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Abstract. Periodic-frequent patterns are an important class of user-interest-based
frequent patterns that exist in a transactional database. A frequent pattern can
be said periodic-frequent if it appears periodically throughout the database. We
have observed that it is difficult to mine periodic-frequent patterns in very large
databases. The reason is that the occurrence behavior of the patterns can vary over
a period of time causing periodically occurring patterns to be non-periodic and/or
vice-versa. We call this problem as the “intermittence problem.” Furthermore, in
some of the real-world applications, the users may be interested in only those
frequent patterns that might have appeared almost periodically throughout the
database. With this motivation, we relax the constraint that a pattern must appear
periodically throughout the database, and introduce a new class of user-interest-
based frequent patterns, called quasi-periodic-frequent patterns. Informally, a fre-
quent pattern is said to be quasi-periodic-frequent if most of its occurrences are
periodic in a database. We propose a model and a pattern-growth algorithm to
discover these patterns. We also introduce three pruning techniques to reduce the
computational cost of mining the patterns. Experimental results show that the
proposed patterns can provide useful information and the proposed algorithm is
efficient.

Key words: Data mining, knowledge discovery in databases, frequent patterns
and periodic behavior.

1 Introduction

Periodic-frequent patterns [3] are an important class of regularities that exist within a
transactional database. In many real-world applications, periodic-frequent patterns pro-
vide useful information pertaining to the patterns that are not only occurring frequently,
but also appearing at regular intervals specified by the user in a database. For example,
in a retail market, among all frequently sold products, the user may be interested only
in the regularly sold products compared to the rest. Periodic-frequent pattern mining
on a market basket data can provide such information to the users. The basic model of
periodic-frequent patterns is as follows [3].

Let I = {i1, i2, · · · , in} be a set of items. A set X = {i1, · · · , ik} ⊆ I, where 1≤ k≤ n
is called a pattern (or an itemset). A pattern containing k number of items is called k-
pattern. A transaction t = (tid,Y ) is a tuple, where tid represents a transaction-id (or a
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timestamp) and Y is a pattern. A transactional database T over I is a set of transactions,
T = {t1, · · · , tm}, m = |T |, where |T | is the size of T in total number of transactions. If
X ⊆ Y , it is said that t contains X or X occurs in t and such transaction-id is denoted as
tX

j , j ∈ [1,m]. Let T X = {tX
k , · · · , tX

l } ⊆ T , where k≤ l and k, l ∈ [1,m] be the ordered set
of transactions in which pattern X has occurred. Let tX

j and tX
j+1, where j ∈ [k,(l− 1)]

be two consecutive transactions in T X . The number of transactions (or time difference)
between tX

j+1 and tX
j can be defined as a period of X , say pX

a . That is, pX
a = tX

j+1− tX
j .

Let PX = {pX
1 , pX

2 , · · · , pX
r }, r = |T X |+ 1, be the complete set of periods for pattern

X . The periodicity of X , denoted as Per(X) = max(pX
1 , pX

2 , · · · , pX
r ). The support of X ,

denoted as S(X) = |T X |. The pattern X is said to be periodic-frequent if S(X)≥minsup
and Per(X) ≤ maxprd. The minsup and maxprd are user-specified minimum support
and maximum periodicity constraints, respectively. Both periodicity and support of a
pattern can be described in percentage of |T |.
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Fig. 1: Running example.

Example 1. Consider the transactional database shown in Fig. 1(a). Each transaction in
this database is uniquely identifiable with a transactional-id (tid). The tid of a trans-
action also represents the ordered sequence of transactions based on a particular time
stamp. In this database, let us consider a sub-transactional database consisting of
the first five transactions. The set of items, I = {a,b,c,d,e, f}. The set of ‘a’ and ‘b’
i.e., {a,b} is a pattern. For the purpose of simplicity, we represent this pattern as ‘ab’.
This pattern occurs in tids 1,3 and 5. Therefore, T ab = {1,3,5}. The support of ‘ab’,
i.e., S(ab) = |T ab| = 3. The periods for this pattern are pab

1 = 1(= 1− ti), pab
2 = 2(=

3−1), pab
3 = 2(= 5−3) and pab

4 = 0(= tl−5), where ti = 0 represents the initial trans-
action and tl = 5 represents the last transaction in the sub-transactional database. The
periodicity of ‘ab’, Per(ab) = maximum(1,2,2,0) = 2. If the user-specified minsup = 2
and maxprd = 2, the pattern ‘ab’ is a periodic-frequent pattern because S(ab)≥minsup
and Per(ab)≤ maxprd.

