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Abstract

Peer-to-peer networks are one of the trends in the
field of internetworking. Mobile agent-based technol-
ogy is a newly proposed technology that can be used in
peer-to-peer networks. Mobile agents are small soft-
ware entity that can migrate freely from node to node
in heterogeneous networks and has attracted consider-
able interest in both academia and industry in recent
years. In this paper, we focus on the problem of us-
ing mobile agents executing in peer-to-peer networks.
In our proposed mobile agent-based execution model,
mobile agents are classified into three kinds: inner
agents, outer agents, and worker agents. Inner agents
roam inside peer groups, outer agents routing among
peer groups, and outer agents execute users’ tasks on
behalf of the users. During agents routing process,
the network traffic is considered. For each step, mo-
bile agents select their targets based on a probability
distribution. We mathematically modeled the search
process of mobile agents and provide some theoretical
analysis on the defined cost function.

Keywords: Mobile agents, peer-to-peer, traffic in-
formation, unbiased distribution.

1 Introduction

With the far-reaching significance of the Internet
and dramatic advances in computer technology, com-
puters are no longer isolated computational machines.
People communicate with the outer world through
wireless networks, LANs, and the Internet. The expo-

nential expansion of the Internet and the widespread
popularity of the World Wide Web demands new
paradigms for building computer systems.

Peer-to-peer systems are one of the trends in the
field of internetworking. In peer-to-peer systems, the
hosts, or peers, act as client and server. Milojicic et al.
[18] lists some characteristics of peer-to-peer system.
They are: decentralization; scalability; anonymity;
self-organization; cost of ownership; ad-hoc connectiv-
ity; performance; security; transparency and usability;
fault resilience; and interoperability. Currently peer-
to-peer networks are mainly used for connecting nodes
via largely ad hoc connections. Such networks are use-
ful for many purposes. Sharing content files contain-
ing audio, video, data or anything in digital format is
very common, and realtime data, such as telephony
traffic, is also passed using P2P technology. Peer-to-
peer systems can be divided into pure peer-to-peer
systems and hybrid systems. In pure peer-to-peer net-
works, there is no kind of central servers as in hybrid
model where some servers are offered for e.g. locating
the resources. The most known peer-to-peer systems
are probably file-sharing networks, such as Napster,
kazaa, DC++, Gnutella and Bittorrent. But peer-to-
peer is also used in e-commerce, distributed computing
and in instant messaging (such as MSN Messenger).
The concept of peer to peer is increasingly evolving
to an expanded usage as the relational dynamic ac-
tive in distributed networks, i.e. not just computer to
computer, but human to human.

In recent years, mobile agent technology has drawn
a lot of attention in both academia and industry. The
use of mobile agents can be found in various areas [13],
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such as electronic commerce [11, 16], network man-
agement [3, 7], and information retrieval [2, 24]. As
defined in [17], mobile agents are executing software
entities that are capable of migrating from node to
node in heterogeneous networks on behalf of network
users. The key idea underlying mobile agents is to
bring the computation to the data rather than the
data to the computation [21]. In [14], Lange et al.
concluded that mobile agents can reduce the network
load, overcome network latency, encapsulate proto-
cols, execute asynchronously and autonomously, and
dynamically adapt to changes. Although some of these
strengths can be realized with combinations of many
traditional distributed-computing techniques, no com-
peting technique shares all of them [10]. The merits
have led a number of leading companies and research
institutions to develop mobile agent systems. The ex-
isting systems include Ara, D’Agents, Aglets, Concor-
dia, Gypsy, Mole, JatLite, Voyager and others [19].

Based on the characterization of peer-to-peer net-
works and the merits of mobile agents, the using of
mobile agents in peer-to-peer networks will benefit a
lot (see Section 2 for detail discussion). In this pa-
per, we apply mobile agent technology in peer-to-peer
applications and propose a mobile agent-based exe-
cution model. There are three kinds of agents in
our model, including inner agents, outer agents, and
worker agents. Inner agents and outer agents are re-
sponsible for routing, while outer agents execute users’
tasks on behalf of the users. Our model is described
in Section 3.

