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Abstract. Association rule mining is an actively studied topic in recom-
mender systems. A major limitation of an association rule-based recom-
mender system is the problem of reduced coverage. It is generally caused
due to the usage of a single global minimum support (minsup) thresh-
old in the mining process, which leads to the effect that no association
rules involving rare items can be found. In the literature, Neighborhood-
Restricted Rule-Based Recommender System (NRRS) using multiple
minsups framework has been proposed to confront the problem. We have
observed that NRRS is computationally expensive to use as it relies on
an Apriori-like algorithm for generating frequent itemsets. Moreover, it
has also been observed that NRRS can recommend uninteresting prod-
ucts to the users. This paper makes an effort to reduce the computational
cost and improve the overall performance of NRRS. A pattern-growth
algorithm, called MSFP-growth, has been proposed to reduce the com-
putational cost of NRRS. We call the proposed framework as NRRS⋆.
Experimental results show that NRRS⋆ is efficient.
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1 Introduction

Association rules [1] are an important class of regularities that exist in a database.
Recently, these (association) rules were used in developing recommender systems
[2, 3]. It is because their performance is comparable to nearest-neighbor (kNN)
collaborative filtering approaches, and do not suffer from scalability problems like
memory-based algorithms as the rules can be mined in an offline model-learning
phase [4].

A major limitation of a rule-based recommender system is the problem of
reduced coverage [4, 5]. This phenomenon is generally caused due to the us-
age of a single minsup threshold in the mining process, which leads to the
effect that no rules involving rare items can be found. Fatih and Dietmar [5]
have exploited the concept of rule mining with multiple minsups [8], and in-
troduced NRRS (Neighborhood-Restricted rule-based Recommender System) to
address the coverage problem. The NRRS uses an Apriori-like algorithm known
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as Improved Multiple Support Apriori (IMSApriori) [8] to generate frequent
itemsets from each user’s dataset. Next, it uses a tree-structure known as Ex-
tended Frequent Itemset-graph (EFI-graph) to store the rules generated from
the frequent itemsets. Recommendations to the user are generated by perform-
ing depth-first search on EFI-graph. We have observed the following performance
issues in NRRS:

– The NRRS is a computationally expensive recommender system. It is be-
cause of the following two reasons. First, the rules discovered with the mul-
tiple minsups do not satisfy the anti-monotonic property. This increases
the search space, which in turn increases the computational cost of mining
the frequent itemsets. Second, the IMSApriori suffers from the same perfor-
mance problems as the Apriori [1], which involves generating huge number
of candidate itemsets and requiring multiple database scans.

– In [10], it has been reported that EFI-graph causes NRRS to recommend
uninteresting items to the users.

With this motivation, we propose an improved NRRS known as NRRS⋆. The
key contributions of this paper are as follows:

1. We show that the frequent itemsets discovered with the multiple minsups
framework satisfy the “convertible anti-monotonic property” [11].

2. Pei et al. [11] have theoretically shown that the search space of convertible
anti-monotonic property is same as the search space of an anti-monotonic
property if the frequent itemsets were discovered by a pattern-growth algo-
rithm. Therefore, we propose a pattern-growth algorithm known as Multiple
Support Frequent Pattern-growth (MSFP-growth). The MSFP-growth do
not suffer from the same performance problems as the IMSApriori. As a
result, it can effectively discover frequent itemsets from each user’s dataset.

3. In [10], we have proposed EFI-graph++ to store the rules that satisfy the
convertible anti-monotonic property. Since the rules discovered with the mul-
tiple minsups framework satisfy the same, we employ EFI-graph++ to store
the rules and recommend products to the users [10].

4. Performance results on MovieLens dataset demonstrate that NRRS⋆ can
provide better recommendations and is more scalable than the NRRS.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground and related work on association rule mining and rule-based recommender
systems. Section 3 describes MSFP-growth and NRRS⋆ algorithms. The experi-
mental evaluations of NRRS and NRRS⋆ have been reported in Section 4. Finally,
Section 5 concludes the paper.