The time duration of a database refers to the difference between the starting and end-
ing timestamps of the transactions within it. Time duration of a database is independent
to its size (i.e., number of transactions within it) because arrival rates of the transac-
tions into a database can vary with respect to time. Mining periodic-frequent patterns is
difficult if a database is composed over a very long time duration. It is because items’
occurrence behavior can vary drastically causing many periodically occurring frequent
patterns to be non-periodic and/or vice-versa.
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Example 2. In a shopping mall, if we consider the transactions happened only during
winter season, we can find interesting periodic-frequent patterns pertaining to woolen
wears. However, if we consider the transactions of the whole year, finding periodic-
frequent patterns pertaining to woolen wears is very difficult, because, they are not
often purchased during summer season.

We call this problem as the “intermittence problem.” A method to address this problem
involves mining the patterns with a high maxprd value. However, such an approach may
generate sporadically occurring frequent patterns as the periodic-frequent patterns.

Example 3. Consider the complete transactional database shown in Fig. 1(a).The pat-
tern ‘ab’ occurs in tids of 1,3,5,8 and 10. Therefore, T ab = {1,3,5,8,10}. The sup-
port of ‘ab,’ i.e., S(ab) = |T ab| = 5. The periods for this pattern are pab

1 = 1(= 1− ti),
pab

2 = 2(= 3−1), pab
3 = 2(= 5−3), pab

4 = 3(= 8−5), pab
5 = 2(= 10−8) and pa

6 = 0(=
tl−10). The set of periods for the pattern ‘ab’, Pab = {1,2,2,3,2,0}. The periodicity of
‘ab’, i.e., per(ab) = max(1,2,2,3,2,0) = 3. If the user-specified maxprd = 2, then ‘ab’
is a non-periodic frequent pattern because Per(ab)> maxprd. We can disocver the pat-
tern ‘ab’ as a periodic-frequent pattern by setting a high maxprd value, say maxprd = 3.
However, this high maxprd value can result in generating the sporadically occurring
frequent pattern, say ‘e f ’, as a periodic-frequent pattern because Per(e f ) = 3 (see Fig.
1(b)).

With this motivation, we have investigated the interestingness of the frequent pat-
terns with respect to their proportion of periodic occurrences in the database. During
this investigation, we have observed that the frequent patterns that were almost occur-
ring periodically in a database can also provide useful knowledge to the users. Based
on this observation, we relax the constraint that a frequent pattern must appear periodi-
cally throughout the database and introduce a new class of user-interest-based frequent
patterns, called quasi-periodic-frequent patterns. Informally, a frequent pattern is said
to be quasi-periodic-frequent if most of its occurrences are periodic in a transactional
database. Please note that the proposed patterns are tolerant to the intermittence prob-
lem. The contributions of this paper are as follows:

– An alternative interestingness measure, called periodic-ratio, has been proposed to
assess the periodic interestingness of a pattern.

– The quasi-periodic-frequent patterns do not satisfy the downward closure prop-
erty. That is, all non-empty subsets of a quasi-periodic-frequent pattern are not
quasi-periodic-frequent. This increases the search space, which in turn increases
the computational cost of mining the patterns. We introduce three pruning tech-
niques to reduce the computational cost of mining the patterns.

– A pattern-growth algorithm, called Quasi-Periodic-Frequent pattern-growth (QPF-
growth), has been proposed to discover the patterns.

– Experimental results show that the proposed patterns can provide useful informa-
tion, and the QPF-growth is efficient.

