
CADRE: A Collaborative replica allocation and deallocation approach for
Mobile-P2P networks

Anirban Mondal1 Sanjay Kumar Madria2 Masaru Kitsuregawa1

1 Institute of Industrial Science 2 Department of Computer Science
University of Tokyo, JAPAN University of Missouri-Rolla, USA
{anirban, kitsure}@tkl.iis.u-tokyo.ac.jp madrias@umr.edu

Abstract

This paper proposes CADRE (Collaborative Allocation
and Deallocation of Replicas with Efficiency), a dynamic
replication scheme for improving the typically low data
availability in mobile ad-hoc peer-to-peer (M-P2P) net-
works. The main contributions of CADRE are two-fold.
First, it collaboratively performs both replica allocation
and deallocation in tandem to facilitate optimal replica-
tion and to avoid ‘thrashing’ conditions. Second, it ad-
dresses fair replica allocation across the MHs. CADRE de-
ploys a hybrid super-peer architecture in which some of the
MHs act as the ‘gateway nodes’ (GNs) in a given region.
GNs facilitate both search and replication. Our perfor-
mance study indicates that CADRE indeed improves query
response times and data availability in M-P2P networks as
compared to some recent existing schemes.

1 Introduction

In a Mobile ad-hoc P2P (M-P2P) network, mobile hosts
(MHs) interact with each other in a decentralized P2P fash-
ion without using base stations. The proliferation of mobile
computing technology (e.g., laptops, PDAs, mobile phones)
coupled with the ever-increasing popularity of the Peer-to-
Peer (P2P) paradigm (e.g., Kazaa, Napster) strongly moti-
vate M-P2P network applications. M-P2P applications are
essentially aimed at facilitating mobile users in obtaining
information on-the-fly from other mobile users in a P2P
manner. Such P2P interactions are generally not supported
by existing mobile communication infrastructures.

Let us consider an M-P2P application involving inter-
vehicular communication. Suppose groups of tourists in
different sightseeing buses are visiting several touristic
places albeit at different times. Incidentally, each sightsee-
ing bus almost always has its own schedule concerning the
places that it should visit at different points of time. In prac-
tice, every sight-seeing bus generally has a tour guide for

facilitating tourists, and tour guides in different buses are
typically aware of each other’s schedules (since several tour
buses are usually owned by the same organization). Thus,
tourists in bus A, which is on its way to a particular mu-
seum, could request their tour guide for current snapshots
(pictures or video-clips) of different parts of the museum
to determine which part of the museum they should visit
first. The tour guide in bus A would forward such requests
to the tour guides in those buses, which are currently vis-
iting the museum, to obtain information from tourists in
those buses, thereby supporting remote querying. Under-
standably, tourists in bus A could also query their tour-guide
locally for data items that are stored at the MHs in bus A.

Now suppose tourist X in bus A requests an image, and
obtains a replica of the image (from tourists of other buses).
After a while, X deallocates (deletes) this replica, but now
another tourist Y in bus A requests the same image, hence
the replica has to be allocated again to bus A. Since images
are relatively large in size, multiple allocations and deallo-
cations of the same replica at the same bus tax the gener-
ally limited bandwidths and energy resources of MHs. This
may lead to undesirable ‘thrashing conditions’, where MHs
spend more bandwidth and energy on allocating and deallo-
cating replicas than on answering queries.

Customers in large shopping malls could also benefit
from the M-P2P paradigm. Shopping malls generally have
administrators such as information guides, who typically
move within particular regions of the mall. Each adminis-
trator could keep track of information (e.g., images, video-
clips) stored at MHs that are within its region. Thus, a
mobile user could request an administrator nearby himself
for information such as “Where can I find an image of the
cheapest available tennis racquet?” Administrators in dif-
ferent parts of the mall could interact with each other to pro-
vide such information to the user. As in the inter-vehicular
M-P2P application, ‘thrashing conditions’ could also arise
in this application due to several allocations and dealloca-

1



tions of the same replica at an MH. Absolute consistency is
not a requirement for our M-P2P application scenarios [15].

Data availability is typically low in M-P2P networks due
to frequent network partitioning arising from user move-
ment and/or users switching ‘on’ or ‘off’ their mobile de-
vices. (Data availability is less than 20% even in a wired
environment [18].) Hence, several dynamic replication
schemes [19, 14, 9, 7, 12] have been proposed for improving
data availability in M-P2P networks. However, while these
existing schemes perform collaborative replica allocation,
replica deallocation is done only locally by each MH. Sup-
pose a data item d has a high access frequency at MHs Mi

and Mj , while being rarely accessed at an MH Mk. Under
the existing schemes, Mk would deallocate d. But, since
d is actually a ‘hot’ data item, d may be once again allo-
cated to Mk after sometime, which may lead to undesirable
‘thrashing’ conditions. Hence, both replica allocation and
deallocation should be performed collaboratively in tandem
with each other to prevent thrashing. Furthermore, existing
schemes do not consider fairness in replication since they
allocate replicas solely based on the read/write access prob-
ability of any given data item d without considering the ori-
gin of queries for d. Thus, these schemes would regard d
as ‘hot’ even if only a single MH issues a large number of
(read) queries for d, thereby possibly creating several repli-
cas of d. This runs contrary to the principle of fairness in
serving multiple peers’ requests, which is an important re-
quirement in all P2P systems.