In a large agent-driven communication network,
mobile agents will be generated frequently and dis-
patched to the network. Thus, they will certainly con-
sume a certain amount of bandwidth of each link in
the network. If there are too many agents migrating
through one or several links at the same time, they
will introduce too much transferring overhead to the
links. Eventually, these links will be busy and indi-
rectly block the network traffic. Therefore, there is
a need of developing routing algorithms that consider
about the traffic load. Since the state of different links
may change dynamically over time, the agents have
to dynamically adapt themselves to the environment,
which increases the difficulty for both algorithm de-
sign and theoretical analysis. In [5], the network state
is monitored by launching an agent at regular intervals
from a source to a certain destination. In [6], the agent
was enabled to estimate queuing delay without waiting
inside data packet queues. In [15], the authors showed
that the information needed in [5, 6] for each destina-
tion is difficult to obtain in real networks. In [20], we

modeled the routing process of mobile agents by a min-
max problem. In [1], a mechanism of handling routing
table entries at the neighbors of crashed routers was
proposed which significantly improved the algorithm
proposed in [5, 6]. In [4], the authors formulated a
method of mobile agent planning, which is analogous
to the traveling salesman problem [9] to decide the se-
quence of nodes to be visited by minimizing the total
execution time until the desired information is found.

In this paper, to balance the network traffic load,
we introduce the maximum entropy theory to find an
optimal probability distribution that both makes in-
ference on the known traffic information and balances
the traffic load. The rest of the paper is structured
as follows. Section 2 presents the motivation of us-
ing mobile agents in peer-to-peer networks. Section 3
presents the proposed model. Section 4 mathemati-
cally models the cost function between two immediate
nodes. Section 5 introduces the maximum entropy
theory. Section 6 provides theoretical analysis and
Section 7 concludes this paper.

2 Motivation of using Mobile Agents
in Peer-to-Peer Systems

As summarized in [8], the reason of using mobile
agents in peer-to-peer networks comes from the fol-
lowing aspects:

First, mobile agents reduce the need for bandwidth.
Very often peers using a distributed protocol establish
a communication channel between themselves, and
then perform multiple interactions over this channel.
Each of these interactions generates network traffic.
Mobile agents allow these interactions to be pack-
aged together, and sent as a discrete piece of network
traffic. This then allows all the interactions to take
place locally. Mobile agents also encapsulate all the
required data within themselves. Therefore when a
mobile agent arrives on a computer it has all its data
with it, and does not need to communicate with any
other computers. In a conventional search protocol
all the raw data travels over the network to be pro-
cessed, even though only a subset of this data may be
needed. In this scenario, mobile agents reduce the net-
work traffic by moving the processing to the raw data,
instead of moving the raw data to the processing. Fi-
nally, mobile agents can be very small in size, but can
grow dynamically as they need to accommodate more
data.

Second, mobile agents are asynchronous. Therefore
when a mobile agent is dispatched there is no need to
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wait for it to return. Indeed the original peer does not
even need to remain connected to the network while
the mobile agents are out. The mobile agents can wait
until the original peer is back on the network before
attempting to return to it.

Third, mobile agents are autonomous. This partic-
ularly suits peer-to-peer networks, because the mobile
agent is learning about the network as it progresses
through it. The mobile agent will visit peers that were
unknown when it was originally dispatched. At each
peer it can make decisions based on its history of vis-
ited peers and the current peer.

Fourth, information is being disseminated at every
peer that the mobile agent visits. Every peer benefits
from accepting a visiting mobile agent, because the
mobile agent will have either new or more recent in-
formation about resources. Also, every mobile agent
benefits from visiting a peer because it will learn of
either new or updated resources . If the mobile agents
do not contain any new information they may be de-
stroyed. Accepting and hosting mobile agents requires
the use of physical resources, such as memory and
computer cycles. Should thee become critically lim-
ited, it is easy for the peer to refuse further requests
to accept mobile agents until more physical resources
become available.

Fifth, mobile agents may easily be cloned and dis-
patched in different directions. This allows them to
function in parallel. Although this causes more mobile
agents to be active on the network, it does ensure that
the network resource discovery is completed sooner,
and therefore the mobile agents spend less time on
the network.

Sixth, a mobile agent based solution is very fault
tolerant. Even if some of the mobile agents are de-
stroyed, all surviving ones will have a positive impact.
Indeed, the destroyed mobile agents will have bene-
fited every peer up to the point where they were de-
stroyed.

Finally, a mobile agent based solution can be com-
bined with successful features from other peer-to-peer
based systems to provide an improved final solution.

