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Abstract Fusing multimodal information in multimedia

data usually improves the retrieval performance. One of the

major issues in multimodal fusion is how to determine the

best modalities. To combine the modalities more effec-

tively, we propose a RELIEF-based modality weighting

approach, named as RELIEF-MM. The original RELIEF

algorithm is extended for weaknesses in several major

issues: class-specific feature selection, complexities with

multi-labeled data and noise, handling unbalanced datasets,

and using the algorithm with classifier predictions.

RELIEF-MM employs an improved weight estimation

function, which exploits the representation and reliability

capabilities of modalities, as well as the discrimination

capability, without any increase in the computational

complexity. The comprehensive experiments conducted on

TRECVID 2007, TRECVID 2008 and CCV datasets vali-

date RELIEF-MM as an efficient, accurate and robust way

of modality weighting for multimedia data.

Keywords RELIEF � Feature weighting � Multimodal

fusion � Multimedia information retrieval

1 Introduction

Increase in the use of digital multimedia data in recent

years has shown the need for multimedia retrieval systems.

Retrieval of multimedia data is based on its semantic

content. To handle the semantic content effectively, the

nature of the multimedia data should be examined and

information contained in multimedia data should be used

completely. The multimedia data usually has a complex

structure containing multimodal information (i.e., audial,

visual and textual modalities). Regarding the noise in

sensed data, non-universality of any single modality and

the performance upper bound of each modality, relying on

a single modality may not be applicable [37]. Furthermore,

it has been observed that the sets of patterns misclassified

by different modalities do not necessarily overlap, and

complementary information provided by different modali-

ties improves recognition capability [25]. Since each

modality abstracts videos from a different aspect, different

modalities in multimedia data complement each other [17].

Thus, combining multimodal information usually improves

the retrieval performance. However, there exist two major

issues that have not been adequately addressed yet and are

still attractive research areas [31, 37, 52]: (1) How to

determine the best modalities? (2) How best to fuse them?

This paper focuses on the first problem and presents a
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modality weighting approach to use the multiple modalities

effectively.1

The modality selection is a combinatorial search prob-

lem that aims to find the best subset of available modalities

giving the highest accuracy. Such a computational problem

can be solved to some extent using a weighting strategy.

Modality weighting is a generalization of the selection

problem, where the modalities are ranked by assigning

some weights in between [0, 1] to each modality, instead of

a binary selection. The use of weights enables some well-

established optimization techniques and efficient algorith-

mic implementations to be employed [46]. Furthermore, a

weighting strategy is a practical solution since the most

frequently utilized fusion approach is the Linear Weighted

Fusion [9, 49, 53], in which the combined decision is

calculated as a weighted sum of the available modalities.

The previous studies on using multiple modalities can be

categorized into three groups: (1) using all features/

modalities by averaging them (2) performing an empirical

selection and (3) determining the effectiveness of each

feature with a weighting algorithm. Despite their wide

usage among fusion studies, the first two are simplistic

approaches; the first one treats all features as equally likely

although any of the features can be non-informative or

redundant, whereas the second approach requires an

empirical observation and manual selection based on the

observation. On the other hand, the third direction requires

design of an efficient feature weighting algorithm, which

proposes a polynomial time heuristic for the combinatorial

explosion problem while dealing with multiple features.

Regarding the third direction, we focus on some

adaptable solutions from feature weighting studies in the

machine learning literature. However, the feature weight-

ing solutions are not easily applicable to the modality

weighting problem, considering the issues of (1) the

intrinsic multi-dimensionality of modalities and (2) the

multivariate inputs of fusion systems. The former issue

states that feature weighting methods give weights for each

dimension of an input feature vector, whereas modality

weighting methods assign weights to each modality, each

of which is a multi-dimensional feature, by accepting each

modality as a black-box. Besides, the latter is a more

general issue in fusion systems. The inputs of a fusion

system are not necessarily feature values. The prediction

scores for different features/modalities are frequently

combined in state-of-the-art fusion studies. An intuitive

idea to discard these problems is to utilize a weighting

approach that works in distance-based metric space, instead

of using a feature space. Utilizing a distance space solves

the intrinsic dimensionality problem of multiple modalities

by converting multi-dimensional feature values of a

modality to a uni-dimensional distance value. Furthermore,

it enables handling of the prediction scores after converting

them into applicable dissimilarity values with appropriate

conversion functions.

Among the existing feature weighting algorithms, we

focus on the RELIEF algorithm [23], which is considered

one of the most successful weighting algorithms and in

which the calculations are based on the distances between

training samples. Furthermore, according to the best of our

knowledge, there exists no usage of the RELIEF algorithm

for multimodal feature selection2 in multimedia retrieval.

The key idea of RELIEF is to iteratively estimate feature

weights according to their ability to discriminate between

neighboring samples. Employing the RELIEF algorithm

for multimodal feature selection on multimedia data

enables to identify some weaknesses of the algorithm,

which have not been addressed before. Our solution is

based on RELIEF-F, which is the multi-class extension of

the basic RELIEF algorithm. We extend RELIEF-F in the

following aspects, considering the characteristics of mul-

timedia data and multimedia retrieval systems:

1. Class-specific selection Multimedia retrieval is a

multi-class problem with a high number of concepts/

classes. One major drawback of RELIEF-F is that it

generates weights in a class-common way, where the

same feature weights are assigned for all concepts.

However, each concept can be represented better with

different features that are specific to that concept [50,

55]. Thus, it is important to use a class-specific

modality weighting approach in the multimedia

retrieval systems, to handle the high number of classes.

2. Multi-labeled data Multimedia data is usually multi-

labeled. However, the RELIEF-F algorithm cannot

perform well when the training samples are multi-

labeled. RELIEF-F estimates the weights of the

features according to their ability to discriminate

between different classes. Having multi-labeled sam-

ples causes the algorithm not to discriminate between

classes effectively, due to the ambiguity produced by

the samples associated with multiple concept types.

3. Noisy data Multimedia data contains a vast amount of

noise. However, the way RELIEF-F deals with noisy

data is inadequate. Similar to the multi-label issue,

noise in the samples hinders a correct discrimination

between classes.

4. Unbalanced data The training samples provided in

multimedia datasets are usually unbalanced between

1 This paper is a revised and extended version of [54].

2 The final goal of this study is to select the effective modalities by

weighting the available modalities and each modality is a multi-

dimensional feature. Thus, from now on, the phrases ‘modality

selection’, ‘modality weighting’ and ‘multimodal feature selection’

are used interchangeably.
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classes. Although RELIEF-F applies k nearest neighbor

approach to deal with the outlier data, an unbalanced

dataset prevents RELIEF-F from eliminating outlier

data effectively. Assuming that each class has approx-

imately the same amount of noisy samples (as a ratio),

using the same k for all classes makes the algorithm

include more noisy samples for the classes with smaller

numbers of training samples. Thus, having different

numbers of samples for each class affects the perfor-

mance of the RELIEF-F algorithm negatively.

5. Late fusion inputs In regular use of RELIEF-based

algorithms, the distances between instances are calcu-

lated using the feature values. However, the late fusion

approaches usually rely on prediction scores and the

feature values may not be available at the time of

fusion. Thus, a procedure that enables using the

prediction scores is necessary.

In this paper, we propose a new RELIEF extension for

multimedia data (RELIEF for Multimedia data: RELIEF-

MM) to handle the above given research issues. First, we

restate the RELIEF-F algorithm in a class-specific way and

show that the weights produced by the original RELIEF-F

are equal to the average of all class-specific weights. Thus,

generating class-specific weights does not have a negative

effect on the computational complexity of the algorithm.

Second, we deal with the multi-label and noise issues, and

extend the weight estimation function by including the rep-

resentation and reliability characteristics of the features in

addition to the currently used discrimination capabilities.

These characteristics of features are calculated based on the

statistics of distances between the training instances, by

complying with the distance–space criteria discussed before.

The mean distances between the samples of each class are

employed as the representative characteristics, and the cor-

rectness ratios of features for each class are used as the

reliability characteristics. For the discriminative property,

we calculate the distance between the means of classes, as in

the original RELIEF-F. Third, we deal with the unbalanced

data problem, and propose the use of dynamic k nearest

neighbor selection. In dynamic k selection, a different k value

is calculated for each class, instead of the same k value for all

classes. The dynamic k value is used as a predefined ratio of

the number of samples in each class. This modification

makes the algorithm deal with approximately the same ratio

of noisy instances for all classes and give more regularized

weight assessments. Lastly, we enable RELIEF-F algorithm

for use with classifier predictions by converting the predic-

tion scores into distances between instances.

We evaluate the RELIEF-MM algorithm with the

TRECVID 2007 [35], TRECVID 2008 [36] and Columbia

Consumer Video (CCV) Database [19] datasets. For each

of the issues discussed above, we perform comparative

tests against the RELIEF-F algorithm. In addition, we

compare the multimedia retrieval accuracies of the

RELIEF-MM-based linear weighted fusion approach with

single modalities, simple averaging and exhaustive search.

As a general overview, we can state that the proposed

RELIEF-MM algorithm generates better feature weights

than the RELIEF-F algorithm and the computational

complexity is still asymptotically the same as the original

algorithm. It has been observed that the fusion methods

empowered by RELIEF-MM guarantee higher accuracies

than any single modality. RELIEF-MM also demonstrates

much better performance than simple averaging and

RELIEF-F-based methods. Moreover, RELIEF-MM gives

nearly the same performance as the exhaustive search-

based approach, yet it is computationally much more effi-

cient than the exhaustive one.

The remainder of this paper is organized as follows: In

Sect. 2, an overview of modality selection in information

fusion, feature selection methods and a detailed description

of the RELIEF algorithms are given. In Sect. 3, the

RELIEF-MM algorithm is presented in detail. In this sec-

tion, first of all, the RELIEF algorithm is restated in a class-

specific way, then the extensions for multi-label, noisy and

unbalanced data problems are described. After introducing

the extensions in detail, the combined algorithm is pre-

sented, along with a computational complexity analysis.

Lastly, the strategy for using the RELIEF-MM with late

fusion inputs (i.e., prediction scores) is described. In Sect.

4, the empirical results and the evaluations of our proposed

solutions are given. In the last section, some conclusions

are drawn and some possible future studies are discussed.

2 Related work

In multimedia retrieval, the most popular strategies for

combining multimodal information are early fusion and late

fusion. Early fusion is the concatenation of all available

modalities into a single feature vector, whereas late fusion is

the linear combination of classifier outputs after processing

each modality by a separate classifier [17]. The studies in the

literature do not present a clear winner between these two

approaches, in terms of accuracy. Yet, early fusion usually

leads to the ‘‘curse of dimensionality problem’’ because of

concatenation of the modalities. On the other hand, late

fusion is simple in calculation and has a reasonable perfor-

mance despite its simplicity. Thus, late fusion has attracted

much more attention than early fusion in recent studies [17,

31]. However, the selection of modalities (i.e., assigning

weighs for each modality) is an important issue in late fusion,

and affects the retrieval accuracy in fusion results. In this

study, we focus on efficiently determining the effectiveness
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of modalities. Below, we first present recent studies on

modality selection for multimedia data. Then, with a

machine learning point of view, the modality selection

problem is compared with the feature selection problem in

machine learning literature, and the well-known approaches

for feature selection are presented. Lastly, we discuss the

family of the RELIEF algorithms.