This paper proposes CADRE (Collaborative Allocation
and Deallocation of Replicas with Efficiency), a dynamic
replication scheme for improving data availability in M-P2P
networks. CADRE considers a hybrid super-peer architec-
ture, in which some of the MHs act as the ‘Gateway Nodes’
(GNs). The functionality of a GN is analogous to that of a
super-peer. In the inter-vehicular M-P2P application, a tour-
guide in a given bus would act as the GN for the MHs in his
bus, while for the shopping mall application, the administra-
tors in different parts of the mall would be the GNs for their
respective regions. GNs have high processing capacity, high
available bandwidth and high energy. Observe that our ar-
chitecture does not have any single ‘root’ GN for supervis-
ing the working of all the GNs. Incidentally, there could be
multiple tour guides in a tour bus or multiple administrators
for a given part of a shopping mall. Hence, multiple GNs
could exist within the same region. In such cases, at a given
point of time, only one of these GNs will act in the capacity
of a gateway node, while the other GNs serve as backups in
case of failure of the acting GN. Neighbouring GNs period-
ically exchange their regional information with each other.
Hence, in case of GN failures, neighbouring GNs can also
take over the responsibility of the failed GN.

GNs facilitate both replication and search. Intuitively,
storing replicas arbitrarily at any MH could adversely im-

pact many MHs due to high communication overheads
between MHs, unnecessary delays and querying failures.
Thus, replication should be performed carefully based on
MH characteristics (e.g., load, energy) as well as network
topology, thereby implying that some regional knowledge
becomes a necessity. As we shall see later, GNs have such
regional knowledge due to MHs periodically sending the
necessary information to GNs, hence GNs can better man-
age replication. GNs can also collaborate for replication
across different regions. In contrast, for an architecture
without any GN, each MH would have to broadcast its status
to all other MHs to make each other aware of the regional
status, thereby creating an undesirable broadcast storm dur-
ing replica allocation. Our architecture avoids such broad-
cast storm due to the presence of GNs.

Recall that our M-P2P applications support both local
and remote querying. To support efficient querying, each
MH periodically sends its list of data items and replicas
to its corresponding GN. Thus, GN is able to periodically
broadcast the list of available items within its region to the
MHs, thereby enabling a query issuing MH M to distin-
guish whether its query is local or global. Moreover, when
an MH enters a region R, it registers with the GN G in R,
and G provides the MH with the list of data items currently
available in R. (We assume that an MH will have to register
with one GN.) For local queries, M uses a broadcast mech-
anism i.e., it broadcasts the query to its neighbouring MHs,
which in turn, forward it to their neighbouring MHs and so
on. Thus, local queries need not pass through GN, thereby
preserving P2P autonomy. For a remote query Q, M sends
Q to its corresponding GN, which forwards Q to its neigh-
bouring GNs. If any of the neighbouring GNs contains the
item queried byQ, they ask the MH, which stores that item,
to send the item toM . Otherwise, the neighbouring GN will
forward it to its neighbouring GN and so on. Each GN adds
its unique identifier to the query header to ensure that it does
not process the same query more than once. Contrast this
with an architecture without any GNs, where every remote
query would require a broadcast, thereby resulting in broad-
cast storm. Thus, our architecture avoids broadcast storm in
case of remote queries due to GNs collaborating with each
other. Observe the hybrid nature of our architecture in that it
uses a centralized paradigm within a region, while deploy-
ing a distributed model across different regions.

The main contributions of CADRE are two-fold:

1. It collaboratively performs both replica allocation and
deallocation in tandem to facilitate optimal replication
and to avoid ‘thrashing’ conditions.

2. It addresses fair replica allocation across the MHs.

Notably, CADRE also considers replication of images
at different levels of granularity to optimize MH mem-
ory space. Our performance evaluation demonstrates that

2



CADRE indeed improves data availability in M-P2P net-
works with significant reduction in query response times
and low communication traffic during replication as com-
pared to some recent existing schemes. Notably, our pre-
vious work in [12] has also addressed replication in M-P2P
networks. However, it does not address replica deallocation,
fairness in replication and prevention of thrashing.

2 Related Work
In [11], a suite of replication protocols for maintain-

ing data consistency and transactional semantics of central-
ized systems have been proposed. The protocols in [10]
exploit the rich semantics of group communication primi-
tives and the relaxed isolation guarantees provided by most
databases. The proposal in [14] discusses replication in dis-
tributed environments, where connectivity is partial, weak,
and variant as in mobile information systems. The work
in [5] discusses replication issues in MANETs. Existing
systems in this area include ROAM [16], Clique [17] and
Rumor [6], while a scalable P2P framework for distributed
data management applications and query routing has been
presented in [13]. An update strategy, based on a hybrid
push/pull Rumor spreading algorithm, for truly decentral-
ized and self-organizing systems (e.g., pure P2P systems)
has been examined in [4], the aim being to provide proba-
bilistic guarantees as opposed to strict consistency. Repli-
cation strategies for designing highly available storage sys-
tems on highly unavailable P2P hosts are discussed in [1].

In [7], the E-DCG+ approach for replica allocation in
mobile ad-hoc networks (MANETs) has been proposed. By
creating groups of MHs that are biconnected components in
a network, E-DCG+ shares replicas in larger groups of MHs
to provide high stability. In E-DCG+, an RWR (read-write
ratio) value in the group of each data item is calculated as
a summation of RWR of those data items at each MH in
that group. In the order of the RWR values of the group,
replicas of data items are allocated until memory space of
all MHs in the group becomes full. Each replica is allocated
at an MH whose RWR value to the data item is the highest
among MHs that have free memory space to create it. How-
ever, E-DCG+ [7] does not consider collaborative replica
deallocation, fairness in replication and load sharing.