The rest of the paper is organized as follows. Section 2 summarizes the efforts made
in the literature to discover periodic-frequent patterns. In Section 3, we present the
conceptual model of quasi-periodic-frequent patterns. In Section 4, we discuss the basic



4 R. Uday Kiran, Masaru Kitsuregawa

idea to reduce the computational cost of mining the patterns and describe the QPF-
growth algorithm. Experimental results are presented in Section 5. Section 6 concludes
with future research directions.

2 Related Work

The periodic behavior of patterns has been widely studied in various domains as tempo-
ral patterns [?], cyclic association rules [?] and periodic behavior of moving objects [?].
Since real-life patterns are generally imperfect, Han et al. [?] have investigated the con-
cept of partial periodic behavior of patterns in time series databases with the assump-
tion that period lengths are known in advance. The partial periodic patterns specify
the behavior of time series at some but not at all points in time. Sheng and Joseph
[?] have investigated the same with unknown periods. Walid et al. [?] have extended
the Han’s work in [?] to incremental mining of partial periodic patterns in time series
databases. All of these approaches do not consider the effect of noise on the partial pe-
riodic behavior of patterns. Therefore, Yan et al. [?] have extended [?] by introducing
information theory concepts to address the effect of noise on periodic behavior of pat-
terns in time series. Sheng et al. [?] have introduced the concept of density to discover
partial periodic patterns that may have occurred within small segments of time series
data. The problem of mining frequently occurring periodic patterns with a gap has been
investigated in sequence databases [?,?,?]. Although these works are closely related to
our work, they cannot be directly applied for finding ppf-patterns from a transactional
database because of two reasons. First, they consider either time series or sequential
data; second, they do not consider the support threshold which needs to be satisfied by
all frequent patterns.

Recently, the periodic occurrences of frequent patterns in a transactional database
has been studied in the literature to discover periodic-frequent patterns [?,?,?]. We have
observed that these approaches cannot be extended to discover ppf-patterns. It is be-
cause the ppf-patterns do not satisfy the anti-monotonic property.

The concept of finding frequent patterns in data streams uses the temporal occur-
rence of a pattern in a database [?]. However, it has to be noted that only the occurrence
frequency was used to discover frequent patterns.

In [3], temporal occurrence behavior of the patterns in a transactional database
has been used as an interestingness measure to identify a class of user-interest-based
frequent patterns, called periodic-frequent patterns. A pattern-growth approach based
on a tree structure, called Periodic-Frequent tree (PF-tree) has also been discussed for
mining periodic-frequent patterns. In this paper, we refer to this approach as Periodic-
Frequent growth (PF-growth).

A rare periodic-frequent pattern is a periodic-frequent pattern consisting of rare
items i.e., items having low frequencies. It is difficult to mine rare periodic-frequent
patterns with a single minsup constraint because low minsup can cause combinatorial
explosion, producing too many periodic-frequent patterns in which some of them can be
uninteresting. Hence, efforts have been made in [4, 5] to mine periodic-frequent patterns
using multiple minsup constraints, where minsup of a pattern is represented with the
minimum item supports of its items.
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The proposed quasi-periodic-frequent patterns are different from the periodic-freq-
uent patterns [3–5] in the following ways. First, quasi-periodic-frequent patterns need
not appear periodically throughout the database. Therefore, the periodicity measure
does not exist for the quasi-periodic-frequent patterns. Second, periodic-frequent pat-
terns follow downward closure property, whereas quasi-periodic-frequent patterns do
not. Third, every periodic-frequent pattern is a quasi-periodic-frequent pattern; how-
ever, vice versa is not true. In this paper, we are not focusing on mining quasi-periodic-
frequent patterns involving rare items.

3 Proposed Model

In this section, we describe the model of quasi-periodic-frequent pattern mining using
the periodic-frequent pattern mining model discussed in Section 1. We also introduce
the basic notations and definitions in this regard.

Definition 1. Maximum period (maxperiod): It is a user-specified constraint that
describes the interestingness of a period. A period of X, pX

a ∈ PX is interesting if
pX

a ≤ maxperiod.