2.1 Modality selection/weighting

In the multimedia domain, the majority of the fusion

studies prefer simplistic solutions for combining all avail-

able modalities by performing an empirical weighting

scheme or a simple averaging [15, 31, 45]. An empirical

weighting method is based on empirical observations and

manual selection of the features. Besides, a simple aver-

aging approach assumes that all of the modalities are

equally effective although any of the features can be non-

informative or redundant. Some successful utilizations of

simple averaging can be found in [19, 20], where they

obtain higher retrieval accuracies than any single modality.

Yet there are several studies that perform the selection/

weighting by evaluating the effectiveness of each modality,

and some of the recent ones are summarized below.

One popular approach for modality selection is the use

of the accuracy values as the weight estimations. In [9],

Fumera et al. provide a theoretical analysis of this idea.

Some recent utilizations of this idea can be found in [14,

34, 39]. Another approach applied in the literature is to find

the independent feature subsets, considering that the result

of the fusion process is improved if complementary

(independent) inputs are combined [27]. Towards this

direction, Wu et al. [52] redefine ‘modality’ as an ‘inde-

pendent component’ among the available features and find

statistically independent modalities from raw features by

employing principle component analysis (PCA), indepen-

dent component analysis (ICA) and independent modality

grouping (IMG) techniques. Kludas et al. [26] apply the

independency idea and use correlation coefficients to

measure the dependency between features. Besides these,

Atrey et al. [1], Kankanhalli et al. [22] and Snidaro et al.

[44] study the problem in another perspective, and try to

combine multiple data streams (e.g. data obtained from

several different sensors like video camera, microphone,

etc.), where each data stream can be accepted as a different

modality. Atrey et al. [1] use a dynamic programming

approach to find the optimal subset of media streams based

on several criteria which maximizes the information gain

obtained. Kankanhalli et al. [22] propose an experiential

sampling-based solution for selecting the most informative

subset of data streams. Snidaro et al. [44] define a quality

metric for the data streams and dynamically regulate the

fusion process. Further recent studies on the topic is as

follows: Kalamaras et al. [21] take the advantage of user

feedback and learn the modality weights via an interactive

user feedback scheme. Huang et al. [12] tailor the genetic

algorithm to learn modality weights and apply it to alle-

viate the local minima problem during the process of

finding an optimal solution. Moulin et al. [32] reformulate

the modality weighting problem as a dimensionality

reduction problem in a binary classification context and

find the linear combination that best separate relevant and

non-relevant documents for all queries using a Fisher

Linear Discriminant Analysis-based approach. Chen et al.

[5] calculate the modality weights by measuring the dis-

criminative capability of each visual feature by a voting

scheme, where the voting scheme is applied by processing

all triples of the training samples (candidate, positive and

negative) and assigning a vote for the candidate according

to whether the candidate is closer to the positive or the

negative. Wu et al. [51] consider the interactions among

the multimodal classifier outputs and employ a fuzzy

integral-based approach to find modality weights. The

fuzzy integral approach provides an importance measure

for each subset of available information sources [47].

However, each of these methods has their own limita-

tions and drawbacks. First of all, they are either compu-

tationally complex or their weight estimation capabilities

are limited. Furthermore, the selection process is usually

class-common, which means, the same set of features are

used for all classes. In addition, they usually evaluate the

features individually, which may cause loss of the infor-

mation that is obtained from the correlation between fea-

tures. In this study, we propose a timely efficient and

effective way for modality weighting, which exploits the

class-specific information for modalities and enables the

use of correlation between modalities.

2.2 Feature selection/weighting approaches

In addition to the above given methodologies, the feature

selection/weighting studies in machine learning literature

provide many different approaches for feature selection.

Existing methods in the literature are categorized as filter

or wrapper methods. Filter methods assess the relevance of

features by looking only at the intrinsic properties of the

data, whereas in wrapper methods the performance of a

learning algorithm is used to evaluate the fitness of the

feature subsets in the feature space. Filter methods are

usually computationally much more efficient than wrapper

methods; however, wrapper methods usually provide

solutions closer to the optimal solution. Another weakness

of the filter methods is that they usually evaluate the fea-

tures individually. Thus, the quality of combined feature

subsets is not analyzed and the correlation information

between features cannot be exploited. Some well-known

392 T. Yilmaz et al.

123



filter methods are Information Gain [13], Gain Ratio [38],

Correlation-based feature selection (CFS) [11], Chi-

squared selection and RELIEF [23]. Some well-known

wrapper methods are as follows: exhaustive search [16],

sequential forward selection (SFS) [24], sequential back-

ward elimination (SBE) [24], Plus q take-away r [8],

simulated annealing and genetic algorithms. For more

detailed discussions, interested readers can refer to [10, 16,

42] and the references therein.

With a machine learning point of view, the modality

weighting problem is similar in nature to the feature

weighting problem and, thus, efficient and effective feature

weighting solutions can be applied for the modality

weighting problem. However, it is not trivial to apply the

available methods to the modality weighting problem due to

several differences between the problems. The most crucial

difference is the intrinsic dimensionality of modalities. In

feature weighting, the input is a feature vector, which is a

multi-dimensional vector of numerical/nominal values

representing some pattern. Besides, in modality weighting,

the input is multiple feature vectors. Feature weighting

methods rank the dimensions of the input feature vector by

assigning a weight for each dimension, whereas in modality

weighting, the intrinsic dimensions of each modality are not

the main concern. Modality weighting methods rank the

modalities by assigning weights to each modality as a black-

box. Still, an early combination (i.e., concatenation) of

available modalities corresponds to a single multi-dimen-

sional feature, which makes any feature weighting method

applicable. However, the majority of the multimodal fusion

studies employ late fusion approaches, in which each

modality is processed separately. Thus, ranking the avail-

able modalities, instead of the intrinsic high-dimensional

features, is still a crucial need for the multimodal informa-

tion fusion. In addition, another concern may be performing

some feature selection operations for each of the modalities.

However, it can be assumed as a preprocessing step before

modality selection/weighting. The second difference

between feature and modality weighting is the values of the

inputs. The inputs of a multimodal fusion system are not

necessarily feature values; the most frequently utilized

inputs in state-of-the-art fusion studies are the prediction

scores. Thus, the modality selection approach should work

under any of these inputs. One more issue related with the

input values is that most of the frequently applied methods

(e.g. Information Gain, Chi-squared) require the feature

values to be binary or discretized. However, discretization

of the modalities makes the process computationally com-

plex, since each modality is represented by a multi-dimen-

sional feature.

An applicable idea to deal with these problems is to work

in a distance-based metric space, instead of in a feature

space. Utilizing a distance space solves the intrinsic

dimensionality problem of multiple modalities by convert-

ing the multi-dimensional feature values of a modality to a

uni-dimensional distance value. Furthermore, it enables

handling the scores, ranks and decisions after converting

them into applicable dissimilarity values with appropriate

conversion functions. Thus, we focus on a RELIEF-based

algorithm, which generates the weights based on the dis-

tances between training samples. Being a filter approach,

RELIEF avoids an exhaustive search and provides com-

putationally a more efficient solution than the wrapper

methods. Besides, it takes the context into account, exploits

correlation information between features and thus usually

performs better than the filter approaches. Details of the

family of RELIEF algorithms are given below.

2.3 RELIEF algorithms

Among the available feature selection and weighting

methods, the RELIEF algorithm [23] is among the most

successful. It is a simple and effective way for feature

selection [6]. In addition, RELIEF does not make a condi-

tional independence assumption for features, as many other

feature selection methods do, and can correctly estimate the

quality of features with dependencies [41]. The key idea of

RELIEF is to estimate weights for each feature according to

their ability to discriminate between neighboring training

samples by iterating through randomly selected instances in

the training space. In [46], Sun presents the discrimination-

based approximation of RELIEF with a novel mathematical

interpretation from the optimization perspective, and shows

that RELIEF utilizes a margin-based nonlinear classifier for

searching useful features.

The basic RELIEF algorithm is given in Algorithm 1.

The weight estimation function in Line 9 exploits the dis-

crimination capability. The algorithm selects a random
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sample r, one Near-Hit H (nearest neighbor with the same

class with the random sample) and one Near-Miss

M (nearest neighbor with a different class with the random

sample) and distances between them are calculated. In this

calculation, the distance between instances in different

classes indicates a discrimination between classes, so

diff(fi, r, M) increases the weight. Inversely, distance

between instances with the same class inhibits discrimi-

nation, so diff(fi, r, H) decreases the weight.

Considering several deficiencies of the basic RELIEF

algorithm, Kononenko [29] proposes several extensions for

RELIEF: RELIEF-A uses k nearest neighbors instead of one

and averages the contribution of k nearest instances to

eliminate the effect of noisy instances; RELIEF-B, RELIEF-

C and RELIEF-D extend the use of diff function to handle

incomplete datasets; RELIEF-E and RELIEF-F improve the

weight update function for multi-class problems. Other well-

known extensions for RELIEF are as follows: Sikonja et al.

[40] propose RRELIEF-F for handling regression problems.

In [43], Sikonja proposes using k-d trees for the selection of

nearest neighbors to decrease the computation complexity of

the RELIEF algorithm. In [46], Sun introduces Iterative

RELIEF (I-RELIEF), which uses an Expectation Maximi-

zation algorithm to eliminate outlier data. Also, Liu et al.

[30] try to eliminate outlier data and propose using selective

sampling by means of a modified kd-tree instead of random

sampling (at Line 6 in Algorithm 1).

Among the available extensions of the RELIEF algo-

rithm, RELIEF-F is the most widely utilized. RELIEF-F

enables working with multi-class problems, by selecting

k nearest misses for each class. Thus, the RELIEF-F algo-

rithm updates Line 7 of Algorithm 1 with the following;

hH;Mi  findNearestHitsMissesðr;D; k; CÞ;

where k is the number of nearest neighbors, and C ¼ hcuisu¼1

is the list of classes. H is the k-sized list of hit instances,

whereHv denotes the vth nearest hit instance. Besides,M is

the s 9 k sized matrix, where Mu
v represents the vth miss

instance for class cu 2 C. In addition, the weight estimation

function in Line 9 is also updated as given below

W ½i�  W ½i� �
Xk

v¼1

diffðfi; r;HvÞ
m � k

þ
Xs

u¼1
cu 6¼CðrÞ

PðcuÞ
1� PðCðrÞÞ

Xk

v¼1

diff ðfi; r;Mu
vÞ

m � k

 !
ð1Þ

where, P(cu) represents the prior probability of class cu, and

C(r) indicates the class of sample r.

In this study, we utilize RELIEF-F for multimodal fea-

ture selection in multimedia retrieval, which has not been

done before, to the best to our knowledge. Using the

RELIEF-F algorithm for multimodal feature selection on

multimedia data enables us to identify some weaknesses of

the RELIEF-F algorithm. Thus, we extend the RELIEF-F

algorithm due to the aspects discussed in Sect. 1.