3 Key components of CADRE
This section discusses the key components of CADRE.

User-specified size of the query result image

When a user issues a query for an image, he knows
his available memory space status. Hence, he knows the
maximum amount of memory space, which he can expend
for storing the query result image. Thus, when querying,
users specify the maximum size, designated as maxsize,

for the query result image and CADRE answers queries
while considering this maxsize constraint. This is espe-
cially important for M-P2P networks due to the generally
limited memory space at individual MHs and the signifi-
cant differences in available memory space across the MHs.
Since image size increases with increasingly finer granular-
ity, a user specifying larger value of maxsize would obtain
finer image granularity (i.e., better image quality). Notably,
this is in contrast with static P2P systems, where memory
space constraints of the query issuing peer are not consid-
ered when answering queries due to static peers generally
having significant available memory space.

Suppose MH MI issues a query Q for an image img,
and MH MS serves the query request. MS could either be
the owner of img or it could store a replica of img. Let the
size of img at MS be sizeimg. The following cases arise:

1. Query Result maxsize < sizeimg

2. Query Result maxsize≥ sizeimg

In Case 1 above, img should be compressed to satisfy the
maxsize query constraint. Such compression should be
performed by MS (and not MI) due to two reasons. First,
it ensures smaller-sized images being transmitted across the
network, thereby optimizing bandwidth consumption. Sec-
ond, a one-time compression of img by MS is likely to en-
able MS to serve multiple user requests, which optimizes
energy consumption. Furthermore, performing the image
compression at MI would require every query issuing MH
to compress img individually, which would increase indi-
vidual MH energy consumption significantly. Notably, im-
age compression algorithms [3, 8] can be used in conjunc-
tion with CADRE. For Case 2, image decompression is not
necessary since users specifying largermaxsize values can
be directed to either the original owner of img or any MH
that stores a relatively larger-sized replica of img.

Given that different users can specify differentmaxsize
values for their queries on img, MS needs to determine
the size of the replica (of img) that it should store at itself
to reduce its image compression-related energy consump-
tion. For this purpose, MS keeps track of queries issued
to itself by maintaining a list RepSize of the form (imgid,
MHid, maxsize), where imgid is the unique identifier of
the queried image img, MHid is the identifier of the MH
that issued the query and maxsize is the maximum query
result size specified by MHid. If an MH MI accesses img
multiple times, the value of maxsize for the most recent
access is used to populate RepSize since recent maxsize
value specified by MI better reflects MI ’s current mem-
ory space status. Thus, given img, MS determines img’s
replica size by providing equal weight to accesses made
by each query issuing MH since it considers one entry of
maxsize for each of these MHs, thereby ensuring fairness
across multiple user requests for deciding the replica size.

3



The owner of an image stores the original image. Given
the original image size So, we consider n different ranges
of granularity for replica size based on the extent of image
compression relative to So. Results of our preliminary per-
formance study revealed that n = 4 is a reasonable value for
our application scenarios. Hence, we consider the follow-
ing four ranges of granularity: low, medium, high, original.
Let the replica size be Sr. For low, (0.25 × So) ≤ Sr <
(0.5 × So). In case of medium, (0.5 × So) ≤ Sr < (0.75 ×
So). Similarly, for high (0.75 × So) ≤ Sr < So. Finally, for
original, Sr = So. Thus, when different MHs issue queries
to MH MS with different maxsize values, MS maps each
query to any one of these four mutually exclusive ranges
and keeps a count of the number of queries for each range.
MS determines the replica size to be in the range that corre-
sponds to the maximum number of queries. Finally,MS de-
cides the exact size of the replica by averaging themaxsize
values of the queries within the selected range.

Fairness in replication

To ensure fairness in replication, each MH M assigns
a score σ to each data item d. σ essentially quantifies the
importance of d to the network as a whole. Hence, σ should
increase as d serves more MHs. Given d, M computes σ
as follows. First, M sorts sorts the MHs, which recently
requested d, in descending order of their access frequencies
for d i.e., the first MH in this order made the most accesses
to d. Given this order,M computes σ of d as follows:

σ = (

NMH∑

i=1

( wi × ni ) ) × ρ × µ (1)

where ni is the number of accesses to d by the ith MH in
the order specified. wi is a weight coefficient, which equals
( i/NMH ), thereby ensuring that more the number of MHs
served by d, the more its score will be. Thus, given two data
items with equal access frequencies, the score of the data
item that serves a larger number of MHs would be higher.
This is in contrast with existing works [7], which do not
consider the origin of queries.

In Equation 1, ρ is the spatial density of the region from
where the query originated. We consider ρ since we want
to allocate a data item to spatially denser neighbourhoods,
in order to serve more MHs. ρ = (NumMH /Area), where
NumMH is the number of MHs in the region from which
the query was issued and Area is the area of the region.
In our shopping mall application, NumMH would be the
number of mobile users in a given section of the shopping
mall, while Area would be the area of that section. No-
tably, GN G knows NumMH since every MH enteringG’s
region needs to register with G. Area is pre-defined w.r.t.
the application and G knows the value of Area e.g., for the

shopping mall application, it could be the area of one floor
of the mall. For the tourist bus application, it could be ei-
ther the area of the bus, or the area of some castle, museum
or garden which the tourists of a bus are currently visiting.
Each GN periodically computes its ρ and piggybacks this
information in its periodic broadcast to all the MHs in its
region. Hence, when an MH issues a query, it puts the value
of ρ in the header of its query.
µ is a weight factor for normalizing the data score w.r.t.

image size. In M-P2P networks, users often issue queries
for small-sized data items due to limited memory space in
their mobile devices, hence more replicas for small-sized
data items are likely to be allocated. Consequently, repli-
cas may seldom be allocated for large-sized images and this
would be unfair to users who issue queries for these im-
ages. µ ensures that larger-sized images would have a fair
opportunity of being replicated. We consider three different
ranges of image sizes, namely small, medium and big, for
which we assign the values of µ to be 0.25, 0.5 and 0.75
respectively. These size ranges are application-dependent.