3 Execution Model

As we know, large scale distributed system consists
of many different virtual organizations and private
networks which often shows social or organizational
structure. Therefore they do not naturally support a
centralized point of control, which results in that the
resource descriptors can’t be stored at a single node

in the system. Because of this peer-to-peer comput-
ing is well suited for this kind of systems. Agent-based
computing is used because it offers the desired char-
acteristics to implement a peer-to-peer system.

In this section, we will briefly describe the organiza-
tional principles of our model. Our algorithm focuses
on how the mobile agents will behave while they roam
around the network. The network is organized into
peer groups. Note that a peer in a peer group is only
only a peer, but also a node in the network. For a spec-
ified peer (also called a node), peers in the same peer
group consists of its neighborhood and called neighbor
nodes of the peer. When a node does not belongs to
any peer group, we say the peer group consists of only
one node.

There are three kinds of agents employed in our
algorithm, namely inner agents, outer agents, and
worker agents. Inner agents are periodically generated
by a peer/node. They roam inside the peer group,
collect and disseminate information. Outer agents are
generated for when a user’s request cannot be com-
pleted in the current peer group. They are dispatched
into the network, roam among peer groups and search
for destination peer group for executing the request.
Worker agents are generated after the outer agents
find the destination. They carry the requests to be
completed to the destination peer group, follow a de-
sired route that the outer agents have explored, and
send the results to the users. A peer is known as the
“creator peer” for the mobile agents and all future
clones of these mobile agents.

Each peer periodically sends an inner agent, by
broadcasting replicas of it to each neighbor node. For
a inner agent, a journey-time is set in terms of the
maximum number of peers that may be visited before
it must return to its creator peer. Also a branching
factor is set, that is used to determine how many times
the inner agent may be cloned at any one peer. These
two parameters control the depth and breadth of the
search, and therefor the maximum number of peers
that may be visited.

Initially the inner agent is given the addresses of
some other peers participating in the network. Typ-
ically the number of addresses provided should be
small, and should be less than the branching factor.
For best results these addresses should come from dif-
ferent sources. This increases the chances that these
peers are operating in separate sub networks that are
as yet unaware of each other. After arriving at each
peer the inner agent decrements its journey-time, and
updates the peer with information about its creator
peer, and other peers encountered along the route so
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far. The inner agent also updates itself with informa-
tion on the current peer. If two inner agents from the
same creator peer arrive at the current peer within
a preset time period, then the second mobile agent
destroys itself. This may lead to to less information
being acquired about the network. However, it keeps
the information up to date, and yet prevents peers
that form cycles from having to deal repeatedly with
inner agents from the same creator peer. If the inner
agent’s journey-time has expired, then it returns to its
creator peer, and updates its creator peer with all the
information it has collected on its journeys. Otherwise
the inner agent clones itself enough times to allow a
clone of itself to be sent to each peer that was known
to the current peer before the inner agent arrived. By
excluding previously known peers, the incidence of re-
visits is reduced.

When a peer as a node in the network receives a
request, it firstly check whether the request can be ful-
filled inside its peer group. If so, it generates a worker
agent and forward it to the suitable site to execute
the request. Otherwise, a number of outer agents are
generated and launched to nodes outside its neighbor-
hood. For a outer agent, a journey-time is also set in
terms of the maximum number of nodes that may be
visited before it must return to its creator peer. Each
outer agent while traveling, collects and carries path
information, and that it leaves, at each node visited,
the trip time estimate for reaching its creator node
from this node over the incoming link. Once an outer
agent reaches a node, the node tells it whether the re-
quest can be fulfilled in its peer group. If so, the outer
agent goes back to the creator peer along the same
route it has explored, updates the routing table along
its route, and submits its report of its journey. Thus
each node in the network maintains current routing
information for reaching nodes outside its neighbor-
hood. This mechanism enables a node to route a data
packet (whose destination is beyond the neighborhood
of the creator node) along a path toward the destina-
tion node.

After a certain number of outer agents has come
back, the creator peer selects a desirable route based
on some rules, generates a worker agent and forward
it to the destination together with the request. The
worker agent executes the request on the destination
node and returns back to the creator peer with the
result. Finally, the creator peer submits the result to
the user.

Inner agents and outer agents make routing deci-
sions using the specialized routing strategy by select-
ing the next target to visit in their exploration. The

routing strategy is based on the consideration of traf-
fic balance of the network, that is, the next hop for
an agent is selected in a probabilistic manner accord-
ing to the quality measure of the traffic situation. We
will introduce our adopted probabilistic in detail in
the following.