2.4 Complexity analysis

The feature selection/weighting problem is known as NP-

hard, in terms of the number of features n ¼ jFj. An

exhaustive search for generating all possible subsets requires

O(pn) actions, where p is the number of assignable weights

(p = 2 for binary selection). Considering that an exhaustive

search is a wrapper method, it requires an evaluation for each

of these subsets. Assuming a simple evaluation similar to

RELIEF, based on the similarities/distances between m ran-

domly selected instances to all t training instances, the total

complexity of the exhaustive search becomes Oðm � t�
n � pnÞ. Moreover, if a class-specific approach is applied, the

total complexity becomes Oðm � t � s � n � pnÞ, where s is the

number of classes (s ¼ jCj).
On the other hand, the RELIEF algorithms provide

solutions in polynomial time. The complexity of the basic

RELIEF algorithm is Oðm � t � nÞ, considering that the most

complex operation is the selection of the nearest hit and

miss instances since the distances between r and the other

training instances should be calculated for each feature,

which requires Oðt � nÞ comparisons. Different from the

basic RELIEF algorithm, the complexity of RELIEF-F

depends on the number of nearest neighbors (k). If we use a

priority queue, which is implemented with a heap structure,

for the selection of k nearest neighbors, where the con-

struction of the heap is O(t) and the retrieval of k neighbors

from each class is Oðk � s � log tÞ; the total complexity of

selecting k nearest hits/misses becomes Oðm � t � nþ m � k �
s � log t þ m � k � s � nÞ: In this equation, the first term is for

the distance calculation, the second is for selecting nearest

instances from the heap and the last is for the weight cal-

culation [Eq. (1)]. If the dataset is a balanced one and the

value of k is considerably small with respect to t, then the

computational complexity of the RELIEF-F algorithm

becomes the same as the basic RELIEF algorithm

(Oðm � t � nÞ). A computationally better solution can be

obtained by utilizing k-d trees for improving the nearest hit

and miss selection process (Oðn � t � log tÞ).

3 RELIEF-MM: modality weighting approach

for multimedia data

To benefit from the simplicity and effectiveness of RELIEF

algorithms, we propose a RELIEF-based multimodal fea-

ture selection solution, by extending the RELIEF-F algo-

rithm. Below, each of our extensions is presented in a

separate subsection.
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3.1 Class-specific feature weighting

Multimedia retrieval requires dealing with a high number of

different queries, where each query usually denotes a different

concept occurring in videos. Thus, multimedia retrieval is

accepted as a multi-class classification problem with a high

number of classes, where each class is a concept occuring in

videos. In addition, the variety of such concepts is so wide that

they can be associated with different sets of features/modali-

ties. In other words, each concept can be represented better

with different features specific to the concept [50, 55]. For

instance, an explosion concept can be represented relatively

more accurately by the audio modality, whereas it is better to

utilize visual modality for detecting a mountain concept.

Similarly, it can be easier to recognize a meeting concept using

both the visual and the audio modalities. Hence, a class-spe-

cific modality weighting approach is inevitable to be used in

the multimedia retrieval systems, to handle the high number of

classes/concepts. However, the traditional feature selection

methods, including the RELIEF-F algorithm, propose class-

common solutions in which the selection is performed inde-

pendently from the classes.

Based on the motivation above, we propose a substantial

extension on RELIEF-F, which is converting it to a class-

specific solution. Since the RELIEF-F algorithm iterates

over available training samples to obtain the final value of

the modality weights, grouping the training samples

according to their classes and processing samples of each

class separately can achieve a class-specific solution.

Assuming that we iterate over m training samples

R ¼ frigm
i¼1, which are randomly selected from the set of

all training samples D ¼ fdigt
i¼1, the final weight of fi can

be formalized as;

WðfiÞ ¼
Xm

j¼1

�
Xk

v¼1

diffðfi; ri;HvÞ
m � k

"

þ
Xs

u¼1
cu 6¼CðrjÞ

 
PðcuÞ

1� PðCðrjÞÞ
Xk

v¼1

diffðfi; rj;Mu
vÞ

m � k

!#
ð2Þ

Here, we can rewrite Eq. (2) as in Eq. (4), by assigning

the effect of one training sample rj on the final weight

calculation of modality fi into DWi
j (Eq. (3)).

DWðfi; rjÞ ¼ �
Xk

v¼1

diffðfi; rj;HvÞ
k

þ
Xs

u¼1
cu 6¼CðrjÞ

 
PðcuÞ

1� PðCðrjÞÞ
Xk

v¼1

diffðfi; rj;Mu
vÞ

k

! ð3Þ

WðfiÞ ¼
1

m

Xm

j¼1

DWðfi; rjÞ ð4Þ

If the samples in R are grouped according to the class

they belong to, we can represent the final weight of fi as in

Eq. (5). Here, each group is represented by

Ru ¼ fr j r 2 R ^ CðrÞ ¼ cug, where R ¼
S
fRugs

u¼1 and

C(r) represents the class of r.

WðfiÞ ¼
Xs

u¼1

PðcuÞ
1

jRuj
X

r2Ru

DWðfi; rÞ
 !

ð5Þ

Here, we can define a class-specific weight x(cu, fi) as in

Eq. (6).

xðcu; fiÞ ¼
1

jRuj
X

r2Ru

DWðfi; rÞ ð6Þ

The original class-common weight estimation function

of RELIEF-F can also be rewritten as in Eq. (7), in terms of

class-specific weights.

WðfiÞ ¼
Xs

u¼1

PðcuÞxðcu; fiÞ ð7Þ

As seen in Eq. (7), RELIEF-F estimates the weights of

the features by taking a weighted average of all class-

specific weights and, thus, cannot reflect the characteristics

of each class separately. Instead, we here propose to use

weight estimations of each class separately. Consequently,

this class-specific adaptation of RELIEF-F is presented

with Algorithm 2.
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We should also note that converting the original

RELIEF-F algorithm into a class-specific version does not

change computational complexity, since k hit/miss selec-

tion procedures and the number of processed samples do

not change. As a result of having the same computational

complexity, the approach can be accepted as scalable in

terms of the number of class, since the computational

complexity of the algorithm is linearly proportional to the

number of classes (as given in Sect. 2.4).

3.2 Multi-labeled/noisy datasets

In a typical multimedia retrieval task, each multimedia

document (i.e., shot or video) is usually associated with a

number of different semantic concepts. This situation

reveals the problem of the multi-label feature selection, in

which each sample is associated with multiple labels. In

multimedia data, the multi-labeled characteristic of the data

can be originated from either having more than one concept

for each multimedia document in any single modality

contained (e.g. having both an airplane and a mountain in a

visual scene, as given in Fig. 1), or containing different

concepts in different modalities of the same document (e.g.

having an explosion sound in the audio-modality and mil-

itary-related vehicles in the visual modality at the same

moment of the video).

In multi-label datasets, the samples are not mutually

exclusive in terms of assigned labels, thus the discrimina-

tion of the samples between class labels becomes compli-

cated. The discrimination of the samples between the

retrieval classes is crucial to an effective feature selection.

However, state-of-the-art studies accept the problem as a

structural one, deal with converting the multi-labeled

dataset into a single-labeled one for use with traditional

feature selection methods [7, 28], and leave aside the

cognitive aspect of the problem, which is also an important

part of the problem. Here, the ‘structural’ side of the

problem refers to the impossibility of using traditional

learning/selection methods with the multi-labeled dataset

due to the structure of the dataset, whereas the ‘cognitive’

side denotes the loss of the discrimination capability for

learning. In this study, we regard both issues depicted and

propose a two-step solution.

As the first step, we consider that it is not possible to use

the RELIEF-F algorithm directly for a multi-label dataset,

since having multi-labeled samples makes the nearest hit/

miss selection procedure ambiguous. For instance, we need

a solution to select the nearest hits/misses of a random

instance with two different class labels, or a nearest item is

labeled with two different classes. Thus, we first look into

the state-of-the-art transformation methods. The most

popular transformation methods in the literature are ran-

dom assignment (RA), binary relevance (BR), label power

set (LP) and pruned problem transformation (PPT) [48]. In

the RA approach, a multi-labeled sample is randomly

assigned to one of its classes. In BR, the dataset is trans-

formed into jCj single-label datasets, where C ¼ hcuisu¼1 is

the list of available classes. In any Du ¼ fd j d 2 D ^
CðdÞ ¼ cug of these datasets, the samples are labeled in a

binary form, depending on whether a sample d is associated

with class cu or not. In LP, the basic idea is to convert the

set of classes C into C0 such that C0 is the power set of C
(C0 ¼ PðCÞ). PPT is an improvement on LP, where unused

subsets are removed from C0. However, using any of these

approaches causes loss of either the effectiveness or the

efficiency of the algorithm. Using RA makes the process

nondeterministic and also loses a large amount of valuable

information due to the random class selection; thus results

in an ineffective solution. On the other hand, although BR,

LP and PPT are potentially good solutions to prevent

information loss, the process becomes computationally

complex. Hence we focus on an alternative solution that

enables use of the RELIEF-F algorithm for multimedia

data and does not increase the computational complexity.

Assuming that ci, cj and ck are three classes different

from each other, we decompose the multi-label problem for

RELIEF-F into three cases:

• Case-1 A random sample x is associated with both

classes ci and cj. In this case, it is not clear which class

will be accepted for hits and misses.

• Case-2 Random sample x is labeled with ci, and y is one

of the nearest neighbors of x. If y is labeled with both ci

and cj, it is unclear whether such a neighbor instance is

a hit or a miss.

• Case-3 Random sample x is labeled with ci, and y is one

of the nearest neighbors of x. The neighbor instance y is

labeled with both cj and ck. In this case, it is clear that y is a

miss. However, it is not clear which class of miss it is.

We first start with a BR-like method, which is very

compatible with the class-specific extension of RELIEF-F

discussed in Sect. 3.1. Different from BR, we do not

generate jCj number of binary valued datasets. In
Fig. 1 Examples for multi-labeled shots. a airplane and mountain,

b car, accident, people and street
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accordance with the class-specific extension, an intuitive

way to deal with these cases is to transform each multi-

labeled sample into multiple single-labeled samples with

the same feature values but different classes (as illustrated

in Fig. 2), and group the samples according to the class that

they belong to. Thus we divide the training dataset into jCj
number of subsets, each having the samples of a different

class. During the execution of the algorithm, the random

samples are selected among each subset iteratively, and

finding the associated class of a sample is not problematic

anymore, even if it is a multi-labeled sample originally.

Thus, Case-1 is discarded. Actually, the use of a class-

specific extension helps to prevent Case-1. For handling

Case-2 and Case-3, the same transformation as with Case-1

is applicable. For Case-2, any multi-labeled neighbor

instance y is replicated and transformed into yci and ycj.

Then, yci is used as a hit instance and ycj is used as a miss

instance, which actually means y is used both as a hit and a

miss instance. Similarly, for Case-3, y is transformed into

ycj and yck, then ycj is used as a miss instance for class j,

whereas yck is used for class k.