The score σG of a data item d (or replica) w.r.t. a given
GN G is the sum of the scores of d at each MH within G’s
region. Hence, σG equals (

∑η

i=1
σi), where η is the number

of MHs in G’s region, and σi is d’s score at the ith MH.

Prevention of thrashing conditions

To address prevention of thrashing, each MH keeps track
of the number of deallocations of each replica at itself over
a period of time. We define a metric designated as the Flip-
Flop Ratio (FFR). The FFR of a replica r at a given MH M
is computed as follows:

FFR = (Ndealloc ÷ Tdealloc) × (sizer ÷ Tsize) (2)

where Ndealloc is the number of times that r has been deal-
located at M , and Tdealloc is the total number of deallo-
cations of all the replicas at M during recent time period.
sizer is the size of the replica, while Tsize is the sum of
the sizes of all the replicas at M . Thus, the value of FFR is
always between 0 and 1. We normalize FFR w.r.t. replica
size to minimize the probability of thrashing of large data
items since the effect of thrashing is more pronounced for
such items due to bandwidth and energy considerations. Pe-
riodically, every MH computes the FFR for each replica r
stored at itself. As the FFR value of r increases, the proba-
bility of thrashing of r also increases. Hence, r should not
be deallocated if its FFR value exceeds a certain threshold,
which we shall designate as ω. We compute ω as follows:

ω = (

NRep∑

i=1

FFRi ) ÷ NRep (3)

whereNRep is the total number of replicas at all the MHs in
the entire M-P2P network and FFRi is the value of FFR for

4



the ith replica. Thus, ω is the average value of FFR across
all the replicas in the network.

4 CADRE: A dynamic replication scheme for
M-P2P networks

This section discusses the details of the CADRE repli-
cation scheme for M-P2P networks. In CADRE, each data
item is owned by only one MH. Available memory space
at each MH, bandwidth and data item sizes may vary. We
define the load Li of an MH Mi as follows:

Li = Ji,tj
÷ ( BMi

÷ Bmin ) (4)

where Ji,tj
represents the job queue length of Mi at time

tj , and BMi
is the available bandwidth of Mi. A straight-

forward way of determining Bmin is to select a low band-
width as Bmin e.g., we have used 56 Kbps as the value of
Bmin. Observe how our definition of load addresses band-
width heterogeneity among the MHs.

Table 1 summarizes the notations used in this paper. Re-
call that query issuing MHs can distinguish between lo-
cal and remote queries. An MH MI issuing a local query
stamps the query with the identifier of its corresponding GN
G. On the other hand,MI sends remote queries toG, which
stamps such queries with the GN identifier. Using the nota-
tions in Table 1, queries in CADRE are of the form (imgid,
MI , GNI , maxsize, t). Let us now examine how MH MS ,
which serves the query request, maintains access statistics
of queries issued to itself for facilitating replication.

Maintenance of access statistics at each MH
MS distinguishes between accesses made to its own data

items from within the region of its corresponding GN (i.e.,
internal accesses) and accesses to its own data items from
MHs that are moving within the region of other GNs (i.e.,
external accesses). Hence, in Table 1, Dint and Dext are
lists in which MS summarizes the internal accesses and
external accesses respectively to its own data items. Dint

guides MS in selecting its own data items that should be
replicated within the region of its corresponding GN, while
Dext facilitates MS in determining its own data items that
should be replicated at regions covered by other GNs. Us-
ing Table 1, each entry in Dint is of the form (imgid, MI ),
while entries in Dext are of the form (imgid, GNI , MI ).
MS uses the entry ofGNI inDext to decide the GN, within
whose region the given data item should be replicated.
MS also differentiates between its own data items and

the replicas that are stored at itself. Thus, in Table 1, Rint

and Rext are lists in which MS summarizes the internal
accesses and external accesses respectively to the replicas
stored at itself. Using Table 1, each entry in Rint is of the
form (imgid, MI ), while entries in Rext are of the form
(imgid, GNI , MI ). Notably, here imgid refers to the iden-
tifier of the replica stored at MS , while for the lists Dint

Parameter Significance

img A given queried image

imgid Identifier of img

MI Identifier of the query issuing MH

MS Identifier of the MH serving the query request

GNI Identifier of the GN in whose region MI is currently moving

maxsize User-specified maximum query result size

t Time of query issue

Dint List summarizing internal accesses to MS ’s own data items at MS

Dext List summarizing external access to MS ’s own data items at MS

Rint List summarizing internal accesses to replicas at MS

Rext List summarizing external access to replicas at MS

Table 1. Summary of Notations

and Dext, imgid represented the identifier of the MS’s own
data item. Besides this difference, the data structures of
Rint and Rext are essentially similar to that of Dint and
Dext respectively. Rint and Rext guide MS in computing
replica scores w.r.t. different GNs, thereby facilitating MS

in deallocating replicas that have low scores w.r.t. a par-
ticular GN. Notably, the lists Dint, Dext, Rint and Rext

are periodically refreshed to reflect recent access statistics.
This is performed by periodically deleting all the existing
entries from these lists and then re-populating them with
fresh information from the recent queries. Such refreshing
is especially important due to the dynamic changes in ac-
cess patterns in M-P2P networks.