2 Background and Related Work

2.1 Association Rule Mining

Discovering association rules with multiple minsups is an important generaliza-
tion proposed by Liu et al. [6] to confront the “rare item problem” that occurs
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in the basic model of association rules [1]. The multiple minsups model of asso-
ciation rules is as follows [6]:

Let I = {i1, i2, · · · , in} be a set of items. Let T be a set of transactions
(or a dataset), where each transaction t is a set of items such that t ⊆ I. A
set of items X ⊆ I is called an itemset (or a pattern). An itemset containing
k number of items is called a k-itemset. An association rule is an implication
of the form, A ⇒ B, where A ⊂ I, B ⊂ I and A ∩ B = ∅. The rule A ⇒ B
holds in T with support s, if s% of the transactions in T contain A∪B. The rule
A ⇒ B holds in T with confidence c, if c% of transactions in T that support
A also support B. An itemset (or a rule) is said to be frequent if its support
is no less than the minsup threshold. The rules which satisfy both minsup and
minconf thresholds are called strong rules. The minconf is the user-defined
minimum confidence threshold value, while the minsup of a rule is expressed as
follows: minsup(A ⇒ B) = minimum(MIS(ij)|∀ij ∈ A ∪ B), where MIS(ij)
is the user-defined minimum item support for an item ij ∈ A ∪B.

An open problem with the multiple minsups framework is the methodology
to specify the items’ MIS values. Uday and Reddy [8] have tried to addressed
this problem using the following methodology:

MIS(ij) = maximum(LS, S(ij)− SD)

SD = λ(1− β) (1)

where, LS is the user-specified lowest minimum item support allowed, SD refers
to support difference, λ represents the parameter like mean, median and mode
of the item supports and β ∈ [0, 1] is a user-specified constant. An Apriori-like
algorithm, called IMSApriori, has been proposed to discover frequent itemsets.
Researchers have also introduced algorithms based on pattern-growth technique
[7, 9] to discover the patterns. Unfortunately, these algorithms cannot be directly
applied in NRRS to discover the frequent itemsets. The reason is that the algo-
rithms require user-specified items’ MIS values. Thus, we have proposed
an alternative pattern-growth algorithm, called MSFP-growth, which can easily
be incorporated in a rule-based recommender system.

2.2 Rule-Based Recommender Systems

Recently, rule-based recommender systems have received a great deal of atten-
tion in both industry and academia [2, 3]. Most of these systems employ only a
single minsup constraint to discover frequent itemsets from each user’s dataset.
As a result, they suffer from coverage problem. To confront the problem, re-
searchers have introduced NRRS using the concept of multiple minsup-based
frequent itemset mining [5]. The working of NRRS is as follows:

1. (Offline phase.) The users were grouped based on their purchased history.
A transactional database is constructed using the purchased history of each
user’s group. Next, the complete set of frequent itemsets were discovered
from each database using IMSAprori.
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2. (Online phase.) For each user, the discovered frequent itemsets were stored
in a lexical order in a tree-structure known as EFI-graph. Recommendations
to the user were generated by traversing EFI-graph using depth-first search.

Since NRRS employs IMSApriori to discover frequent itemsets from each user’s
database, it is straight forward to argue that NRRS is a computationally expen-
sive recommender system. Moreover, it was shown in [10] that EFI-graph can
generate uninteresting recommendations to the users. In the next section, we
propose NRRS⋆, which tries to address the performance issues of NRRS.

3 The Proposed Neighborhood-Restricted Rule-Based
Recommender System⋆

3.1 MSFP-growth

To reduce the computational cost of mining frequent itemsets from each user’s
dataset, we have investigated the types of itemsets discovered with the multiple
minsups framework and the nature of support-difference methodology. We made
the following key observations:

1. The support-difference methodology is a monotonic (or an order-preserving)
function. That is, if S(i1) ≥ S(i2) ≥ · · · ≥ S(in), thenMIS(i1) ≥ MIS(i2) ≥
· · · ≥ MIS(in).

2. For an item ij ∈ I, the support-difference methodology specifies items’ MIS
values such that S(ij) ≥ MIS(ij) ≥ LS.

3. The frequent itemsets discovered with the multiple minsups framework sat-
isfy the convertible anti-monotonic property. The correctness is based on
Property 1 and shown in Lemma 1.

Property 1. (Apriori Property.) If Y ⊂ X, then S(Y ) ≥ S(X).

Lemma 1. (Convertible anti-monotonic property.) In a frequent itemset, all its
non-empty subsets containing the item with lowest MIS must also be frequent.