Although this solution is an efficient approach to deal

with the multi-labeled structure of training data and does

not cause information loss as in BR transformation, it is

still possible to lose some information due to the use of the

same neighboring instances as both hits and misses (i.e.,

Case-2). Considering the weight estimation function of

RELIEF-F given in Eq. (2), while calculating the weight of

modality f using random sample x, the effect of a neighbor

hit instance y is as follows:

dhit ¼ �
diffðf ; x; yÞ

m � k ð8Þ

However, if the neighbor instance y is a multi-labeled

one as in Case-2, the same instance is used both as a hit and

a miss instance. Thus, the net effect of the neighboring hit

instance becomes:

d0hit ¼
PðcjÞ

1� PðciÞ
� 1

� �
diffðf ; x; yÞ

m � k ð9Þ

In other words, the effect of the hit instance is decreased

because of being a multi-labeled instance. The worst case

of this situation, although practically impossible, occurs

when the instance is labeled with all available classes. In

such a situation, the effect of the instance equals to zero. In

[28], Kong et al. propose to ignore the instances of Case-2,

which is practically the same as assuming the situation is

always the worst case. In our approach, we do not ignore

such instances, since they may still provide some valuable

information as long as the situation is not the worst case.

We accept the decrease in the effect of the hit instances as a

sort of noise and loss in the discrimination capability of the

features.

In this aspect, we also consider the effect of noise in

multimedia data. In addition to the fact that the multimedia

data have an expected internal noise, the way we model the

multimedia data can create an artificial noise. Since the

multimedia data is usually large—even huge—some sub-

sampling (i.e., using shots and keyframes instead of each

particular frame) is done before processing it. The extrac-

ted features represent only subsamples from the video,

whereas the ground truth labels are based on the full con-

tent of the video. Such a situation makes the evaluation of

features complicated and eventually some of the ground

truth instances appear as noisy instances. Similar to the

multi-label issue, having noise in the samples prevents a

correct discrimination between classes. In addition,

depending directly on the distances between training

instances affects the performance of the algorithm nega-

tively, considering the noisy instances.

Consequently, the second step of our approach is based

on strengthening the feature weighting mechanism of

RELIEF-F. Thus, we introduce two new factors for the

calculation of the weights, in addition to the discrimination

capability: the representation and reliability characteristics.

Having additional components in the weight calculation

makes the algorithm less dependent on the discrimination

capability, and provides better estimations. Hence, the

class-specific weight of a feature, which was previously

defined in Eq. (6), is updated as the following;

-ðcu; fiÞ ¼
ðxðcu; fiÞÞa � cðcu; fiÞ � gðcu; fiÞ; if xc

f [ 0

0 otherwise

�

ð10Þ

where x, c and g functions provide the discrimination,

representation and reliability-based weights, respectively.

In addition, a is an experimental constant for tuning.

Considering that RELIEF-F-based weights are in [-1, 1]

and weights smaller than zero denote irrelevant features,

Fig. 2 Transforming multi-labeled samples into multiple single-

labeled samples. Small green, yellow and red circles denote c1, c2 and

c3 instances, respectively. Orange circles in (a) are multi-labeled

instances, each of which is transformed into multiple single-labeled

instances in (b) (color figure online)
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we discard these by assigning zero. The proposed functions

are discussed in detail below.

3.2.1 Discrimination-based weight

The discrimination-based weight (x(cu, fi)) refers to the

weight calculated using the data from all available classes

with an aim to discriminate between those classes. The

calculation of x(cu, fi) is basically accepted as the way to

calculate class-specific RELIEF-F (Eq. (6)).

3.2.2 Representation-based weight

The representation-based weight (c(cu, fi)) refers to the weight

calculated using the data only from any single class, with an

aim to represent that class independent of other classes. To

measure its effectiveness using only its characteristics and

calculate such a weight, we assume that we can isolate the

samples of a particular class from other classes. Here, isolation

means that any sample labeled with other classes is always at a

farthest location. Applying this idea to the class-specific

RELIEF-F weight calculation gives the following: The dis-

tance of a random sample to any of its nearest misses always

equals to 1 (note that diffðf ; x; yÞ 2 ½0; 1�). Hence, the repre-

sentation-based weight becomes the following:

cðcu; fiÞ ¼
1

jRuj
X

r2Ru

1�
Xk

v¼1

diffðfi; r;HvÞ
m � k

" #
ð11Þ

Equation (11) can also be interpreted as the complement

of the mean distance of a class to itself, so the weight of a

feature is inversely proportional to the mean distance of the

class to itself. Here, the mean distance of a class to itself is

the average of all distances from each sample of a class to

its k neighbor hits. It is expected for a particular class that

the features with lower mean distance values represent the

class better. Thus, c(cu, fi) is a sound metric to estimate the

representation capability of a feature.

3.2.3 Reliability-based weight

Reliability-based weight (g(cu, fi)) refers to the weight

calculated using accuracy with respect to a feature for a

particular class, with an aim to see whether it is reliable for

that class or not. The idea of using the accuracies of fea-

tures is based on the theoretical analysis of Fumera et al.

[9]. Fumera et al. work on a late fusion scheme and show

that the weight of a classifier for feature fi should be

inversely proportional to the error of the classifier.

Considering that RELIEF-MM is a filter method, and

classification results are not available during the feature

weighting, we propose to estimate the accuracy of each

feature by comparing the intra-class distance of each class

with the inter-class distances to other classes. The intra-

class distance is defined as the mean distance of the sam-

ples in cu to their nearest k hits, whereas the inter-class

distance is the mean distance of the samples in cu to their

nearest k misses from each different class cu0 6¼ cu. It is

important for a feature to give the lowest distance values

for the instances in a class which is the same as the class of

the query instances. Thus, g(cu, fi) provides an estimation

for reliability by finding the number of inter-class distances

(by means of different classes) that has a larger value than

the intra-class distance. The formal representation of

g(cu, fi) is given in Eq. (12)

gðcu; fiÞ ¼

���flðcu; cu0 ; fiÞjcu0 2C�fcug
^ lðcu;cu0 ;fiÞ[ lðcu;cu;fiÞg

���
s� 1

ð12Þ

lðcu; cu0 ; fiÞ ¼
1

jRuj
X

r2Ru

"
Xk

v¼1

�
diffðfi; r;N cu0

v Þ
�#

ð13Þ

where N cu0
v is the vth cu0-labeled nearest instance of sample

r. Thus, l (cu, cu, fi) refers to the mean distance to k hits

(intra-class distance), whereas lðcu; cu0 ; fiÞ with cu0 2 C �
fcug is the mean distance to the k misses of any other class

(inter-class distance).

3.3 Unbalanced datasets

In multimedia datasets, some of the concepts occur less

frequently than others, which causes the annotated training

data to be unbalanced among different classes. We can

consider the occurrences of flag versus car objects through

a random video as an example; a flag object usually occurs

less often than a car object. Thus, the number of car

samples is usually larger than the number of flag samples.

One important consequence of frequent occurrence is

having more representative and descriptive data than the

infrequent concepts, e.g. it is possible to find several dif-

ferent models and colors of car samples, but it is hard to

find the variations of flag samples. Hence, having an

unbalanced dataset may prevent an adequate learning

process.

Although the unbalanced dataset problem is usually

discussed in the scope of classification and learning [4], the

RELIEF-F algorithm, as a feature selection method, is also

negatively affected by unbalanced data. The reason why

RELIEF-F is affected by the imbalance in the data is the

use of k nearest neighbors during the weight calculation. As

discussed in Sect. 2.3, RELIEF-F uses average distance to

k nearest neighbors while calculating the weights, to

eliminate the effect of outlier data. However, the placement

of training samples in the multi-dimensional space and the

amount of outliers are highly data-dependent, and can be

very different for different domains and classes. Thus, we
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point out that selecting k number of nearest neighbors for

every class is not a fair preference, when each class has a

different number of samples. Using the same k number of

neighbors hinders the use of an equal amount of informa-

tion from all classes. For instance, a certain value of k may

provide for the acquiring of all available patterns of a

particular class. However, for another class, the same

k value may provide for the acquisition of only a small

ratio of the available patterns. The situation is not different

if we consider the outlier data. Selecting the same number

of neighbor instances from different classes (each of which

has a different number of samples) may result in different

ratios of outlier data for each class.

Considering the above given issues, we propose to select

the value of k dynamically, i.e., a class-specific k value.

However, enabling a class-specific k selection makes the

process more complicated, despite the potential improve-

ment in the estimation of feature weights. Thus, we pro-

pose another promising idea; using the k value as a certain

ratio of sample count in a class. By employing such an

idea, the k value of class cu can be calculated by

ku ¼ kR � jDuj; ð14Þ

where Du ¼ fd j d 2 D ^ CðdÞ ¼ cug is the set of training

instances with class cu, and kR 2 ½0; 1� is the nearest

neighbor selection ratio, which is defined independently of

the classes.

A weak point of this idea is that it requires us to assume

approximately the same ratio of noise for all classes. Yet,

this assumption can be practically applicable, considering

that the datasets mostly do not suffer from the outliers

because of mislabeling, but because of complexities related

with the internal characteristics of video data, such as

lighting variations, camera motion, occlusion, and noise in

the sensed data. Mislabeling is a human-oriented noise, in

which we cannot assume that the ratio of outliers are equal

for different classes (e.g. it may be harder to annotate the

samples with less frequently occurring classes). However,

we can assume that the complexities in the video occur

approximately in the same ratio for any class, especially

when we have a broad range of videos.

3.4 The final algorithm

The finalized RELIEF-MM algorithm including all of the

extensions that we describe above is given in Algorithm 3.

In order not to make the presentation of the algorithm more

complex, some of the calculation including loops are rep-

resented by some mathematical functions (e.g. sum oper-

ations). The -ðcu; fiÞ in Eq. (10) is represented with

W matrix in the algorithm. The other parameters for cal-

culating -ðcu; fiÞ are given as they are given in Eq. (10).

The RELIEF-MM algorithm consists of three parts.

First, the parameters of the weight estimation function (x,

c and g) are initialized. Second, these parameters are

updated iteratively by encountering random training

samples in the total of m. This process is performed
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separately for each class, thus some percentage of

m (proportional to the prior probability of each class) is

used for each class. Lastly, the calculated parameters are

used to find the final values of weight estimations for each

feature and class.

Here, it should be noted that the original RELIEF-F

algorithm is an online algorithm, which means that the

algorithm processes training instances one-by-one in a

serial fashion, and can give an output after processing

each instance. However, the RELIEF-MM algorithm

presented in Algorithm 3 is offline, since the final

weights are calculated as a batch instruction. Our choice

eliminates further complexity in the algorithm. Yet, it is

fairly straightforward to convert Algorithm 3 into an

online version by moving the block between lines 24–32

into the for loop between lines 13–23, as the last

instruction.