4 Probability Distribution for Mobile
Agents Routing in the Network

Let G = {V,E} be a graph corresponding to a fixed
network, where V = {ν1, ν2, · · · } is the set of vertices
(hosts) and E is the set of edges. We assume that
the topology of a network is a connected graph in or-
der to ensure that communication are able to be made
between any two host machines. For an inner agent,
NB(i) is the set of peers in the peer group of the cre-
ator peer νi and |NB(i)| is the number of peers in
NB(i). For an outer agent, NB(i) is the set of neigh-
boring nodes outside the peer group of the creator peer
νi and |NB(i)| is the number of nodes in NB(i). Orig-
inally, each peer has no information about the traffic
situation of its peer group and the network. There-
fore, each vertex in set NB(i) has the same proba-
bility to be selected by the inner agent as a target
to move to, i.e., 1/|NB(i)|. This uniform probabil-
ity distribution of agents’ neighboring node-selection
will be updated with time going. The new probability
distribution should satisfies two constrains:

1. It makes inference on all the known traffic infor-
mation.

2. It is unbiased. That is, the probability should
mostly balance the traffic cost on each link.

To find a probability distribution that both makes in-
ference on the known information and approximates to
the unbiased (uniform) distribution, We mathemati-
cally model the constrains as follows. The effect of
the known traffic information on the agent’s migrat-
ing decision making can be expressed by a minimum
problem as follows:





min
j∈NB(i)

fi(j)

s.t. gk(i, j) ≤ 0, k = 1, 2, · · ·
hl(i, j) = 0, l = 1, 2, · · · .

(1)

where fi(j) is a cost function that measures the cost
that an agent migrates from node νi to νj , gk(i, j)
and hl(i, j) are constraint functions which define the
feasible region of function fi(j).
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At the same time, the unbiased requirement is ex-
pressed by the maximum entropy function (as shown
in the next section), which will be introduced in Sec-
tion 5.

5 Maximum Entropy Theory

In [22], Shannon first introduced the concept of
entropy into informatics as a measurement of uncer-
tainty. Suppose that there are a set of possible events
whose probabilities of occurrence are λ1, λ2, · · · , λn.
These probabilities are known but that is all we know
concerning which event will occur. Can we find a mea-
sure of how much “choice” is involved in the selection
of the event or of how uncertain we are of the outcome?
Shannon pointed that if there is such a measure, say
H(λ1, λ2, · · · , λn), it should have the following prop-
erties:

1. H should be continuous on λi.

2. If all λi are equal, i.e., λi = 1/n, then H should
be a monotonically increasing function of n.

3. If a choice is broken down into two successive
choices, the original H should be the weighted
sum of the individual values of H.

In [22], it is proved that the entropy function H =
−k∑n

i=1 λi lnλi is the only function that can satisfies
all the requirements, where k is a positive constant
decided by measurement units. Usually, k is set to be
1. The Shannon entropy has the following properties:

1. Hn(λ1, λ2, · · · , λn) ≥ 0;

2. If λk = 1 and λi = 0 (i = 1, 2, · · · , n; i 6= k), then
Hn(λ1, λ2, · · · , λn) = 0;

3. Hn+1(λ1, λ2, · · · , λn, λn+1 = 0) =
Hn(λ1, λ2, · · · , λn);

4. Hn(λ1, λ2, · · · , λn) ≤ Hn(1/n, 1/n, · · · , 1/n) =
lnn;

5. Hn(λ1, λ2, · · · , λn) is a symmetrical concave func-
tion on all variables.

where H = −∑n
i=1 λi lnλi.

E. T. Jaynes found that in many probabilistic exe-
cutions, the resulting probability distribution cannot
foreknown; thus, the entropy cannot be calculated.
But he also claimed that the probability distribution
could be induced by the accumulated test data such
as the mean and the variance. In [12], E.T.Jaynes

proposed the maximum entropy theory: “in making
inference on the basis of partial information we must
use that probability distribution which has maximum
entropy subject to whatever is known. This is the
only unbiased assignment we can make; to use any
other would amount to arbitrary assumption of infor-
mation which by hypothesis we do not have”. Notice
that “entropy” is a measurement of the degree of un-
certainty and the great the entropy’s value, the less
known information, the maximum entropy theory can
be mathematically expressed as follows:




max H = −
N∑

i=1

λi lnλi

s.t.

