atallah, M.J., Fox, S.: Algorithms and Theory of Computation Handbook, 1st edn. CRC Press,
Inc. (1998)

2. Blake, M.B., Cabral, L., König-Ries, B., Küster, U., Martin, D.: Semantic Web Services:
Advancement through Evaluation. Springer (2012)

3. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web
search engines. In: Proceedings of the International Conference on World Wide Web, WWW’07,
pp. 757–766 (2007)

4. Burgess, C., Livesay, K., Lund, K.: Explorations in context space: words, sentences, discourse.
Discourse Process. 25, 211–257 (1998)

5. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Silvestri, F.: Caching query-biased snippets
for efficient retrieval. In: Proceedings of the International Conference on Extending Database
Technology, EDBT/ICDT ’11, pp. 93–104 (2011)

6. Chowdhury, G.G.: Introduction to Modern Information Retrieval, 3rd edn. Facet (2010)
7. Cohen, W.W.: Integration of heterogeneous databases without common domains using queries

based on textual similarity. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD ’98, pp. 201–212 (1998)

8. Cui, H., Sun, R., Li, K., Kan, M.Y., Chua, T.S.: Question answering passage retrieval using
dependency relations. In: Proceedings of the International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’05, pp. 400–407 (2005)

9. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun.
ACM 7(3), 171–176 (1964)

10. Dolan, B., Quirk, C., Brockett, C.: Unsupervised construction of large paraphrase corpora:
exploiting massively parallel news sources. In: Proceedings of the International Conference on
Computational Linguistics, COLING ’04, pp. 350–356 (2004)

11. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings
of the ACM SIGMOD symposium on Principles of Database Systems, PODS ’01, pp. 102–113
(2001)

12. Foltz, P.W., Kintsch, W., Landauer, T.K.: The measurement of textual coherence with latent
semantic analysis. Discourse Process. 25, 285–307 (1998)

13. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit
semantic analysis. In: Proceedings of the International Joint Conference on Artifical Intelligence,
IJCAI’07, pp. 1606–1611 (2007)

14. Goyal, A., Daumé III, H.: Approximate scalable bounded space sketch for large data nlp. In:
Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP
’11, pp. 250–261 (2011)

15. Goyal, A., Daumé III, H., Venkatasubramanian, S.: Streaming for large scale nlp: language
modeling. In: Proceedings of Human Language Technologies: The Annual Conference of
the North American Chapter of the Association for Computational Linguistics, NAACL ’09,
pp. 512–520 (2009)

16. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160
(1950)

17. Han, W.S., Lee, J., Moon, Y.S., Jiang, H.: Ranked subsequence matching in time-series data-
bases. In: Proceedings of the International Conference on Very Large Databases, VLDB ’07,
pp. 423–434 (2007)

18. Hatzivassiloglou, V., Klavans, J.L., Eskin, E.: Detecting text similarity over short passages:
Exploring linguistic feature combinations via machine learning. In: Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, EMNLP/VLC ’99, pp. 203–212 (1999)

19. Hellerstein, J.M., Avnur, R., Chou, A., Hidber, C., Olston, C., Raman, V., Roth, T., Haas, P.J.:
Interactive data analysis: the control project. IEEE Comput. 32(8), 51–59 (1999)

20. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences.
Commun. ACM 18(6), 341–343 (1975)

624 World Wide Web (2014) 17:595–626

21. Hua, M., Pei, J., Fu, A.W., Lin, X., Leung, H.F.: Top-k typicality queries and efficient query
answering methods on large databases. VLDB J. 18(3), 809–835 (2009)

22. Hua, M., Pei, J., Fu, A.W.C., Lin, X., Leung, H.F.: Efficiently answering top-k typicality queries
on large databases. In: Proceedings of the International Conference on Very Large Databases,
VLDB ’07, pp. 890–901 (2007)

23. Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining the semantic similarity of
words. In: Proceedings of the International Conference on Language Resources and Evaluation,
LREC ’06, pp. 1033–1038 (2006)

24. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string
similarity. ACM Trans. Knowl. Discov. Data 2(2), 1–25 (2008)

25. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 census of
Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)

26. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy.
CoRR cmp-lg/9709008 (1997)

27. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc.
28(1), 11–20 (1972)

28. Kim, J.W., Kashyap, A., Li, D., Bhamidipati, S.: Efficient wikipedia-based semantic interpreter
by exploiting top-k processing. In: Proceedings of the International Conference on Information
and Knowledge Management, CIKM ’10, pp. 1813–1816 (2010)

29. Koren, J., Zhang, Y., Liu, X.: Personalized interactive faceted search. In: Proceedings of the
International Conference on World Wide Web, WWW ’08, pp. 477–486 (2008)

30. Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis theory
of the acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997)

31. Landauer, T.K., Folt, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse
Process. 25(2), 259–284 (1998)

32. Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense
identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 305–332.
MIT Press (1998)

33. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. Sov.
Phys. Dokl. 10(8), 707–710 (1966)

34. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words
using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003)

35. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.A.: Sentence similarity based on semantic
nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

36. Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of semantic
similarity. In: Proceedings of the International Conference on World Wide Web, WWW ’05, pp.
107–116 (2005)

37. Maynard, D., Greenwood, M.A.: Large scale semantic annotation, indexing and search at the
national archives. In: Proceedings of the International Conference on Language Resources and
Evaluation, LREC ’12, pp. 3487–3494 (2012)

38. Meadow, C.T.: Text Information Retrieval Systems. Academic Press, Inc. (1992)
39. Metzler, D., Dumais, S.T., Meek, C.: Similarity measures for short segments of text. In: Proceed-

ings of the European Conference on Information Retrieval, ECIR ’07, pp. 16–27 (2007)
40. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of

text semantic similarity. In: Proceedings of the AAAI Conference on Artificial Intelligence,
AAAI’06, pp. 775–780 (2006)

41. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP’04, pp. 404–411 (2004)

42. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88
(2001)

43. Navarro, G., Baeza-Yates, R.A.: A practical q -gram index for text retrieval allowing errors.
CLEI Electr. J. 1(2) (1998)

44. Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.M., Vyas, V.: Web-scale distributional similar-
ity and entity set expansion. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, EMNLP’09, pp. 938–947 (2009)

45. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on
semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

46. Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S.: A word at a time: computing word
relatedness using temporal semantic analysis. In: Proceedings of the International Conference
on World Wide Web, WWW ’11, pp. 337–346 (2011)

World Wide Web (2014) 17:595–626 625

47. Radlinski, F., Broder, A., Ciccolo, P., Gabrilovich, E., Josifovski, V., Riedel, L.: Optimizing
relevance and revenue in ad search: a query substitution approach. In: Proceedings of the
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’08, pp. 403–410 (2008)

48. Re, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In: Proceed-
ings of the International Conference on Data Engineering, ICDE’07, pp. 886–895 (2007)

49. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence, IJCAI’95, pp. 448–453
(1995)

50. Ryeng, N.H., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Efficient distributed top-k query process-
ing with caching. In: Proceedings of the International Conference on Database Systems for
Advanced Applications, DASFAA’11, pp. 280–295 (2011)

51. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short
text snippets. In: Proceedings of the International Conference on World Wide Web, WWW ’06
(2006)

52. Salton, G.: Automatic Text Processing. Addison-Wesley Longman Publishing Co., Inc. (1988)
53. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process

Manag. 24(5), 513–523 (1988)
54. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM

18(11), 613–620 (1975)
55. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD ’04, pp. 743–754 (2004)
56. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423

(1948)
57. Tsatsaronis, G., Varlamis, I., Vazirgiannis, M.: Text relatedness based on a word thesaurus. J.