3.4.1 Complexity analysis

We assume that n denotes number of features (n ¼ jFj),
m denotes number of iterations, kR denotes nearest neigh-

bor selection ratio, s denotes number of classes (s ¼ jCj)
and t denotes number of training instances (t ¼ jDj).
Considering the Algorithm 3, RELIEF-MM includes three

main loops for initialization, calculation and finalization.

The first main loop (lines 2–8) initializes the parameter

matrices and takes;

Linit ¼ Oðs2 � nÞ ð15Þ

The second main loop (lines 9–23) is basically used for

iterating over m instances from any class in C. Inside the

loop, there are three operations, which are not O(1); (1)

filtering cu-labeled instanced in D, in line 10, (2) selection

of hits and misses, in line 15, (2) weight parameter cal-

culations, between lines 16–23. The first operation is per-

formed once for each class in C. The operation checks

whether each instance in D is labeled with cu or not, and

takes O(t) time. The second operation includes the distance

calculation from random instance to all instances in D,

heap construction using the distances and neighbor selec-

tion from the heap. This process is similar to the case for

RELIEF-F in Sect. 2.4, and takes Oðt � nþ t þ ku � s � log tÞ
steps. The third operation contains four instructions and is

repeated for each feature. It takes Oð2 � ku � s � nþ 2 � ku �
nÞ steps in total. The bounds for the second and third

operations include a ku term which is dependent on a class

cu. In other words, for each class cu 2 C; the ku value gets a

different value based on Eq. (14). Considering that these

operations are repeated for m0 instances of s number of

classes, the total complexity of these three operations

becomes;

¼
Xs

u¼1

"
O
�

mPðcuÞðtnþ kRjDujs log t þ kRjDujsnÞ
�#

¼ Oðm t n þ m kR s log t
Xs

u¼1

�
PðcuÞjDuj

	

þm kR s n
Xs

u¼1

�
PðcuÞjDuj

	
!

ð16Þ

Considering that P(cu) is the prior probability of the

classes and can be calculated using the instance counts in

each class, the summation term
Ps

u¼1ðPðcuÞjDujÞ in Eq. (16)

can be rewritten as
Ps

u¼1ðjDuj2=tÞ. The minimum value of

this term is obtained when the dataset is balanced. For such a

case, the term equals to t/s. The maximum value of the term is

obtained with an unbalanced dataset, where one of the

classes contains all t instances and the other classes contain

no instances, although this is practically impossible. In this

case, the term equals to t. Thus the complexity bounds for the

term is Xðt=sÞ and O(t). By applying this result in Eq. (16),

the total complexity of the second main loop becomes

Lcalc¼O
�
m � t �nþm �ðkR � tÞ�s � logtþm �ðkR � tÞ�s �n

	
ð17Þ

The third main loop (lines 24–32) calculates the final

weights by looping over all features and classes. It also

includes a s-sized loop for finding the final value of g. The

total complexity of the third main loop is;

Lfin ¼ Oðs2 � nÞ ð18Þ

The total complexity of the RELIEF-MM algorithm can

be obtained by adding the values in Eqs. (15), (17) and

(18). Here, we consider that t C s and m C s should be

true, since the algorithm implicitly makes an assumption

that there should be at least one instance of each class, and

also at least one instance should be selected from each

class, in order to calculate the feature weights of each class.

Hence, m � t � n� s2 � n. Consequently, the terms coming

from the Eqs. (15) and (18) can be omitted for the calcu-

lation of the asymptotic upper bound. Then, the complexity

of the RELIEF-MM algorithm equals

OðRELIEF�MMÞ
¼ O

�
m � t � nþ m � ðkR � tÞ � s � log t þ m � ðkR � tÞ � s � n

	

ð19Þ

If the complexity of RELIEF-MM is compared with the

complexity of RELIEF-F given in Sect. 2.4, it can be seen

that the only difference lies in the terms related with the

nearest neighbor selection. RELIEF-MM includes ðkR � tÞ,
whereas RELIEF-F has k. Essentially, these two terms are

asymptotically equal in terms of complexity since both

reside in the same range. Furthermore, if we consider using

RELIEF-MM with balanced datasets, the ðkR � tÞ term turns
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into ðkR � t
s
Þ, as described above. Thus, for small values of kR,

the complexity of RELIEF-MM for balanced datasets is

Oðm � t � nÞ, as it is for RELIEF-F. Here, the m � t � n term is an

asymptotic upper bound on m � ðkR � tÞ � log t and

m � ðkR � tÞ � n, for small values of kR. In conclusion, it can be

said that the complexity of the RELIEF-MM algorithm is

asymptotically the same as the original RELIEF-F algorithm.

3.5 Using RELIEF-MM with prediction scores

As mentioned before, in late fusion, the fusion is performed

after a classification step. Thus, the inputs for the fusion

process are the prediction scores obtained from the clas-

sifiers. In other words, the feature values of the samples

may not available during the fusion process, in many cases.

However, the original RELIEF algorithm uses the feature

values of the samples to calculate the distances between

them. Thus, in late fusion scenarios, where the feature

values are not available, it is not possible to utilize the

RELIEF algorithm. It is necessary to extend the weight

calculation process of the RELIEF algorithm so that it can

be used with the prediction score inputs.

Given that the classes are C ¼ hcuisu¼1, the modalities

are F ¼ hfiini¼1 and the training samples are D ¼ hdjitj¼1;

the list of prediction probabilities for class cu and modality

fi is Scu;fi ¼ fs
cu;fi
j g

t
j¼1, where 0� s

cu;fi
j � 1. Note that the

order of the samples in D and the score values in Scu; fi are

given correspondingly.

While using RELIEF-MM with prediction score inputs,

the algorithm remains the same, but the diff function cal-

culation should be rewritten, since we do not have feature

values anymore. Considering that an s
cu;fi
j value of a sample

dj corresponds to the similarity of the sample to a pre-

defined class (cu), we utilize the following idea: The dif-

ference between similarities of two samples to the same

pattern corresponds to a reasonable distance metric of these

samples. Thus the diff function in the RELIEF-MM algo-

rithm can be updated as the differences of the score values

of the samples. However, for each sample, there exist

s number of scores of each modality, where each score is

the similarity value for a different class. Thus, we consider

that the RELIEF-MM algorithm iterates over the training

samples, and we use the score list which corresponds to the

class of the randomly selected sample, on each turn. Thus,

the diff function becomes;

diffðfi; dx; dyÞ ¼ jsCðdxÞ;fi
x � sCðdxÞ;fi

y j ð20Þ

where dx is the randomly selected sample, dy is one of the

hit/miss instances for dx, and C(dx) function corresponds to

the ground truth class value of the sample dx given as

parameter.

4 Empirical study

In this section, we evaluate the proposed modality

weighting approach for semantic retrieval of multimedia

data. For the retrieval task, the multimedia data is queried

based on the semantic concepts. First, retrieval for each

single modality is performed, then a multimodal retrieval is

done. During the multimodal retireval, the modalities are

combined with a linear (weighted averaging) combiner-

based late-fusion approach, where the weights of the

modalities are generated via different approaches.

To perform a detailed comparison, we carry out our

empirical study in two major steps:

• Comparison with Other Approaches: We compare the

retrieval accuracies of the RELIEF-MM-based linear

weighted fusion approach with a RELIEF-F-based one,

as well as the single modalities, basic approaches

(simple averaging and maximum) and exhaustive

search. Also, we compare the modality selection

performance of RELIEF-MM with RELIEF-F in terms

of the accuracies for each different number of feature

selections.

• Tests for Each Extension Idea: After a comparison with

alternative approaches, we focus on the issues that

motivated us to develop RELIEF-MM, and perform

tests comparing (i) class-common and class-specific

selection, (ii) performances with multi-label, uni-label

data and noisy cases (iv) using a dynamic vs. static

nearest neighbor selection (kR vs. k).

Considering that one of the important contributions of

this study is the use of prediction scores with the RELIEF

algorithm, the experiments are conducted with both of the

following scenarios:

• We assume that the feature values are available, and

use them to calculate the feature weights.

• We apply a pure late fusion scenario by assuming that

the feature values are not available. Thus, the prediction

scores are used for weight calculation.

4.1 Experimental setup

4.1.1 Datasets

Experiments are carried out on three frequently utilized

benchmark datasets: TRECVID 2007 [35], TRECVID

2008 [36] and the Columbia Consumer Video (CCV)

Database [19]. The dataset characteristics are summarized

in Table 1. Further details and a performance comparison

of TRECVID participants can be found in the corre-

sponding references.
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While using the TRECVID 2007 and 2008 dataset, we

prefer using the outputs of common shot reference, for shot

segmentation. For these datasets, the shots are used as the

retrieval documents. Besides, for the CCV dataset, each

video is accepted as a retrieval document. During the tests,

the shots (for TRECVID 2007/2008) and the videos (for

CCV) are considered as individual and independent docu-

ments, which means no contextual information or interac-

tion is taken into account between shots/videos.

Each of the utilized datasets provides different sets of

concept annotations. The annotations on all three datasets

are provided in a multi-label manner, which means each

shot can contain more than one label. A complete list of

these concepts is given in Fig. 3 with sample images. The

semantic queries performed during the tests are based on

these semantic concepts.

4.1.2 Modalities

For all datasets, we consider a multimodal setting, and use

features from different modalities. However, we prefer a

relaxed definition for ‘modality’ [52]. The modalities of

multimedia data are usually accepted as audio, visual and

text modalities, but each of these modalities can be

expanded. For instance, visual data can be defined with

several modalities like color, shape, texture and face. Here,

each of these modalities is a different type of information

source, and contains a significant amount of complemen-

tary information. Thus, we accept each different type of

information (i.e., each complementary feature) as a dif-

ferent modality. The multimodal features utilized during

the test are listed in Table 2.

As presented on the table, visual, audial and textual

features are extracted from the videos of the TRECVID

2007 dataset. For visual features, one key frame per shot is

adopted and the middle frame for each shot is selected as

the key frame. The feature extraction and distance calcu-

lation tasks of the visual features are performed using the

MPEG-7 reference software (eXperimentation Model, XM)

Table 1 Datasets

TRECVID 2007 TRECVID 2008 CCV

Dataset length (hours)

Train *50 *100 *105

Test *50 *100 *105

Number of videos

Train 110 219 4659

Test 109 215 4658

Number of shots

Train 21,532 39,674 N/A

Test 18,142 33,726 N/A

Fig. 3 Query concepts for each dataset and sample shot images from query concepts, a TRECVID 2007 dataset, b TRECVID 2008 dataset, c
CCV dataset
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[33]. For audial features, the entire audio of each shot is

processed and Yaafe toolbox [2] is utilized for feature

extraction. For the textual features, the Automatic Speech

Recognition and Machine Translation texts, which are

provided by TRECVID, are employed. During the calcu-

lations, no stop-word filtering or preprocessing is done.

For TRECVID 2008, the features are not extracted; instead,

the prediction score values of each shot for the concept queries

are obtained from the CU-VIREO374 [18] dataset. In the CCV

dataset some well-known features are already provided, as

well as the videos and annotations. For more detailed expla-

nations, interested readers can refer to [18, 19].