Example 4. Continuing with the Example 3, if the user-specified maxperiod = 2, then
pab

1 , pab
2 , pab

3 , pab
5 and pab

6 are the interesting periods because their values are less than
or equal to the user-specified maxperiod constraint.

Definition 2. The periodic-ratio of a pattern X: Let IPX = {pX
i , · · · , pX

j } ⊆ PX , where
1≤ i≤ j≤ r be the set of interesting periods for pattern X. The periodic-ratio of pattern
X, denoted as pr(X) = |IPX |

|PX | . This measure captures the proportion of periods in which
pattern X has appeared periodically in a database.

For a pattern X , pr(X) ∈ [0,1]. If pr(X) = 0, it means X has not appeared periodi-
cally anywhere in the transactional database. If pr(X) = 1, it means X has appeared pe-
riodically throughout the transactional database. In other words, X is a periodic-frequent
pattern. Thus, the proposed model generalizes the existing model of periodic-frequent
patterns. The proportion of non-periodic occurrences of a pattern X in the transactional
database is given by 1− ps(X). Please note that the periodic-ratio of a pattern X can
be measured in percentage of PX .

Example 5. Continuing with the example 4, IPab = {pab
1 , pab

2 , pab
4 }. Therefore, the periodic-

ratio of ‘ab,’ i.e., pr(ab) = |IPab|
|Pab| =

3
4 = 0.75 (= 75%). The periodic-ratio of ‘ab’ says

that 0.75 proportion of its occurrences are periodic and 0.25 (=1-0.75) proportion of its
occurrences are non-periodic within the database.

Definition 3. Minimum periodic-ratio (minpr): It is a user-specified constraint that
describes the interestingness of a pattern with respect to its periodic occurrences in a
database. The pattern X is periodically interesting if pr(X)≥ minpr.

Example 6. Continuing with the example 5, if the user-specified minpr = 0.75, then the
pattern ‘ab’ is interesting with respect to its periodic occurrence behaviour, because,
pr(ab)≥ minpr.
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Definition 4. Quasi-periodic-frequent pattern: The pattern X is quasi-periodic-freq-
uent if S(X)≥ minsup and pr(X)≥ minpr. For a quasi-periodic-frequent pattern X, if
S(X) = a and pr(X) = b, then it is described as shown in Equation 1.

X [support = a, periodic-ratio = b] (1)

Example 7. Continuing with the example 6, if the user-specified minsup= 3, maxperiod =
2 and minpr = 0.8, then ‘ab’ is a quasi-periodic-frequent pattern because S(ab) ≥
minsup and pr(ab)≥ minpr. This pattern is described as follows:

ab [support = 5, periodic-ratio = 0.75]

The quasi-periodic-frequent patterns mined using the proposed model do not satisfy
downward closure property (see, Lemma 1). That is, all non-empty subsets of a quasi-
periodic-frequent pattern may not be quasi-periodic-frequent. The correctness of our
argument is based on the Properties 1 and 2 and shown in Lemma 1.

Property 1. In the proposed model, the total number of periods for X i.e., |PX |= S(X)+
1 = |T X |+1.

Property 2. Let X and Y be the two patterns in a transactional database. If X ⊂Y , then
|PX | ≥ |PY | and |IPX | ≥ |IPY | because T X ⊇ TY .

Lemma 1. In a transactional database T , the quasi-periodic-frequent patterns mined
using minsup, maxperiod and minpr constraints do not satisfy downward closure prop-
erty.

Proof. Let Y = {ia, · · · , ib}, where 1 ≤ a ≤ b ≤ n be a quasi-periodic-frequent pattern
with S(Y ) = minsup and periodic-ratio(Y ) = minpr. Let Y be an another pattern such
that X ⊂ Y . From Property ??, we derive |PX | ≥ |PY | and |IPX | ≥ |IPY |. Consider-
ing the scenario where |PX | > |PY | and |IPX | = |IPY |, we derive periodic-ratio(X) <
periodic-ratio(Y )(= minpr). Hence, X is not a quasi-periodic-frequent pattern. Hence
proved.