Selection of candidate data items for replication

Using itsDint andRint respectively, each MH computes
the score of each of its items (i.e., its own data items and
replicas stored at itself), which were accessed by MHs from
within the region of its corresponding GN G. Since Dint

and Rint summarize the internal accesses, these scores are
w.r.t. G. Similarly, from its Dext and Rext respectively,
each MH calculates the score of each of its items, which
were accessed by MHs that are outside the region of G.
In this case, MHs from the respective regions correspond-
ing to multiple GNs may have accessed a particular item,
hence the scores of data items and replicas are computed
w.r.t. each GN separately. Periodically, each MH sends all
these scores to G. Upon receiving these scores from all the
MHs in its region, G sums up the score of each item (w.r.t.
each GN) from each MH within its region, thereby comput-
ing the total score of each item w.r.t. each GN.

Intuitively, internally accessed items should be repli-
cated at MHs within G’s region, while the externally ac-
cessed items need to be replicated at MHs in the regions
of other GNs. Hence, when selecting candidate items for
replica allocation, G distinguishes between internally ac-
cessed and externally accessed data items. For the internally
accessed items, G sorts these items in descending order of

5



their scores. G considers those items, whose scores exceed
the average score ψ, as candidates for replication. ψ equals
( (1/Nd)

∑Nd

k=1
σj ), where Nd is the total number of items

and σj is the score of the jth item. Observe how G prefers
items with relatively higher scores for replica allocation due
to the higher importance of these items.

For the externally accessed items, G computes the score
of each data item d w.r.t. every (external) GN from whose
region at least one access was made for d. Then G creates
a list LSuggest of these items, each entry of which is of the
form (imgid, σ, GNid), where imgid is the identifier of the
item, and σ is the score of the item w.r.t. GNid, which
is the identifier of a given external GN. Then G sorts the
items in LSuggest in descending order of σ. G considers
items (ofLSuggest), whose scores exceed the thresholdλ, as
candidates for replication. (The remaining items are deleted
from LSuggest.) λ equals ( (1/Nd)

∑Nd

k=1
σj ), where Nd is

the total number of items accessed by external GNs, and σj

is the score of the jth data item w.r.t a given external GN.
Observe the similarities in determining the candidate

data items for replication for internally and externally ac-
cessed data items, the difference being that the case for ex-
ternally accessed data items is more complicated due to the
computation of data scores w.r.t. multiple GNs. Further-
more, G does not participate in allocating replicas for the
selected candidate items in LSuggest. Instead, for each can-
didate item, G just sends a message to the relevant exter-
nal GN, which will perform the actual replica allocation at
some MH within its region. Given imgid, the relevant exter-
nal GN is the corresponding GNid in LSuggest. Note that,
just as G suggests external GNs to replicate items, the ex-
ternal GNs also suggest G to replicate items that have been
accessed at these external GNs by the MHs of G’s region.
We shall henceforth refer to the list of items, for which G
needs to allocate replicas, as IRep. Thus, IRep comprises
two types of items: (a) items that are stored at the MHs
within its own regionR (i.e., internal items) (b) items which
are stored at MHs outside R (i.e., external items). External
items are recommended to G by the other (external) GNs.

The CADRE replication algorithm

In CADRE, each GN executes replica allocation and
deallocation within the region that it covers. In addition
to the scores of items, each MH also sends its load status,
energy status, available memory space status and the FFR
values of the replicas stored at itself to the corresponding
GN in its region. Figure 1 depicts the CADRE replication
algorithm, which is executed by a given GN G for allocat-
ing replicas at MHs within its own region. The list IRep

in Figure 1 comprises items that are candidates for replica
allocation by G. Line 1 of Figure 1 indicates that CADRE
allocates replicas starting from the data item with the high-
est score, thus preferring data items with higher scores since

these data items are important to the network as a whole.

Algorithm CADRE
IRep: List of data items that are candidates for replica allocation

(1) Sort data items in IRep in descending order of σ

(2) for each data item d in IRep

(3) Find the MH Mmax which has made maximum accesses to d

(4) Add Mmax and its 1-hop neighbours to a set Dest

(5) From Dest, delete overloaded MHs

(6) From Dest, delete MHs with low remaining energy

(7) From Dest, delete MHs with low available memory space

(8) if Dest is an empty list

(9) break

(10) else

(11) Sort the MHs in Dest in ascending order of load

(12) for each MH M in Dest

(13) Create a list LR of the replicas stored at M

(14) From LR, delete replicas with FFR above threshold ω

(15) if LR is an empty list

(16) break

(17) else

(18) Sort LR in ascending order of σ

(19) Ldealloc = empty /* List of deallocations */

(20) σcnt = 0, sizecnt = 0

(21) for each replica r in LR

(22) /* sized is d’s size and sizer is r’s size */

(23) /* σd is d’s score and σr is r’s score */

(24) σcnt = σcnt + σr

(25) sizecnt = sizecnt + sizer

(26) if σd < σcnt

(27) break

(28) else

(29) if sized < sizecnt

(30) Deallocate all entries in Ldealloc from M

(31) Allocate d at M

(32) else

(33) Add r to Ldealloc

end

Figure 1. CADRE replica allocation algorithm

Lines 3-4 indicate that CADRE tries to replicate a given
data item d either at the MH Mmax, which made the max-
imum number of accesses to d or at one of Mmax’s 1-hop
neighbours. This facilitates bringing d nearer to the ori-
gin of most of the requests for d. We also consider the 1-
hop neighbours of Mmax since Mmax may not have ad-
equate available memory space and/or remaining energy.
Line 5 suggests that CADRE avoids replica allocation at
overloaded MHs primarily because such MHs would not be
able to provide good service due to their large job queues,
which would force queries to incur long waiting times and
consequently, higher response times. From Lines 6-7, ob-
serve how CADRE takes available memory space and en-
ergy of the MHs into consideration.