Proof. Let X = {i1, i2, · · · , ik}, where 1 ≤ k ≤ n, be an ordered set of items
such that MIS(i1) ≤ MIS(i2) ≤ · · · ≤ MIS(ik). Let Y be an another itemset
such that Y ⊂ X and i1 ∈ Y . The minsup of X, denoted as minsup(X) =
MIS(i1) (= min(MIS(ij)|∀ij ∈ X)). Similarly, the minsup of Y , denoted as
minsup(Y ) = MIS(i1) (= min(MIS(ij)|∀ij ∈ Y )). If S(X) ≥ MIS(i1) (=
minsup(X)), then it is a frequent itemset. Since Y ⊂ X, it turns out that
S(Y ) ≥ MIS(i1)) as S(Y ) ≥ S(X) ≥ MIS(i1) (Property 1). In other words, Y
is also a frequent itemset. Hence proved.

Based on the above observations, we introduce a pattern-growth algorithm
known as MSFP-growth (see Algorithm 1). Briefly, the working of MSFP-growth
is as follows:

– We construct FP-tree [11] and measure the SD value.
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– Since FP-tree is constructed in support descending order of items, it turns
out that the MIS value of the suffix item will be the lowest MIS value
among all other items in its prefix path. Therefore, considering each item
in the FP-tree as suffix item (or 1-itemset), we calculate its MIS value
and consider it as “conditional minimum support” (Cminsup). Next, we
construct its conditional pattern base, then construct its (conditional) FP-
tree, and perform mining recursively on such a tree. The pattern-growth is
achieved by the concatenation of the suffix itemset with the frequent itemsets
generated from a conditional FP-tree.

Algorithm 1 MSFP-growth (T : rating transactional database, β: user-specified
constant and LS: least support)

1: Scan the transactional database T and measure the support values of all items.
2: Prune the items having support values less than the LS value and sort them in

descending order of their support values. Let this sorted order of items be L. Every
item in F is a frequent item.

3: Let λ be the support of an representative item in the database. It generally repre-
sents mean or median of all supports of items in L. That is, λ = mean(S(ij)∀ij ∈ L)
or λ = median(S(ij)∀ij ∈ L).

4: Calculate the support difference (SD) between the support and MIS of the rep-
resentative item. That is, SD = λ(1− β).

5: Since support-difference methodology is an order preserving function, construct
FP-tree, say Tree, as discussed in [11].

6: for each item i in the header of the Tree do
7: calculate conditional minsup, Cminsupi = ((S(i) − SD) > LS)?(S(i) − SD) :

LS).
8: if ij is a frequent item then
9: generate itemset β = i ∪ α with support = i.support (or S(i));
10: construct β’s conditional pattern base and β’s conditional FP-tree Treeβ .
11: if Treeβ ̸= ∅ then
12: call MSFPGrowth(Treeβ , β, Cminsupi).
13: end if
14: end if
15: end for

Procedure 2 MSFPGrowth(Tree, α, Cminsupi)

1: for each i in the header of Tree do
2: generate itemset β = i ∪ α with support = i.support.
3: construct β’s conditional pattern base and then β’s conditional FP-tree Treeβ .
4: if Treeβ ̸= ∅ then
5: call MSFPGrowth(Treeβ , β, Cminsupi).
6: end if
7: end for

3.2 An Improved Neighborhood-Restricted Rule-based
Recommender System: NRRS⋆

The proposed NRRS⋆ system is shown in Algorithm 3. It is a two phase algorithm
involving offline and online phases. The working of NRRS⋆ is as follows:
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1. (Offline phase.) For each user u, top-k1 and top-k2, where k1 ≥ k2, number
of neighboring users who had similar purchased history are discovered. (The
top-k1 neighboring users will be used for learning rules, while the top-k2
neighboring users will be used for prediction or recommendation of products
to the user u.) A transactional database is generated using the purchased his-
tory of top-k1 neighbors of the user u. Next, frequent itemsets are discovered
from the database using the proposed MSFP-growth algorithm.

2. (Online phase.) The discovered user-specific frequent itemsets (UserFPs)
of the target user and of the neighbors of the target user are used to cal-
culate predictions using EFI-graph++ (lines 8 to 13 in Algorithm 3). The
resulting confidence scores are weighted according to the similarity of the
target user and the neighbor (line 14 to 16 in Algorithm 3). The similarity
measure we use is Pearson correlation. These user-specific predictions are
finally combined and sorted by the weighted confidence scores (line 16 and
17 in Algorithm 3). The construction of EFI-graph++ is given in [10].