Problem Definition. Given a transactional database T , minimum support (minsup),
maximum period (maxperiod) and minimum periodic-ratio (minpr) constraints, the ob-
jective is to discover the complete set of quasi-periodic-frequent patterns in T that have
support and periodic-ratio no less than the minsup and minpr constraints, respectively.

4 QPF-growth: Idea, Design, Construction and Mining

4.1 Basic Idea

We have observed two issues while mining quasi-periodic-frequent patterns in the trans-
actional databases. Now, we discuss each of these issues and our approaches to address
the same.
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Issue 1: The quasi-periodic-frequent patterns do not satisfy the downward closure
property. This increases the search space, which in turn increases the computational
cost of mining the patterns. We introduce the following pruning techniques to reduce
the computational cost of mining the patterns.

1. The minsup constraint satisfies the downward closure property [1]. Therefore, if a
pattern X does not satisfy minsup, then X and its supersets can be pruned because
they cannot generate any quasi-periodic-frequent pattern.

2. Another interesting idea is as follows. Every quasi-periodic-frequent pattern will
have support greater than or equal to minsup. Hence, every quasi-periodic-frequent
pattern will have at least (minsup+1)1 number of periods (Property ??). That is, for
a pattern X , |PX | ≥ (minsup+1). Therefore, if |IPX |

(minsup+1) < minpr, then X cannot
be a quasi-periodic-frequent pattern. If Y ⊃ X , then Y cannot be a quasi-periodic-
frequent pattern because |IPY | ≤ |IPX | and |PX | ≥ |PY | ≥ (minsup+1). Therefore,
if |IPX |

(minsup+1) < minpr, then X and all of its supersets can be pruned because none
of them can generate a quasi-periodic-frequent pattern.

Example 8. Let the user-specified minsup, maxperiod and minpr values for the
transactional database shown in Fig. 1(a) be 3, 2 and 0.8, respectively. Every quasi-
periodic-frequent pattern will have support greater than or equal 3. Thus, every
quasi-periodic-frequent pattern will have at least 4(= 3 + 1) number of periods
(Property ??). For item ‘e’, T {e} = {3,4,6,9}, P{e} = {3,1,2,3,1} and IP{e} =

{1,2,1}. Therefore, |IP{e}|
minsup+1 = 3

4 = 0.75 < minpr. The item ‘e’ cannot be quasi-

periodic-frequent because periodic-ratio(e)< minpr as |P{e}| ≥ (minsup+1). For
any superset of ‘e’, say ‘{e, f}’, to be quasi-periodic-frequent, it should also have
at least 4 number of periods. Using Property ??, we derive T {e, f} ⊆ T {e}, |P{e, f}| ≤
|P{e}| and |IP{e, f}| ≤ |IP{e}|. Since |IP{e, f}| ≤ |IP{e}|, it turns out that |IP{e, f}|

minsup+1 ≤
|IP{e}|

minsup+1 < minpr. Therefore, {e, f} is also not a quasi-periodic-frequent pattern.
In other words, all supersets of ‘e’ are also not quasi-periodic-frequent.

Definition 5. Mai of X: Let IPX be the set of interesting periodic occurrences for pat-
tern X. The mai of X, denoted as mai(X) = |IPX |

(minsup+1) .

For a pattern X , mai(X)∈ [0,∞). If mai(X)≥ 1, then S(X)≥minsup because IPX ⊆
PX . If mai(X) < 1, then S(X) ≥ minsup or S(X) < minsup. So, we have to consider
both mai and support values of a pattern for generating quasi-periodic-frequent patterns.
The pruning technique is as follows. If mai(X) < minpr, then X and its supersets
cannot generate any quasi-periodic-frequent pattern. However, if mai(X) ≥ minpr and
periodic-ratio(X) < minpr, then X must be considered for generating higher order
patterns even though X is not a quasi-periodic-frequent pattern. The reason is that its
supersets can still be quasi-periodic-frequent.

Definition 6. Potential pattern: For a pattern X, if mai(X)≥minpr and S(X)≥minsup,
then X is said to be a potential pattern.