6



Line 11 indicates that CADRE allocates replicas of data
items with relatively high scores to underloaded MHs. No-
tably, the score of an item d may not have a direct correla-
tion with the load imposed by d on the MH M , if d were
to be replicated at M . This is primarily because the score
depends not only on the total access frequency of d, but
also on the number of MHs that accessed d. However, we
believe that assigning items with high scores to relatively
underloaded MHs is reasonable because it facilitates better
query response times for items, which are important to a
larger number of MHs.

Lines 12-33 depict how the score of the item d to be
replicated at the MH M is compared with the scores of the
existing replicas. The algorithm keeps adding the existing
replicas to the list Ldealloc as long as the sum of the scores
of these replicas is less than the score of d. If the total size
of the replicas in Ldealloc exceeds the size of d, the replicas
in Ldealloc will be deallocated in order to replicate d at M .
Otherwise, the replicas in Ldealloc will not be deallocated.
In essence, we are first simulating the eviction of replicas,
and if d can be replicated at M by removing a set of exist-
ing replicas, whose combined score is less than that of d,
we deallocate those existing replicas in favour of d. This is
justifiable because d is more important to the network than
these deallocated replicas based on the scores. However,
when the total score of the replicas in Ldealloc exceeds d’s
score, we do not deallocate the replicas because the com-
bined importance of these replicas is higher than that of d.

Line 14 indicates that we do not deallocate replicas
whose FFR values exceed the pre-defined threshold ω, the
primary reason being to avoid thrashing conditions. High
FFR value of a replica means that it has been allocated and
deallocated multiple times. Thus, a replica with FFR value
above ω is likely to be accessed again, which would require
it to be allocated once again, thereby increasing the proba-
bility of thrashing. Incidentally, if there is still some avail-
able memory space at some MHs after the CADRE algo-
rithm has been executed for all the candidate data items, the
algorithm is executed multiple times until none of the MHs
have adequate memory space for storing replicas.

5 Performance Evaluation
This section discusses the performance evaluation of

CADRE. We consider five different regions. Each region
has 50 MHs and 1 GN. MHs in each region move accord-
ing to the Random waypoint model [2] within the region,
the area of the region being 1000 metre ×1000 metre. GNs
move within their respective regions and are aware of each
other’s schedules, hence they are able to communicate with
each other. Each region contains 200 data items that are
uniformly distributed among 50 MHs i.e., each MH owns 4
data items. Each query is a request for either a local data
item or a remote one. In all the experiments presented here,

60% of the queries were remote ones, while the other 40%
were local queries. We had performed experiments with dif-
ferent percentages of remote and local queries, the results
indicating increasing query response times with increasing
percentage of remote queries. However, these experiments
exhibited similar trends, hence we do not present the results
here due to space constraints.

Periodically, every TP seconds, each GN decides
whether to perform replica allocation. Network topology
does not change significantly during replica allocation since
it requires only a few seconds [7]. In all our experiments, 20
queries/second are issued within each region, the number of
queries directed to each MH being determined by the Zipf
distribution. Communication range of all MHs (except the
GNs) is a circle of 100 metre radius. Table 2 summarizes
the performance study parameters, which are the same for
each of the five regions.

Parameter Default value Variations

No. of MHs (NMH ) 50 10, 20, 30, 40

Zipf factor (ZF) 0.9 0.1, 0.3, 0.5, 0.7

Allocation period TP (102 s) 2 1, 3, 4, 5, 6

Queries/second 20

Bandwidth between MHs 28 Kbps to 100 Kbps

Probability of MH availability 50% to 85%

Size of a data item 1 MB to 10 MB

Available Memory at an MH 10 MB to 20 MB

Speed of an MH 1 metre/s to 10 metres/s

Size of message headers 220 bytes

Table 2. Performance Study Parameters

5

10

2 4 6

N
o
. 
o
f 

re
p
li

ca
s

Time (102 s)

CADRE
E-DCG+

NoRep

(a) No. of replicas

5

10

2 4 6

A
v

er
ag

e 
Q

u
er

y
 h

o
p

-c
o

u
n

t

Time (102 s)

CADRE
E-DCG+

NoRep

(b) Average query hop-count

Figure 2. Effect of fair replica allocation

Performance metrics are average response time (ART)
of a query, data availability (DA) and communication traf-
fic (TR) for replica allocation. ART = (1/NQ)

∑NQ

i=1
(Tf −

Ti), where Ti is the time of query issuing, Tf is time of the
query result reaching the query issuing MH, and NQ is the
total number of queries. DA = ( NS/NQ )*100, NS be-
ing the number of queries that were answered successfully.
Each query has a ‘hops-to-live’ i.e., queries that are not an-

7



60

120

180

4 8 12 16 20

A
R

T
 (

s)

No. of queries (103)

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

4 8 12 16 20

D
A

No. of queries (103)

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

4 8 12 16 20

T
R

 (
10

4 )

No. of queries (103)

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 4. Performance of CADRE

60

120

180

0.1 0.5 0.9

A
R

T
 (

s)

ZF

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

0.1 0.5 0.9

D
A

ZF

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

0.1 0.5 0.9

T
R

 (
10

4 )

ZF

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 5. Effect of variations in the workload skew

60

120

180

0 0.3 0.6 0.9

A
R

T
(s

)

FFR Threshold

CADRE
E-DCG+

NoRep

(a) Average Response Time

20

60

100

0 0.3 0.6 0.9

D
A

FFR Threshold

CADRE
E-DCG+

NoRep

(b) Data Availability

Figure 3. Effect of thrashing prevention

swered within n hops are dropped. All our experiments use
n = 4 since preliminary experiments indicated that it is a
reasonable value for our application scenarios. We define
TR as the total hop-count for replica allocation during the
experiment. As reference, we adapt the E-DCG+ approach
[7] (discussed in Section 2) to our scenario. E-DCG+ is
executed at every replica allocation period. As a baseline,
we also compare CADRE with an approach NoRep, which
does not perform replica allocation.