Artif. Intell. Res. 37, 1–39 (2010)
58. Turney, P.: Mining the web for synonyms: Pmi-ir versus lsa on toefl. In: Proceedings of the

European Conference on Machine Learning, ECML’01, pp. 491–502 (2001)
59. Ukkonen, E.: Approximate string matching with q-grams and maximal matches. Theo. Comp.

Sci. 92(1), 191–211 (1992)
60. Vernica, R., Li, C.: Efficient top-k algorithms for fuzzy search in string collections. In: Proceed-

ings of the International Workshop on Keyword Search on Structured Data, KEYS’09, pp. 9–14
(2009)

61. Vlachou, A., Doulkeridis, C., Nørvåg, K., Vazirgiannis, M.: On efficient top-k query processing
in highly distributed environments. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’08, pp. 753–764 (2008)

62. Wang, K., Ming, Z.Y., Hu, X., Chua, T.S.: Segmentation of multi-sentence questions: towards
effective question retrieval in cqa services. In: Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 387–394
(2010)

63. Wei, F., Li, W., Lu, Q., He, Y.: Query-sensitive mutual reinforcement chain and its application
in query-oriented multi-document summarization. In: Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08, pp. 283–
290 (2008)

64. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the annual meeting
on Association for Computational Linguistics, ACL’94, pp. 133–138 (1994)

65. Yang, Z., Kitsuregawa, M.: Efficient searching top-k semantic similar words. In: Proceedings of
the International Joint Conference on Artificial Intelligence, IJCAI’11, pp. 2373–2378 (2011)

66. Yang, Z., Yu, J., Kitsuregawa, M.: Fast algorithms for top-k approximate string matching. In:
Proceedings of the AAAI Conference on Artificial Intelligence, AAAI’10, pp. 1467–1473 (2010)

67. Zhang, X., Chomicki, J.: Semantics and evaluation of top-k queries in probabilistic databases.
Distributed and Parallel Databases 26(1), 67–126 (2009)

68. Zhuge, H.: The Web Resource Space Model. Springer (2008)
69. Zhuge, H.: Communities and emerging semantics in semantic link network: discovery and learn-

ing. IEEE Trans. Knowl. Data Eng. 21(6), 785–799 (2009)
70. Zhuge, H.: Interactive semantics. Artif. Intell. 174(2), 190–204 (2010)
71. Zhuge, H.: Special section: semantic link network. Future Gener. Comput. Syst. 26(3), 359–360

(2010)
72. Zhuge, H.: Semantic linking through spaces for cyber-physical-socio intelligence: a methodology.

Artif. Intell. 175(5–6), 988–1019 (2011)

626 World Wide Web (2014) 17:595–626

73. Zhuge, H.: The Knowledge Grid: Toward Cyber-Physical Society, 2nd edn. World Scientific Pub
Co Inc. (2012)

74. Zhuge, H., Xing, Y.: Probabilistic resource space model for managing resources in cyber-physical
society. IEEE Trans. Serv. Comput. 5(3), 404–421 (2012)

75. Zhuge, H., Xing, Y., Shi, P.: Resource space model, owl and database: mapping and integration.
ACM Trans. Internet Technol. 8(4) (2008)

	Exploration on efficient similar sentences extraction
	Abstract
	Introduction
	Related work
	Problem statement
	Similarity measurement strategies
	String-based similarity
	Corpus-based similarity

	A general framework

	Proposed approaches
	Optimization on string-based similarity
	Optimization on corpus-based similarity
	Sentence similarity computation
	Assembling similarity features
	Space and time complexity
	Space complexity
	Time complexity

	Experimental evaluation
	Evaluation on efficiency
	Effect of size of data collection
	Effect of k value
	Effect of sentence length

	Evaluation on effectiveness
	Evaluation on precisely labeled dataset
	Evaluation on rawly labeled dataset

	Evaluation on trade-off between efficiency and effectiveness
	Single strategy in the baseline vs. our proposal
	Single strategy vs. single strategy

	Discussion
	Conclusion and future work
	References