N∑

i=1

λi = 1;

N∑

i=1

λigj(xi) = E [gj ] , j = 1, 2, · · · ,m;

λi ≥ 0, i = 1, 2, · · · , N,

(2)

where λ = (λ1, λ2, · · · , λn), gj(j = 1, 2, · · · ,m) is
some predefined constrained function, and E[·] is the
mean of these constrained function.

Templeman et al. [23] first applied maximum en-
tropy theory to solve optimization problems in which
the objective function is unanimously approximated
by a smooth one. By solving the resulting problem,
an approximate solution of the original problem can
be obtained. The purpose of deploying maximum en-
tropy theory in agents’ searching process is to find a
probability distribution that both satisfies the known
routing information and mostly approximate to the
unbiased (uniform) distribution.

6 Mathematical Analysis

Now, let’s look at the Problem (1). Firstly, we con-
sider about a subproblem of (1) as follows:

{
min

j∈NB(i)
fi(j)

s.t. gk(i, j) ≤ 0, k = 1, 2, · · ·
(3)

where fi(j) and gk(i, j) are continuous on Rn. De-
note the feasible region by Ω = {j|gk(i, j) ≤ 0, i =
1, 2, · · · }, the discussion will be given under the fol-
lowing hypothesis:

Hypothesis 1 Set Ω for (3) satisfies intΩ 6= ∅.
Define function G(j) as

G(j) = max
k

gk(i, j), i = 1, 2, · · · , j ∈ NB(i), (4)
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we have the following theorem:

Theorem 1 Problem (5) is equivalent to (3).

Proof Assume that j satisfies gk(i, j) ≤ 0, ∀ k then
G(j) = maxk gk(i, j) ≤ 0, ∀ k. On the other hand, if
j satisfies G(j) = maxk gk(i, j) ≤ 0, ∀ k, then for any
k, we have gk(i, j) ≤ G(j) ≤ 0. Thus, the theorem is
proven. 2

Then (3) is equivalent to
{

min
j∈NB(i)

fi(j)

s.t. G(i, j) ≤ 0
(5)

Thus, the solving of problem (3) can be transferred
into the solving of the following problem





max
j∈NB(i)


fi(j),

∑

j∈(NB(i))

λijgk(ij)




s.t.
∑

j∈NB(i)

λij = 1

λij ≥ 0, j ∈ NB(i).

(6)

Here, λij discloses the possibility that node νj is
selected as the target from the neighboring set of νi,
NB(i). Therefore, by the entropy function introduced
in Section 5, we have

λij =
exp(θ · gk(ij))∑

j∈NB(i) exp[θ · gk(ij)]
(7)

where θ is a given constant.
Now, let’s look at Problem 1. Define the feasible

regions Ω1 and Ω2 as follows:

Ω1 = {j|gk(ij) ≤ 0, k = 1, 2, · · · },
Ω2 = {j|hl(ij) = 0, k = 1, 2, · · · } (8)

the feasible region of Problem 1 can be obtained as
S = Ω1

⋂
Ω2.

Hypothesis 2 The feasible region of Problem 1, S =
Ω1

⋂
Ω2, satisfies intΩ1

⋂
Ω2 6= ∅

Define
H(i, j) = max

k
h2
k(ij) (9)

then
Ω2 = {j|H(i, j) = 0} (10)

Further define a function

Hθ(i, j) =
1
θ

ln

{∑

k

exp
[
θ · h2

k(ij)
]
}

(11)

where θ is a given constant. Then when θ approxi-
mates to +∞, function Hθ(i, j) is uniformly conver-
gence to function H(i, j). Meanwhile, these two func-
tions satisfy the following inequality:

H(i, j) ≤ Hθ(i, j) ≤ H(i, j) +
lnL
θ

(12)

Here, L is the number of constrains in H(i, j), that is,
l = 1, 2, · · · , L.

Similarly,

Gϑ(i, j) =
1
ϑ

ln

{∑

k

exp [ϑ · gk(ij)]

}
(13)

is uniformly convergence to

G(i, j) = max
k

gk(ij) (14)

when ϑ → +∞. Therefore, Problem (1) can be ap-
proximated by the following problem:





min fi(j)
s.t. Gϑ(i, j) ≤ 0

Hθ(i, j) ≤ r lnL
θ
, r ∈ (1,+∞) is a constant.

(15)

or




min fi(j)
s.t. Gϑ(i, j) ≤ 0

Hθ(i, j)− r lnL
θ
≤ 0.