Effect of fair replica allocation: We conducted an
experiment to observe the number of replicas created by
CADRE and E-DCG+ for a single ‘hot’ data item d over a
period of time. This data item was selected randomly from
the top 10% hottest data items. Figure 2a depicts the re-

sults. For both CADRE and E-DCG+, the number of repli-
cas increases over time in response to conditions necessitat-
ing replica allocation. However, the number of replicas does
not increase indefinitely over time and eventually plateaus
after some time due to competition among replicas for MH
memory space. Observe that CADRE creates more repli-
cas than E-DCG+. This is because CADRE would create
a replica for a data item d, which is accessed by a large
number of MHs, even if d’s total access frequency is low,
in which case E-DCG+ would not create any replica. Thus,
CADRE creates replicas for more data items than E-DCG+
since CADRE selects candidate items for replication based
on scores as opposed to total access frequencies.

Figure 2b indicates the average number of hop-counts
required for querying the same data item d during different
periods of time. These results were averaged over a total of
1200 queries. Initially, before replica allocation had been
performed, all three approaches required comparable num-
ber of hops for querying d. After replica allocation has been
performed, CADRE requires lower number of hops than E-
DCG+ to answer queries on d since CADRE creates more
replicas for d, as discussed for Figure 2a. More replicas
generally decrease the querying hop-count since it increases
the likelihood of queries being answered within lower num-
ber of hops and provide multiple paths to locate a queried
data item. E-DCG+ requires lower number of querying hop-
counts than NoRep essentially due to replication.

Effect of thrashing prevention: Recall that CADRE

8



60

120

180

2 4 6

A
R

T
 (

s)

TP (102 s)

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

2 4 6

D
A

TP (102 s)

CADRE
E-DCG+

NoRep

(b) Data Availability

5

10

2 4 6

T
ra

ff
ic

 (
10

4 )

TP (102 s)

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 6. Effect of variations in the replica allocation period TP

60

120

180

10 30 50

A
R

T
 (

s)

NMH

CADRE
E-DCG+

NoRep

(a) Average Query Response Time

20

60

100

10 30 50

D
A

NMH

CADRE
E-DCG+

NoRep

(b) Data Availability

1

2

3

4

10 30 50

T
ra

ff
ic

 (
10

4 )

NMH

CADRE
E-DCG+

NoRep

(c) Replica Allocation Traffic

Figure 7. Effect of variations in the number of MHs

deallocates only those replicas, whose FFR values are less
than that of the FFR threshold ω. Figures 3a and 3b depict
the effect of variations in ω on the ART and DA of CADRE.
E-DCG+ and NoRep show relatively constant ART and DA
as these approaches are independent of ω. For high val-
ues of ω, the FFR of more replicas fall below ω, thereby
making the occurrence of a large number of deallocations
more likely. This is likely to lead to thrashing conditions,
and consequently increased ART and decreased DA. How-
ever, when the value of ω is low, the FFR of few replicas
fall below ω. This makes deallocation too ‘conservative’ in
the sense that replicas, which should have been deallocated
to create memory space for ‘hot’ items, will not be deal-
located, Thus, items with high scores cannot be allocated
due to lack of space, thereby adversely affecting the per-
formance of CADRE. As the results in Figures 3a and 3b
indicate, CADRE performs best at intermediate values of ω
i.e., 0.4 ≤ ω ≤ 0.6. By computing ω for this experiment ac-
cording to our analytical formula in Equation 3, we obtain
ω ≈ 0.54, which experimentally justifies Equation 3.

Performance of CADRE: We conducted a simulation
experiment using default values of the parameters in Ta-
ble 2. Figure 4 depicts the results. Figure 4a indicates
that the performance gap between CADRE and E-DCG+
keeps increasing over time due to several reasons. First,
in case of CADRE, replica allocation and deallocaton are
both performed by the GNs. Since a GN has good regional
knowledge concerning load status, available memory space

status and energy status of MHs as well as network topol-
ogy, it is able to better manage replication in its region. In
contrast, for E-DCG+, replica allocation is performed in
a distributed manner by individual MHs, which lack good
regional knowledge. Second, CADRE allocates replicas
only to underloaded MHs, thereby ensuring relatively short
waiting times for queries at the job queues of these MHs,
and consequently, reduced query response times. However,
since E-DCG+ does not consider MH load, it may allocate
replicas to overloaded MHs, thereby resulting in high query
response times at these MHs due to their large job queues.
Third, CADRE uses the FFR threshold to facilitate the pre-
vention of thrashing conditions, which E-DCG+ does not
address. Notably, preventing thrashing can improve perfor-
mance significantly when large-sized items (e.g., images)
are present, as in our application scenarios. Fourth, un-
like E-DCG+, CADRE creates replicas for more data items
since it considers fairness in replica allocations via data
scores, as discussed for the results in Figure 2.