Considering that we combine the modalities with a late

fusion process, features from each modality should be

processed with a classifier and the prediction scores should

be obtained before the combination (for TRECVID 2007

and CCV datasets). For the classification task, a support

vector machine (SVM) classifier with appropriate radial

basis function (RBF)-based kernels is preferred, and LIB-

SVM [3] is utilized.

4.1.3 Metrics

To measure the retrieval accuracy, Precision, Recall,

average precision (AP) and mean average precision

(MAP) are used. Precision is the fraction of retrieved

documents that are relevant to the query concept, while

Recall is the fraction of relevant documents that are

retrieved. The AP is the sum of the precision at each rel-

evant hit in the retrieved list, divided by the minimum of

the number of relevant documents in the collection and the

length of the list. Regarding the evaluation rules of

TRECVID, AP is measured at 2000. MAP is the AP

averaged over several query concepts. In other words, the

AP of each concept is calculated separately and then the

MAP is found by averaging them. Beyond the measure-

ments of accuracy, we also present the statistical signifi-

cance of the obtained results. To do so, we perform a

Student’s t test with paired samples, where the pairs are the

accuracy results for different concept queries. A paired

t test gives a p value which denotes the significance of the

improvement between two tests. The smaller the p value,

the more significant the difference of the two average

values. We assume a confidence level at 0.95 and accept

the results with p value \0.05 as significant.

We define another metric, named fusion gain (FG), to

perceive the effect of the fusion process. Fusion gain gives

the relative performance increase between two different

configurations:

FGðx; yÞ ¼ MAPðxÞ �MAPðyÞ
MAPðyÞ ð21Þ

where x and y denote different configurations (i.e., different

feature selections). In our experiments we calculate two

FGs:

• FGBS The fusion gain is calculated by comparison with

the best single modality.

• FGAVG The fusion gain is calculated by comparison

with the simple averaging approach.

4.2 Comparison with other approaches

To see the effectiveness of RELIEF-MM, we first compare

its retrieval accuracy with the following alternative

methods,

• Each single modality,

• Basic approaches like maximum (MAX) and averaging

(AVG),

• Class-common exhaustive search (Exh-CC), Class-

specific exhaustive search (Exh-CS)

• Original RELIEF-F algorithm.

Using each single modality and basic approaches repre-

sents the lower accuracy bounds for the fusion system. A

fusion system is accepted as successful if it provides better

accuracy than any of the single modalities. We also consider

the MAX and AVG approaches as lower bounds, since these

are the most frequently utilized fusion approaches due to

their simplicity in calculation. In the MAX approach, the

decision in the fusion process is calculated by taking the

maximum score value of the available modalities. In the

AVG approach, the mean of the score values of all available

modalities is accepted as the final decision. On the other

hand, we also present the accuracies of the exhaustive

search for finding optimal modality weights, which pro-

vides an upper bound for the retrieval accuracies. For the

Table 2 Modalities utilized for each dataset

Dataset Modalities

TRECVID 2007 MPEG-7 Color Layout (CL)

MPEG-7 Region Shape (RS)

MPEG-7 Edge Histogram (EH)

Zero Crossing Rate and Energy (ZCRE)

Mel-freq. Cepstrum Coefficients (MFCC)

Term Freq.–Inverse Doc. Freq. (TF-IDF)

TRECVID 2008 Gabor Texture (GT)

Edge Direction Histogram (EDH)

Scale Inv. Feature Transform (SIFT)

Grid-based Color Moment (GCM)

Grid-based Wavelet Texture (GWT)

CCV Scale Inv. Feature Transform (SIFT)

Spatial-Temporal Interest Points (STIP)

Mel-freq. Cepstrum Coefficients (MFCC)
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exhaustive search approach, we perform both class-com-

mon and class-specific weighting processes. Exh-CC eval-

uates every different weight set to find the optimal weight of

each modality. In Exh-CS, the same process is repeated for

each class, separately. Lastly, we compare our proposed

approach with the original RELIEF-F algorithm, which

exhibits the major contribution of this study. During these

comparisons, for RELIEF-F and RELIEF-MM, the perfor-

mances at the optimal kR values are presented. The v value

for RELIEF-MM is used as 2.

The use of an exhaustive search usually causes infeasible

test situations. In our tests, the feasibility of the weight

selection process via an exhaustive search depends on the

precision of the weights, as well as the number of modalities.

For instance, if we want to have a precision of 0.01 between

weights with 6 modalities, we should check 1006 cases.

Assuming that we already have the prediction scores of each

modality beforehand, such a process for TRECVID 2007

dataset would take so long that even parallelization of the

process would not be a solution. Thus, we follow a compu-

tationally simpler search process without damaging the

fairness of the comparisons. We perform the following two

different near-exhaustive search processes3, and then select

the best one: (1) We first perform an exhaustive binary

selection among available modalities, and select the best 4

modalities. Then, we perform a weight search on the selected

4 modalities with 0.01 precision ðw 2 f0; 0:01; 0:02;

. . .; 0:99; 1gÞ. After finding the optimal weights and fixing

them, we perform a weight search on the remaining 2

modalities. (2) We first perform an exhaustive weight search

on all available modalities with 0.1 precision and find the

optimal weights for each feature. Then, as a second step, we

tune up the weights by performing a selection between [w -

0.05, w ? 0.05] with 0.01 precision.

To evaluate the proposed approach, one may argue that

there should be comparisons with other available feature

selection/weighting methods. However, as described in

Sects. 1 and 2.2, currently available filter-based feature

selection/weighting methods in the literature are not easily

applicable to the modality weighting problem, due to the

issues of the intrinsic multi-dimensionality of modalities

and the multivariate inputs of fusion systems. Thus,

adapting other approaches to modality weighting problem

is beyond the focus of this study. Besides, we do not

consider comparing our method with several different

wrapper approaches since we perform a comparison with

the exhaustive search, which gives the best possible

accuracy. It is also known that any wrapper approach is

much more computationally complex than our approach.

Consequently, we think that the comparisons included in

this study are enough to evaluate the effectiveness and

efficiency of our proposed approach.

In Table 3, the MAP values of the above listed

approaches are presented for the TRECVID 2007, TREC-

VID 2008 and CCV datasets. For a better understanding of

which weighting approach provides more effective fusion,

the Fusion Gains of these approaches are calculated and

presented in Table 4. In addition to the accuracy results

included here, a statistical significance analysis of the

results is presented in Table 5. In the tables, (F) denotes the

use of feature values as inputs to the RELIEF-based

Table 3 Comparison of

retrieval accuracies

The first column denotes the

configuration: S single

modalities, B basic approaches,

E exhaustive search, F RELIEF

methods using feature values,

P RELIEF methods using

prediction scores

TRECVID 2007 TRECVID 2008 CCV

MAP

(%)

MAP

(%)

MAP

(%)

S CL 8.711 EDH 10.479 SIFT 49.676

EH 9.032 GT 10.802 STIP 39.959

RS 6.762 SIFT 19.032 MFCC 27.585

ZCRE 6.385 GCM 13.027

MFCC 6.884 GWT 9.094

TFIDF 6.286

B MAX 6.639 MAX 17.126 MAX 52.071

AVG 8.270 AVG 18.969 AVG 57.340

E Exh-CC 10.322 Exh-CC 20.034 Exh-CC 57.403

Exh-CS 12.988 Exh-CS 22.183 Exh-CS 57.783

F RELIEF-F 9.847 RELIEF-F 56.027

RELIEF-MM 10.563 RELIEF-MM 57.511

P RELIEF-F 9.076 RELIEF-F 19.760 RELIEF-F 55.380

RELIEF-MM 9.454 RELIEF-MM 20.559 RELIEF-MM 57.562

3 This two-step process is applied for the TRECVID 2007 and 2008

datasets, where the number of modalities lead to inefficient situations.

For the CCV dataset, an exhaustive weight search process is

performed with 0.01 precision.
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algorithms, whereas (P) represents the cases where the

predictions scores are used as the inputs.

From these experimental results, we arrive at the fol-

lowing observations:

• Combinations of different modalities give more accu-

rate results than the single modalities. However,

selection of modalities is a critical issue. A wrong

selection can lead to worse results than the best of the

single modalities. For instance, AVG cannot provide a

positive gain in the TRECVID 2007 and 2008 datasets,

compared to the best single modality. Similarly, a

MAX approach is not successful in any of the three

datasets. This is because of the fact that these simple

methods do not perform an effective evaluation on the

modalities, and thus they cannot discard the unfavor-

able modalities. Although these approaches provide the

most efficient solutions, they cannot always provide an

effective solution and they are not robust against

different datasets. Consequently, a more robust and

effective approach is highly recommended despite the

risk of some decrease in efficiency.

• RELIEF-F is significantly better than the best single

modality in one of two datasets where feature values are

used as input, and one of three datasets where predictions

scores are used. If compared with the AVG approach,

RELIEF-F has a significant improvement in only one case

out of all five. Hence, RELIEF-F is not a robust solution

against different datasets. Still, it can be accepted as an

applicable modality selection approach, since it does not

provide retrieval accuracies worse than the best single

modality, and usually performs slightly better.

• RELIEF-MM provides a significant improvement over

the best single modality for all datasets when the

feature values are used as input, and two of three

datasets when the prediction scores are used. If

compared with AVG results, RELIEF-MM is signifi-

cantly better in one of the two datasets with the feature

value inputs, and in two out of three datasets with the

prediction scores. When RELIEF-MM is compared

with RELIEF-F, it is observed that RELIEF-MM

obtains higher retrieval accuracies than RELIEF-F in

all cases, each having a p value \0.05. In addition, it

Table 4 Fusion gains wrt

Best single modality and AVG

approach

TRECVID 2007 TRECVID 2008 CCV

FGBS (%) FGAVG (%) FGBS (%) FGAVG (%) FGBS (%) FGAVG (%)

(B)

MAX -26.500 -19.726 -10.013 -9.718 4.822 -9.188

AVG -8.439 -0.327 15.428

(E)

Exh-CC 14.283 24.816 5.266 5.612 15.556 0.110

Exh-CS 43.792 57.045 16.558 16.941 16.321 0.773

(F)

RELIEF-F 9.016 19.064 12.786 -2.289

RELIEF-MM 16.944 27.723 15.773 0.298

(P)

RELIEF-F 0.483 9.744 3.829 4.170 11.483 -3.418

RELIEF-MM 4.669 14.316 8.023 8.378 15.877 0.388

Table 5 Statistical significance analysis using paired T test

p value

(BEST)

p value

(AVG)

p value

(RELIEF-F)

TRECVID 2007

F

RELIEF-F 7.39E-02 4.67E-02*

RELIEF-MM 1.96E-02* 2.90E-02* 1.95E-02*

P

RELIEF-F 4.75E-01 2.45E-01

RELIEF-MM 2.65E-01 1.51E-01 1.89E-02*

TRECVID 2008

P

RELIEF-F 4.04E-01 5.60E-02

RELIEF-MM 1.87E-02* 2.30E-03* 4.02E-04*

CCV

F

RELIEF-F 6.74E-06* 2.38E-03*

RELIEF-MM 2.02E-06* 1.24E-01 4.43E-05*

P

RELIEF-F 2.08E-04* 4.72E-13*

RELIEF-MM 1.92E-06* 4.29E-02* 6.99E-10*

Pairs are based on query concepts. Statistically significant results

according to the confidence level 0.95 (p value\0.05) are given with

an * p value (BEST), (AVG) and (RELIEF-F) denote the p values

with respect to the best single modality, simple averaging and

RELIEF-F approaches, respectively
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should be noted that RELIEF-MM achieves higher

accuracy results than the best single modality, AVG

and MAX approaches, and even slightly better results

than the Exh-CC approach. Thus, there is strong

evidence that the RELIEF-MM approach introduces a

significant improvement and can be accepted as a

robust and effective solution as a modality weighting

approach for multimedia data. Therefore, RELIEF-MM

can be regarded as a practical enhancement for the

multimedia retrieval studies using simple averaging for

fusion.