(16)

Let
E(i, j) = max

k,l

{
gk(ij), h2

l (ij)
}

(17)

and construct an assistant function as follows

Eξ(i, j) =
1
ξ

ln

[∑

k

exp(ξ · gk(ij))

+
∑

l

exp(ξ · h2
k(ij))/r

] (18)

we have

E(i, j) ≤ Eξ(i, j) ≤ E(i, j) +
K + L

ξ
(19)

where K is the number of constrains in G(i, j), e.g.,
k = 1, 2, · · · ,K. Therefore, the Problem (16) can be
transferred as

{
min fi(j)
s.t. Eξ(i, j) ≤ 0 (20)

which can be solved by the method similar to Problem
(3) as presented above.
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Definition 1 For α ∈ R1, denote the level set by
L(α) = {j|fi(j) ≤ α}.

Obviously, if fi(j) is a convex function, then L(α) is
a convex set. Thus, we have the following lemma:

Lemma 1 If fi(j) is a convex function, S is a convex
set, S

⋂
L(α) 6= ∅ with a boundary, then there exists a

β > α such that S
⋂
L(β) 6= ∅ with a boundary.

Denoted the feasible region of Problem (20) by Ωξ =
{j|Eξ(i, j) ≤ 0}, we have the following lemma:

Lemma 2 If intΩ1

⋂
Ω2 6= ∅, when for any ξ > 0, we

have Ωξ ⊂ intΩ1

⋂
Ω2; for arbitrary x ∈ intΩ1

⋂
Ω2,

there exists ξ0 > 0, such that when ξ > ξ0, j ∈ intΩξ.

Lemma 3 If jξ ∈ Ωξ, then when ξ → +∞, any limit
point of {jξ}, j0, satisfies j0 ∈ S.

Proof Since jξ ∈ Ωξ, Eξ(i, jξ) ≤ 0. Therefore,
Gξ(i, jξ) ≤ 0 and H ′ξ(i, jξ) ≤ 0. Let

g(i, j) = max
k
{gk(ij)}, h(i, j) = max

l
{h2

l (ij)},

we have

g(i, jξ) ≤ Gξ(i, jξ) ≤ 0

−r ln l
ξ
≤ h(i, j)− r ln l

ξ
≤ H ′ξ(i, jξ) ≤ 0

From the continuity of g(i, j) and h(i, j), we have
g(i, j0) ≤ 0 and h(i, j0) = 0. Thus, j0 ∈ S, the lemma
is proven. 2

Lemma 4 If fi(j), gk(i, j), k = 1, 2, · · · are convex
functions and hl(i, j), j = 1, 2, · · · are linear functions,
Eξ(i, j) must be a convex function.

From the above hypothesis, definition, and lemmas,
we can give the following theorem:

Theorem 2 (Convergence Theorem) Suppose that in
Problem (1), fi(j) and gk(ij), k = 1, 2, · · · ,K are con-
vex function, hl(ij), l = 1, 2, · · · , L are liner function.
There is a level set L(α) such that S

⋂
L(α) 6= ∅ and

is bounded. Thus, under the Hypothesis 2, all solu-
tions of () are bounded and any limit of this solution
sequence is a solution of (1).

Proof From Lemma 4, it is easy to see that both
(1) and (20) are convex programming problems. First
of all, we will prove that jξ is bounded by a lim-
itation. Since S

⋂
L(α) = ∅ with boundary, from

Lemma 1, there is a β > α such that S
⋂
L(β) is

also unequal to ∅ with a limited boundary. Thus,
there is a j1 ∈ S satisfies fi(j1) ≤ α < β. From
the Hypothesis 2, intΩ1

⋂
Ω2 6= ∅, there exists j2 ∈

intΩ1

⋂
Ω2. Therefore, for any λ ∈ (0, 1), we have

(1−λ)j1 +λj2 ∈ intΩ1

⋂
Ω2. When λ is small enough,

(1 − λ)j1 + λj2 ∈ N(j1, δ1). Thus, there exists a
λ̄ ∈ (0, 1), such that

j3 = (1− λ̄)j1 + λ̄j2 ∈ (intΩ1

⋂
Ω2)

⋂
N.