1 In this paper, minsup is discussed in terms of minimum support count.



8 R. Uday Kiran, Masaru Kitsuregawa

A potential pattern containing only one item (1-itemset) is called a potential item. A
potential pattern need not necessarily be a quasi-periodic-frequent. pattern. However,
every quasi-periodic-frequent pattern is a potential pattern. Thus, we use potential pat-
terns to discover the quasi-periodic-frequent patterns.

Issue 2: The conventional (frequent) pattern-growth algorithms that are based on FP-
tree [2] cannot be used to discover these patterns. It is because the structure of FP-
tree captures only the occurrence frequency and disregards the periodic behavior of a
pattern. To capture both frequency and periodic behavior of the patterns, an alternative
pattern-growth algorithm based on a tree structure, called Periodic-Frequent tree (PF-
tree), has been proposed in the literature [3]. The nodes in PF-tree do not maintain the
support count as in FP-tree. Instead, they maintain a list of tids (or a tid-list) in which
the corresponding item has appeared in a database. These tid-lists are later aggregated
to derive the final tid-list of a pattern (i.e., T X for pattern X). A complete search on this
tid-list gives the support and periodic-ratio, which are later used to determine whether
the corresponding pattern is quasi-periodic-frequent or a non-quasi-periodic-frequent
pattern. In other words, the pattern-growth technique has to perform a complete search
on a pattern’s tid-list to determine whether it is quasi-periodic-frequent or a non-quasi-
periodic-frequent pattern.

In very large databases, the tid-list of a pattern can be very long. In such cases, the
task of performing a complete search on a pattern’s tid-list can be a computationally
expensive process. To reduce the computational cost, we introduce another pruning
technique based on the greedy search. The technique is as follows:

Let tX
pos denote the current position in T X . For the user-defined minpr, if

tX
pos > (|T X |− ((|T X |+1)×minpr)) and |IPX | = 0, then X is not a quasi-

periodic-frequent pattern.

The correctness of this technique is shown in Lemma 2.

Lemma 2. Let tX
pos denote the current position in T X . For the user-defined minpr, if

tX
pos > (|T X | − ((|T X |+ 1)×minpr)) and |IPX | = 0, then X is not a quasi-periodic-

frequent pattern.

Proof. The total number of periods for pattern X is (|T X |+ 1) (see Property ?). If a
frequent pattern X is quasi-periodic-frequent, then

pr(X)≥ minpr

=
|IPX |
|PX |

≥ minpr

= |IPX | ≥ |PX |×minpr (2)

Since|PX |= |T X |+1 (Property 1), Equation 2 can be expressed as

= |IPX | ≥ |T X +1|×minpr (3)
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The Equation 3 is possible if and only if

tX
pos ≤ (|T X |− ((|T X |+1)×minpr)) (4)

Therefore, if tX
pos > (|T X |− ((|T X |+1)×minpr) and |IPX |= 0, then X is not a quasi-

periodic-frequent pattern. Hence proved.

Using the above ideas, the proposed QPF-growth approach discovers quasi-periodic-
frequent patterns by constructing a tree structure, called Quasi-Periodic-Frequent tree
(QPF-tree). Now, we discuss the structure of QPF-tree.

4.2 Structure of QPF-tree

The QPF-tree consists of two components: QPF-list and a prefix-tree. QPF-list is a list
with three fields: item (i), support or frequency (s) and number of interesting periods
(ip). The node structure of prefix-tree in QPF-tree is same as the prefix-tree in PF-tree
[3], which is as follows.

The prefix-tree in QPF-tree explicitly maintains the occurrence information for each
transaction in the tree structure by keeping an occurrence transaction-id list, called tid-
list, only at the last node of every transaction. Two types of nodes are maintained in a
QPF-tree: ordinary node and tail-node. The ordinary node is similar to the nodes used
in FP-tree, whereas the latter is the node that represents the last item of any sorted
transaction. The structure of a tail-node is N[t1, t2, · · · , tn], where N is the node’s item
name and ti, i∈ [1,n], (n be the total number of transactions from the root up to the node)
is a transaction-id where item N is the last item. Like the FP-tree [2], each node in a
QPF-tree maintains parent, children, and node traversal pointers. However, irrespective
of the node type, no node in a QPF-tree maintains support count value in it.