• An exhaustive search finds the optimal feature selection

since it evaluates all possible combinations. The

accuracy results show that the use of a class-specific

approach in the exhaustive search (Exh-CS) helps to

improve retrieval accuracy in all three datasets.

Besides, being a class-specific approach, RELIEF-

MM is not upper-bounded with Exh-CC, whereas the

accuracies of RELIEF-F are always less than Exh-CC.

• The performance of using prediction scores instead of

feature values for calculating the modality weights

depends on the characteristics of the dataset. In our

experiments, results with the TRECVID 2008 and CCV

datasets are reasonably good. However, for TRECVID

2007 dataset, there exists a considerable decrease in

accuracy according to the results of using feature values.

Thus, it may be hard to give a conclusive decision about

the effectiveness of using prediction scores, with the

current evidence. Nevertheless, the accuracies with the

prediction scores outperform best single modality, MAX

and AVG approaches. Consequently, we observe that the

results of using prediction scores is promising and they

are applicable when the feature values are not available

during the fusion process.

The efficiency of the proposed approach is another

important concern. A running time comparison4 of

RELIEF-F, RELIEF-MM, Exh-CC and Exh-CS is pre-

sented in Table 6. The values given in the table correspond

to the cases presented in Table 3. The table includes both

the near-exhaustive search running times and the estimated

real exhaustive search times. The basic approaches (AVG

and MAX) are not given in the table since they are done at

no cost. Furthermore, a detailed comparison of RELIEF-

MM and RELIEF-F, for different kR nearest neighbor

selections, is presented in Fig. 4. According to the given

experimental results, execution of RELIEF-MM results in a

small increase in time, which is in parallel with the com-

plexity analysis given in Sect. 3.4.1. Besides, the exhaus-

tive search methods, even the near-exhaustive search,

require a high time cost, as expected. Hence, RELIEF-MM

can be accepted as an efficient modality weighting

approach, considering that the time cost is a polynomial

function of the number of modalities, and thus much more

efficient than the exhaustive search. When compared with

basic approaches, the cost of RELIEF-MM is still accept-

able, considering the improvement in the retrieval

accuracy.

Up until now, the average query performances have

been compared. To make a more detailed comparison, we

also perform a concept-based analysis. Figure 5 illustrates

a concept-based comparison and presents the number of

concepts for which RELIEF-MM provides higher accuracy

when compared with a particular approach. In addition,

precision-recall graphs for some of the query concepts are

given in Fig. 6. According to the given experimental

results, RELIEF-MM achieves higher accuracies in a larger

number of concepts than RELIEF-F, the best single

modality and AVG approaches, regardless of the used

Table 6 Approximate Execution Times of Exhaustive and RELIEF-based methods, on three different datasets

RELIEF-F (s) RELIEF-MM (s) Exh-CC (h) Exh-CS (h) Exh-CC* Exh-CS*

TRECVID 2007 3 6 17 340 19 years 380 years

TRECVID 2008 10 11 22 440 100 days 5.5 years

CCV 2 2 0.14 2.7 0.14 hours 2.7 hours

The column with an asterisk denotes estimated values for a real exhaustive search scenario

Fig. 4 Running time comparison of RELIEF-F and RELIEF-MM on

TRECVID 2007 dataset for different kR values

4 The measurements are taken on a machine with

‘‘Intel(R) Xeon(R) CPU E5530 @2.40GHz’’. The values on the

graph and table are obtained without a parallel programming

approach.
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dataset and the input type (feature values vs. prediction

scores). Nonetheless, the success rate of RELIEF-MM

compared to RELIEF-F is more pronounced than the best

single modality and AVG approaches. Under this obser-

vation, we can infer that the improvement provided by

RELIEF-MM is reasonably good, due to the extensions

introduced in this study. However the RELIEF idea in

general may lead to difficulties in some particular data

distributions and is open to improvement. Even though the

RELIEF algorithm utilizes a margin-based nonlinear clas-

sifier [46] to evaluate the features and a margin-based

nonlinear classifier is known to be successful in general,

the way RELIEF uses the input data is based on a standard

procedure of employing the distances from each training

sample to its neighbors, and does not benefit from any

feature transformations in kernel space. This approach may

be inadequate for some particular concepts that have

unique data distributions. Just as employing various kernel

types in SVM classifiers according to the characteristics of

data and features leads to more effective classification

results, so performing some appropriate kernel transfor-

mations on the RELIEF input data will help to make the

RELIEF approach superior in a larger number of query

concepts. However, such a problem is not included within

the scope of this study, and has been left for future work.

Beyond the discussion on kernel transformation, one

may focus on the comparison between RELIEF-MM and

RELIEF-F, and expect that a class-specific approach, i.e.,

Fig. 5 Concept-based accuracy comparison of RELIEF-MM with

other approaches. Columns indicate the number concepts that

RELIEF-MM provides higher accuracy than the compared approach.

Each group of columns denotes a different dataset with a specific

input type. MM[F: RELIEF-MM vs. RELIEF-F, MM[AVG:

RELIEF-MM versus Simple averaging, MM[B: RELIEF-MM versus

best single modality

Fig. 6 Precision-–recall graphs of some selected concepts. The rows

contain concepts from TRECVID 2007, TRECVID 2008 and CCV

datasets, respectively. Concepts in the first and second column are

best-case examples for RELIEF-MM, whereas the third and fourth

columns show worst-case examples (in terms of accuracy)
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RELIEF-MM, should have an ability to optimize the

weights for every query concept individually and thus

achieve higher retrieval accuracies in any concept. Insofar

as our observations have shown, we think that there exist

two important factors that prevent RELIEF-MM from

giving the best accuracies in some of the concepts.

The first reason for RELIEF-MM’s less-than-optimal

accuracy with some concepts is the small number of training

samples for some particular concepts, which lead to

incomplete representation of the concept. As explained in

Sect. 3.1, RELIEF-MM takes the samples of each concept

into account for the weight calculation, whereas RELIEF-F

uses all training samples without considering the concept

that they belong to. As a result, the weight calculation of the

concepts with a small number of training samples may lead to

ineffective results. On the other hand, RELIEF-F gains a

general insight into the effectiveness of each modality,

which usually provides better results than the estimations of

RELIEF-MM which are based on inadequate data. Explo-

sion_Fire, Desert, Flag and Truck in the TRECVID 2007

dataset are some of the concepts for which RELIEF-F gives

better accuracies. These concepts include 46, 67, 12 and 126

samples, respectively, whereas the dataset contains more

than 350 samples per concept on average. A performance

visualization for these kinds of concepts is given in the third

column of Fig. 6. It is also worth noting that TRECVID 2008

and CCV include less concepts with a small number of

samples, and thus the performance of RELIEF-MM is better

in these two datasets than TRECVID 2007, as seen in Fig. 5.

Second reason for RELIEF-MM’s weakness for some

concepts is the intra-concept sample variety, which can be

accepted as a side effect of including cf
c and gf

c into the

weight estimation function. As mentioned above, the way

in which the margin-based classifier is utilized in RELIEF

may be inadequate for some particular concepts that have

unique data distributions. In RELIEF-MM we extend the

weight estimation function and include cf
c and gf

c into the

formula. This preference increases the effect of margin-

based calculations in the function since both cf
c and gf

c are

calculated using the intra-concept and inter-concept dis-

tances. Even though such preference makes the weight

estimations better in most of the cases, increasing the effect

of margin-based calculations without a feature transfor-

mation in the kernel space may lead to worse weight

estimations. As a solution, two alternatives can be con-

sidered, a kernel transformation or including a non-margin-

based variable into the weight estimation function, which

can be considered for future work.

As a last comparison between RELIEF-MM and

RELIEF-F, we try a different scenario from the previous

tests, and combine the modalities with a simple averaging

approach after a hard selection of the modalities instead of

weighting. In modality selection for fusion, the ultimate

goal is to find which subset of the modalities is more

effective for the retrieval task. It is therefore important to

rank the modalities correctly, and this scenario helps us to

do so. In Fig. 7, the retrieval accuracies of RELIEF-F and

RELIEF-MM are presented for those cases where a differ-

ent number of modalities are selected and combined. Dur-

ing the test, first the weights of the modalities are obtained

via the RELIEF-F and RELIEF-MM algorithms. Then a

particular number of modalities are selected according the

assigned weights. The results show that RELIEF-MM is

clearly superior to the original RELIEF-F algorithm in this

task. Hence, it can be said that the ranking capability of

RELIEF-MM is more effective than that of RELIEF-F.

4.3 Tests for each extension idea

To further analyze the improvements that RELIEF-MM

provides, we compare our proposed algorithm with the

baseline RELIEF-F algorithm with respect to each idea

presented in Sect. 3. Below, each idea is discussed in a

separate subsection. Through this evaluation, the TREC-

VID 2007 dataset is utilized.

4.3.1 Class-common versus class-specific feature

weighting

The first improvement issue in RELIEF-MM is the con-

version of the original RELIEF-F algorithm, which is a

class-common approach, into a class-specific one. Thus, we

compare the retrieval accuracies of the class-specific

adaptation of RELIEF-F algorithm, which is introduced in

Algorithm 2, with the original RELIEF-F. Moreover, we

include the retrieval performances of RELIEF-MM algo-

rithm to provide a more complete representation. In Fig. 8,

precision–recall curves of these three methods are com-

pared for optimized k selections. In addition, Fig. 9

Fig. 7 Modality selection performances
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presents the retrieval performances of the given approaches

with respect to different values of k nearest neighbors.

Figures 8 and 9 show that RELIEF-MM provides higher

retrieval accuracies than both of the original RELIEF-F

algorithm and the class-specific adaptation of RELIEF-F,

for different values of nearest neighbors. Furthermore,

Fig. 8 presents the clear superiority of the class-specific

approach over the original one, and Fig. 9 shows that the

accuracy of the original approach decreases, as the number

of neighbors is increased. However, in the class-specific

RELIEF-F, the accuracy is almost directly proportional to

the number of neighbors. In addition, until some point

around 33 % of nearest neighbors selection, the original

RELIEF-F performs better than the class-specific RELIEF-

F, which means that the original algorithm is more pow-

erful than the class-specific approach for a small number of

neighbors. The reason for this situation is discussed below.