From j3 ∈ intΩ1

⋂
Ω2 and Lemma 2, there exists a

ξ0 > 0, when ξ > ξ0, j3 ∈ Ωξ. If there exists an infi-
nite subsequence, also denoted by jξ, such that jξ does
not belong to L(β), then when ξ > ξ0, there is a re-
lationship that fi(j3) ≥ fi(jξ) ≥ β > fi(j3), which is
incompatible. Therefore, it can be proved that when
ξ is big enough, jξ ∈ L(β).
If sequence {jξ} without a boundary, then there must
be a subsequence of {jξ}, also denoted by {jξ}, such
that limξ→+∞ |jξ| = +∞. Since jξ ∈ Ωξ, thus
Eξ(i, jξ) ≤ 0. From the proof of Lemma 3, we have

Gξ(i, jξ) ≤ 0

−r lnL
ξ
≤ h(i, jxi)− r lnL

ξ
≤ 0

Thus, g(i, jξ) ≤ 0. Let D = {j|d(j;S
⋂
L(β)) = 1},

where d(j;S
⋂
L(β)) = inf{‖j −m‖ |m ∈ S⋂L(β)}.

As S
⋂
L(β) is limited, D is a tight set. For jξ, find a

j′ξ ∈ S
⋂
L(β), denote

‖jξ − j′ξ‖ = d(jξ;S
⋂
L(β))

Due to limξ→+∞, there exists a jξ” ∈ D and λξ ∈
(0, 1) such that jξ” = λξj

′
ξ + (1− λξjξ). Since jξ, j′ξ ∈

L(β) and L(β) is a convex set, we have jξ” ∈ L(β).
On the other hand, since jξ” doesn’t belong to the
set S

⋂
L(β), it follows by a result that jξ” doesn’t

belong to S. Furthermore, since h(i, j) = maxk h2
k(ij)

is convex, we have

h(i, jξ”) ≤ λξh(i, j′ξ) + (1− λξ)h(i, jξ)

As h(i, j′ξ) = 0, we have

h(i, jξ”) ≤ (1− λξ)h(i, jξ)

Since both sequences {jξ”} and {λξ} are bounded,
they have convergent subsequences, also denoted by
original symbols, and further denote limξ→+∞ jξ” by
j̄, then j̄ ∈ D. Besides, since jξ” ∈ L(β) and L(β) is
a tight set, we have j̄ ∈ L(β), therefore, j̄ does not
in S. Consider about the fact that g(i, j) is a convex
function, we have

g(i, jξ”) ≤ λξg(i, j′ξ) + (1− λξ)g(i, jξ).
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Since j′ξ ∈ S, we have g(i, j′ξ) ≤ 0. Combining the
above two aspects, we have g(i, jξ”) ≤ 0, which results
in a conclusion that j̄ ∈ Ω1, j̄ * Ω2, and h(i, j̄) >
0. Take limitation on both side of h(i, jξ”) ≤ (1 −
λξ)h(i, jξ) results in h(i, j̄) ≤ 0, which is conflicted
with h(i, j̄) > 0, therefore, it is proved that sequence
{jξ} is limited by a boundary.
Now we will prove that any limitation point j0 of {jξ}
is the optimal solution of (1). It can be known from
Lemma 3 that j0 ∈ S. If the optimal solution of (1)
is not j0, but j∗, then we have fi(j0) > fi(j∗). Let
ε = 1

2 (fi(j0)− fi(j∗)), since fi(j) is continuous, there
exists a neighbor region of j∗, N(j∗, δ2) such that

|fi(j)− fi(j∗)| < ε

when j ∈ N(j∗, δ2)
⋂
S and therefore

fi(j) < fi(j∗) + ε =
1
2

(fi(j∗) + fi(j0)) < fi(j0)

Set δ = min{δ1, δ2}, when j3 ∈ N(j∗, δ)
⋂
S, we have

fi(j3) < fi(j0). On the other hand, from Lemma 2, for
j3, there is a ξ0 > 0. When ξ > ξ0, j3 ∈ Ωξ, therefore
fi(j3) > fi(jξ). From the continuity of fi(j), we have
fi(j3) ≥ fi(j0), and thus raises a contradiction. Thus,
the theorem is proven. 2

7 Conclusion

In this paper, we proposed a mobile agent-based
execution model for use in peer-to-peer networks in
which the traffic congestion is considered. We defined
a traffic cost function for each link based on known
traffic information of the network by which mobile
agents can unbiasedly select a neighboring node to
move to. We also provided some theoretical analysis
on the defined traffic cost function.
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