Algorithm 3 NRRS⋆ (U : set of users, ratingDB: rating database, k1: learning
neighborhood size, k2: predicting neighborhood size λ: support of a representa-
tive item, β: user-specified constant and LS: least minimum item support)

1: (Offline: Discovery of Frequent itemsets)
2: for each u ∈ U do
3: Let k1-neighborhood

u and k2-neighborhood
u be the set of top k1 and k2

neighbors for the user u in ratingDB. That is, k1-neighborhood
u = u ∪

findNeighbors(u, k1, ratingDB);
4: Let ratingDBu be the rating database created using the ratings given by the

each user in k1-neighborhood
u.

5: Let UserFPs be the of frequent itemsets discovered for u in ratingDBu using
MSFP-growth. That is, UserFPs = MSFP -growth(ratingDBu, λ, β, LS).

6: end for
7: (Online: Recommending items by constructing EFI-graph for each user)
8: for each user u ∈ U do
9: recommendedItems = ∅;
10: for each user ui ∈ k1-neighborhood

u do
11: userRecs = Recommend(u,EFIG++(UserFPs(ui)));
12: Scan ratingDBu to measure the support count of infrequent itemsets in EFI-

graph of u;
13: weightedUserRecs = adjustConfidenceScoresBySimilarity(userRecs, u, ui);
14: recommendedItems = recommendedItems ∪ weightedUserRecs;
15: end for
16: recommendedItems = sortItemsByAdjustedScores(recommendedItems);
17: output recommendedItems;
18: end for

4 Experimental Results

In this section, we evaluate the NRRS and proposed NRRS⋆. The programs are
written in java and run with Ubuntu on a 2.66 GHz machine with 2GB mem-
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ory. The experiments were pursued on “MovieLens” rating dataset consisting of
100,000 ratings provided by 943 users on 1,682 items.

In order to test NRRS and NRRS⋆ frameworks also in settings with low data
density, we varied the density level of the original data sets by using sub-samples
of different sizes of the original data set. Four-fold cross-validation was performed
for each data set; in each round, the data set was split into a 80% training set
and a 20% test set.

To compare the predictive accuracy of NRRS and NRRS⋆ systems, we use
the following procedure. First, we determine the set of existing “like” statements
(ELS) in the 20% test set and retrieve a top-N recommendation list with each
system based on the data in the training set. The top-N recommendations are
generated based on the confidence of the producing rule. The set of predicted
like statements returned by a recommender shall be denoted as Predicted Like
Statements (PLS). The standard information retrieval accuracy metrics are used

in the evaluation. Precision is defined as |PLS∩ELS|
|PLS| and measures the number

of correct predictions in PLS. Recall is measured as |PLS∩ELS|
|ELS| , and describes

how many of the existing “like” statements were found by the recommender.
The averaged precision and recall values are then combined in the usual F-score.

That is, F = 2×
(

precision×recall
precision+recall

)
.

Table 1 shows the performance of NRRS and NRRS⋆ systems on Movie-
Lens dataset with varying densities. It can be observed that the performance of
NRRS⋆ is relatively better than NRRS, independent of the density. The reason
is that EFI-graph++ facilitated NRRS⋆ to recommended only those items that
had high confidence value although the past transactions of a user represented
an infrequent itemset.
Table 1. Performance comparison of NRRS and NRRS⋆ at different density levels.

Density 10% 30% 50% 70% 90%
Movie F1 35.75 47.75 57.89 60.91 62.72
Lens Precision 45.9% 60.23% 63.61% 64.7% 63.8%

Recall 29.3% 39.56% 53.12% 57.54% 61.69%

Fig. 1 shows the runtime taken by NRRS and NRRS⋆ systems to generate
recommendations to the users with varying dataset sizes for learning the rules
(i.e., k1). It can be observed that although both algorithms are linearly scalable
with increase in dataset size, NRRS⋆ is relatively more efficient than NRRS
system. It is because the MSFP-growth discovered frequent itemsets for each
users’ dataset more effectively than IMSApriori. Another important observation
is that NRRS⋆ is more scalable than NRRS with increase in k1 neighborhood
(or dataset) size for learning the rules.

5 Conclusions

This paper has proposed an effective and efficient rule-based recommender sys-
tem, called NRRS⋆, to confront the coverage problem that persists in the conven-
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Fig. 1. Runtime comparison of mining frequent itemsets for each user in NRRS and
NRRS⋆. The k1 represents a users’ dataset size (or neighborhood size).

tional rule-based recommender systems. It has also shown that frequent item-
sets discovered with the multiple minsups framework satisfy the convertible
anti-monotonic property, and therefore, can be effectively discovered using the
proposed pattern-growth algorithm, called MSFP-growth. Experimental results
demonstrate that NRRS⋆ is efficient than NRRS.
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