The results in Figure 4b suggest that CADRE provides
higher data availability than E-DCG+ essentially due to
the reasons discussed for Figure 4a. Incidentally, during
replica allocation, E-DCG+ requires every MH to broadcast
its RWR values to every MH, thereby incurring O(N 2

MH )
messages, while CADRE requires each MH to send only
one message to its corresponding GN, and the GN broad-
casts a message to each MH, thus incurring O(NMH) mes-
sages, which explains the results in Figure 4c.

9



Effect of variations in the workload skew: Figure 5
depicts the results when the zipf factor (ZF) is varied. For
high ZF values (i.e., high skew), both CADRE and E-DCG+
perform better than NoRep in terms of ART and DA due to
more replica allocations in response to load-imbalance con-
ditions. The performance gap (in terms of ART and DA)
between CADRE and E-DCG+ increases with increasingly
skewed workloads essentially due to the reasons explained
for Figures 2 and 4. In particular, unlike E-DCG+, CADRE
uses MH load as a replication criteria, thereby making it
more sensitive to load-imbalance conditions. However, the
performance of all three approaches is comparable at lowly
skewed workloads since such workloads do not necessitate
replica allocations. The explanation for Figure 5c is essen-
tially the same as that of Figure 4c.

Effect of variations in the replica allocation period:
Recall that every TP seconds, a GN decides whether to
allocate replicas. Figure 6 depicts the results of varying
TP . At lower values of TP , more number of replica allo-
cation periods occur, hence load imbalances are corrected
quickly in response to changing access patterns, thereby
improving ART and DA for both CADRE and E-DCG+.
As TP increases, load imbalances are corrected less fre-
quently, hence performance degrades for both CADRE and
E-DCG+. For NoRep, ART and DA remain relatively con-
stant because they depend only upon probability of MH
availability. The explanation for the results in Figure 6c
is similar to that of Figure 4c. In particular, replica alloca-
tion traffic decreases dramatically with increasing TP due
to decreased number of replica allocation periods.

Effect of variations in the number of MHs: To test
CADRE’s scalability, we varied the numberNMH of MHs,
keeping the number of queries proportional to NMH . Fig-
ure 7 depicts the results. At high values of NMH , CADRE
outperforms E-DCG+ due to the reasons explained for Fig-
ures 2 and 4. As NMH decreases, the performance gap
decreases due to limited replication opportunities. Replica
allocation traffic for E-DCG+ dramatically decreases with
decreasingNMH due to reduced broadcast traffic.

6 Conclusion

We have proposed CADRE, a dynamic replication
scheme for improving the typically low data availability in
M-P2P networks. CADRE collaboratively performs both
replica allocation and deallocation in tandem to facilitate
optimal replication and to avoid ‘thrashing’ conditions,
while addressing fair replica allocation across the MHs.
CADRE deploys a hybrid super-peer architecture in which
the GNs facilitate efficient search and replication. Results
of our performance study demonstrate that CADRE indeed
improves query response times and data availability in M-
P2P networks as compared to some recent existing schemes.

References

[1] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker.
Replication strategies for highly available peer-to-peer stor-
age. Proc. Future Directions in Distributed Computing,
2003.

[2] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc net-
work routing protocol. Proc. MOBICOM, pages 159–164,
1998.

[3] B. Carpentieri, M. Weinberger, and G. Seroussi. Loss-
less compression of continuous-tone images. Proc. IEEE,
88(11), 2000.

[4] A. Datta, M. Hauswirth, and K. Aberer. Updates in highly
unreliable replicated peer-to-peer systems. Proc. ICDCS,
2003.

[5] L. Fife and L. Gruenwald. Research issues for data commu-
nication in mobile ad-hoc network database systems. Proc.
SIGMOD Record, 32(2):22–47, 2003.

[6] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and
G. Popek. Rumor: Mobile data access through optimistic
peer-to-peer replication. Proc. ER Workshops, 1998.

[7] T. Hara and S. Madria. Data replication for improving data
accessibility in ad hoc networks. To appear in IEEE Trans-
action on Mobile Computing, 2006.

[8] http://compression.ca/act/.
[9] Y. Huang, A. P. Sistla, and O. Wolfson. Data replication for

mobile computers. Proc. ACM SIGMOD, 1994.
[10] B. Kemme. Implementing database replication based on

group communication. Proc. Future Directions in Dis-
tributed Computing, 2002.

[11] B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
Proc. ACM TODS, 25(3), 2000.

[12] A. Mondal, S. Madria, and M. Kitsuregawa. Clear: An
efficient context and location-based dynamic replication
scheme for mobile-P2P networks. To appear in Proc. DEXA,
2006.

[13] V. Papadimos, D. Maier, and K. Tufte. Distributed query
processing and catalogs for peer-to-peer systems. Proc.
CIDR, 2003.

[14] E. Pitoura. A replication scheme to support weak connectiv-
ity in mobile information systems. Proc. DEXA, 1996.

[15] E. Pitoura and B. Bhargava. Maintaining consistency of data
in mobile distributed environments. Proc. ICDCS, 1995.

[16] D. Ratner, P. Reiher, G. Popek, and G. Kuenning. Repli-
cation requirements in mobile environments. Proc. Mobile
Networks and Applications, 6(6), 2001.

[17] B. Richard, D. Nioclais, and D. Chalon. Clique: A transpar-
ent, peer-to-peer replicated file system. Proc. MDM, 2003.

[18] S. Saroiu, P. Gummadi, and S. Gribbler. A measurement
study of peer-to-peer file sharing systems. Proc. MMCN,
2002.

[19] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. Proc. ACM TODS, 22(4):255–314,
June 1997.

10