In discrimination-based approaches, one of the most

important factors that affects the success of the approach is

the variety of the encountered samples. The original

RELIEF-F algorithm estimates the weights by processing

the randomly selected m samples and k neighbors of each

sample from s - 1 classes. Equivalently, class-specific

RELIEF-F allocates the randomly selected m samples into

s classes according to the prior probabilities of each class,

and processes the samples of each class separately. Hence,

the weights of each class are estimated using a smaller

number of samples according to m. If the number of nearest

neighbors k is also small, the information obtained from the

distances between samples becomes limited, which directly

affects the success of class-specific RELIEF-F. If the

number of nearest neighbors is increased, it is certain that

the algorithm encounters some neighboring samples which

have not been seen before, so that the algorithm obtains

some adequate number of sample distances to estimate

more effective weights. On the contrary, the original

RELIEF-F usually does not encounter new samples when

the number of nearest neighbors is increased, since many of

the samples are seen through the m sample selection. If m is

chosen as all training samples, there is no new instance that

can provide new information while k is increased. There-

fore, the only factor affecting the success of the original

RELIEF-F algorithm becomes the noisy information

obtained due to the increase in k. Consequently, it is more

beneficial in this test to see which of the approaches can

achieve higher accuracy in any configuration, since those

upper bounds present how effectively they can use the

available information. In Fig. 8, it is apparent that class-

specific RELIEF-F uses the available information more

effectively.

4.3.2 Performances with uni-label, multi-label and noisy

data

Another improvement of RELIEF-MM is its ability to

handle multi-label data. Thus, we compare the retrieval

accuracies of the fusion systems using RELIEF-F and

RELIEF-MM for weight generation in uni-label and multi-

label data. This comparison helps us to understand whether

RELIEF-MM is more effective in multi-label data.

To obtain a uni-label data, we first process the training

dataset and remove the multi-labeled instances from the

dataset. We use the newly constructed uni-label dataset

only for the weight generation step of the fusion process.

The classifiers, which give the inputs to the fusion process,

are always trained with the multi-label dataset. Thus, we

manage to compare only the effect of different weight

generation methods. Furthermore, it should be noted that

constructing the uni-label dataset by removing the multi-

labeled instances may cause the loss of some information

Fig. 8 Precision–recall curves of the original RELIEF-F (CC-F),

class-specific RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms

Fig. 9 Retrieval performances of original RELIEF-F (CC-F), class-

specific RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms
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(e.g., approximately 40 % of the training instances is

removed) and affect the performance of weight generation.

Still, using a completely different uni-label dataset pre-

vents us from comparing the accuracies of a weighting

approach across datasets. Consequently, we find this setting

fair enough to compare the effectiveness of RELIEF-MM

and RELIEF-F.

The tests are conducted for several kR nearest neighbor

selections. Figure 10 presents the retrieval accuracies of

RELIEF-MM and RELIEF-F using uni-label and multi-

label data for weight generation. To understand the effect of

using multi-label data, the differences between the accura-

cies of RELIEF-F and RELIEF-MM can be compared for

uni-label and multi-label datasets. Such differences can be

best understood by the area between the curves of RELIEF-

F and RELIEF-MM in the given graph. As seen on the

graph, the area between RELIEF-F and RELIEF-MM

curves is larger for multi-label data, which can be evaluated

as RELIEF-MM working better in multi-label data.

In addition to the uni-label vs. multi-label data com-

parison, we also consider the performances of the algo-

rithms for noisy data. In Sect. 3 it is proposed that RELIEF-

MM should perform better than RELIEF-F even in noisy

data cases. Thus, we compare the performances of RELIEF

and RELIEF-MM with noisy datasets. For this purpose, we

manually add mislabeled instances into the multi-label

dataset, and construct 10, 30 and 50 % noisy datasets.

Similar to the tests for uni-label data, these noisy datasets

are used only for the weight generation step. The retrieval

accuracies at given noise levels are presented in Fig. 11, as

well as the zero noise level.

Figure 11 demonstrates that the decrease in accuracy is

usually larger for RELIEF-F, as the noise increases. Fur-

thermore it is observed that RELIEF-MM is superior to

RELIEF-F at any noise level. It can be stated that RELIEF-

MM is more robust against noise.

Fig. 10 Retrieval accuracies of RELIEF-F and RELIEF-MM for

different kR values, with uni-label and multi-label training data for

weight generation. MM and F denote RELIEF-MM and RELIEF-F.

(Uni) and (multi) denote the use of uni-label and Multi-label datasets

for weight generation

Fig. 11 Retrieval performances with different levels of noisy training

data for weight generation

(a) (b)

Fig. 12 Retrieval performances according to k versus kR nearest neighbors, a k neareast neigbors, b kR neareast neigbors
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4.3.3 Using k versus kR

One more improvement on the original RELIEF-F is the

dynamic selection of k nearest neighbor as a ratio value of

the class sample counts. The changes in retrieval accuracy

change according to different k nearest neighbors are

shown in Fig 12a. The change according to different kR

nearest neighbors is shown in Fig. 12b.

For each of the methods, it is expected that accuracy

values will converge into the same value when k reaches

the number of all training instances and kR reaches 100 %.

The improvement that kR provides is more apparent in

lower numbers of training samples. Figure 12 shows that

both approaches exhibit a decrease in performance when

100–500 nearest neighbors are used. The main reason for

the decrease is the use of imbalanced hit and miss instances

for concepts that have a smaller number of samples, e.g.,

using k = 400 for a concept with only 200 samples causes

the algorithm to use 200 hit instances, but 400 miss

instances. Considering that RELIEF-MM works with class-

specific preference, the decrease in accuracy becomes more

dramatic for RELIEF-MM. On the other hand, the use of a

dynamic selection with ratios (kR) prevents such a decrease

for both methods and enables more robust accuracy results

against a different number of nearest neighbor selections.

kR is bounded by the number of samples in the class, thus

the decrease caused by imbalanced hits/misses does not

occur any more.

5 Conclusion

In this paper, the problem of modality weighting for mul-

timodal information fusion is studied. As an effective and

efficient modality weighting solution, a RELIEF-based

approach is proposed. Considering the problems with

RELIEF-F when using it with multimedia data for multi-

modal fusion, we focus on five crucial issues and extend

the original RELIEF-F algorithm in these aspects. We first

convert the original algorithm into a class-specific repre-

sentation. Then we extend the algorithm and weight esti-

mation function so that they estimate the modality weights

better with multi-label and noisy data. For better estima-

tions, we include the representation and reliability char-

acteristics of modalities into the weight estimation

function, in addition to the currently available discrimina-

tion capability. We also make an extension to make the

algorithm more effective with unbalanced datasets. Lastly,

we introduce a conversion procedure that enables the use of

classifier predictions in RELIEF, considering that feature

values may not be available during a fusion process.

Our approach is extensively tested on TRECVID 2007,

TRECVID 2008 and CCV datasets with several modalities

in a multimodal information fusion scenario. The results

show that using RELIEF-MM guarantees higher accuracies

than any single modality, and shows much better perfor-

mance than simple averaging and RELIEF-F-based meth-

ods. In addition, RELIEF-MM provides slightly better

performance than the class-common exhaustive search-

based approach, although it is computationally much more

efficient. We also perform several comparative tests against

the RELIEF-F approach, aiming to examine each extension

idea, and confirm that the proposed extensions lead to

improvements on RELIEF-F. Consequently, we argue that

our proposed approach is a timely efficient, accurate and

robust way of modality selection.

The experiments carried out also exhibit some situations

for future work. To further improve RELIEF-MM, we put

forward the following ideas for future study:

• The RELIEF-MM algorithm utilizes a margin-based

discrimination approach, like the original RELIEF,

while evaluating features. Performing some appropriate

feature transformations on the kernel space may

improve the quality of the weight estimations, espe-

cially for those particular concepts that have unique

data distributions. Performing such transformations

separately for each concept type, like a one-vs.-all

approach, may yield better results.

• Another improvement idea for RELIEF-MM is to

include a non-margin-based evaluation metric into the

weight estimation function (e.g., mutual information,

information gain, correlation, etc). Any considerable

metric may have its own complications when being used

with modalities instead of features, deficiencies for

multimedia data and extra computational complexity,

however. All these factors should be analyzed in detail.

• It is possible to further increase the efficiency of the

RELIEF-MM algorithm by employing some caching

mechanisms (e.g., k-d trees, hashing).
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(eds.) TRECVID. National Institute of Standards and Technology

(NIST), Gaithersburg, MD (2010)

21. Kalamaras, I., Mademlis, A., Malassiotis, S., Tzovaras, D.: A

novel framework for retrieval and interactive visualization of

multimodal data. Electron. Lett. Comput. Vis. Image Anal. 12(2)

(2013). http://elcvia.cvc.uab.es/article/view/518

22. Kankanhalli, M., Wang, J., Jain, R.: Experiential sampling on

multiple data streams. Multimedia, IEEE Transactions on 8(5),

947–955 (2006)

23. Kira, K., Rendell, L.A.: A practical approach to feature selection.

In: Proceedings of the 9th International Workshop on Machine

Learning, ML ’92, pp. 249–256. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA (1992). http://dl.acm.org/citation.

cfm?id=645525.656966

24. Kittler, J.: Feature set search algorithms. In: Chen, C.H. (ed.)

Pattern Recognition and Signal Processing, pp. 41–60. Sijthoff &

Noordhoff International Publishers B.V., Alphen aan den Rijn,

The Netherlands (1978)

25. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining clas-

sifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)

26. Kludas, J., Bruno, E., Marchand-Maillet, S.: Information fusion

in multimedia information retrieval. In: Proceedings of the 5th

International Workshop on Adaptive Multimedia Retrieval

(AMR). Paris, France (2007)

27. Kludas, J., Bruno, E., Marchand-Maillet, S.: Can feature infor-

mation interaction help for information fusion in multimedia

problems?. Multimedia Tools Appl. 42, 57–71 (2009)

28. Kong, D., Ding, C., Huang, H., Zhao, H.: Multi-label relieff and

f-statistic feature selections for image annotation. In: Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference,

pp. 2352 –2359 (2012). doi:10.1109/CVPR.2012.6247947

29. Kononenko, I.: Estimating attributes: analysis and extensions of

relief. In: Proceedings of the European Conference on Machine

Learning, pp. 171–182. Springer, New York, Inc., Secaucus, NJ,

USA (1994). http://dl.acm.org/citation.cfm?id=188408.188427

30. Liu, H., Motoda, H., Yu, L.: A selective sampling approach to

active feature selection. Artif. Intell. 159, 49–74 (2004). doi:10.

1016/j.artint.2004.05.009. http://dl.acm.org/citation.cfm?id=103

9211.1039214

31. Atrey, P., Hossain, M., Saddik, A.E., Kankanhalli, M.: Multi-

modal fusion for multimedia analysis: a survey. Multimedia

Systems 16, 345–379 (2010)

32. Moulin, C., Largeron, C., Ducottet, C., Géry, M., Barat, C.:
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