The QPF-growth employs the following three steps to discover quasi-periodic-frequent
patterns.

1. Construction of QPF-list to identify potential items
2. Construction of QPF-tree using the potential items
3. Mining quasi-periodic-frequent patterns from QPF-tree

We now discuss each of these steps using the transactional database shown in Fig. 1(a).
Let the user-specified minsup, maxperiod and minpr values be 3, 2 and 0.8, respec-
tively.

4.3 Construction of QPF-list

Let idl be a temporary array that explicitly records the tids of the last occurring transac-
tions of all items in the QPF-list. Let tcur be the tid of current transaction. The QPF-list
is, therefore, maintained according to the process given in Algorithm 1.

In Fig. 2, we show how the QPF-list is populated for the transactional database
shown in Fig. 1(a). With the scan of the first transaction {a,b} (i.e., tcur = 1), the items
‘a’ and ‘b’ in the list are initialized as shown in Fig. 2(a) (lines 4 to 6 in Algorithm 1).
The scan on the next transaction {c,d} with tcur = 2 initializes the items ‘c’ and ‘d’ in
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QPF-list as shown in Fig. 2(b). The scan on next transaction {a,b,e, f} with tcur = 3
initializes QPF-list entries for the items ‘e’ and ‘ f ’ with idl = 3, s = 1 and ip = 0
because tcur >maxperiod (line 6 in Algorithm 1). Also, the {s; ip} and idl values for the
items ‘a’ and ‘b’ are updated to {2;2} and 3, respectively (lines 8 to 11 in Algorithm 1).
The QPF-list resulted after scanning third transaction is shown in Fig. 2(c). The QPF-
list after scanning all ten transactions is given in Fig. 2(d). To reflect the correct number
of interesting periods for each item in the QPF-list, the whole QPF-list is refreshed as
mentioned from lines 16 to 20 in Algorithm 1. The resultant QPF-list is shown in Fig.
2(e). Based on the above discussed ideas, the items ‘e’ and ‘ f ’ are pruned from the
QPF-list because their mai values are less than minpr (lines 22 to 24 in Algorithm 1).
The items ‘a’, ‘b’, ‘c’ and ‘d’ are generated as quasi-periodic-frequent patterns (lines
26 to 28 in Algorithm 1). The items which are not pruned are sorted in descending order
of their support values (line 31 in Algorithm 1). The resultant QPF-list is shown in Fig.
2(f). Let PI be the set of potential items that exist in QPF-list.

a 1 1 1

b 1 1 1

a 1 1 1

b 1 1 1

c 1 1 2

d 1 1 2

a 2 2 3

b 2 2 3

c 1 1 2

d 1 1 2

e 1 0 3

f 1 0 3

a 5 4 10

b 6 5 10

c 4 3 9

d 4 3 9

e 4 2 9

f 3 0 9

a 5 5

b 6 6

c 4 4

d 4 4

e 4 3

f 3 1

a 5 5

b 6 6

c 4 4

d 4 4

(a) (b) (c) (d) (e) (f)

i s ip idl i s ip idl i s ip idl i s ip idl i s ip i s ip

Fig. 2: QPF-list. (a) After scanning first transaction (b) After scanning second transac-
tion (c) After scanning third transaction (d) After scanning entire transactional database
(e) Reflecting correct number of interesting periods (f) compact QPF-list containing
only potential items.

4.4 Construction of QPF-tree

With the second database scan, the QPF-tree is constructed in such a way that it only
contains nodes for items in QPF-list. We use an example to illustrate the construction
of a QPF-tree.

Continuing with the ongoing example, using the FP-tree [2] construction technique,
only the items in QPF list take part in QPF-tree construction. For simplicity of figures,
we do not show the node traversal points in trees; however, they are maintained in a
fashion like FP-tree does. The tree construction starts with inserting the first transaction
{a,b} according to the QPF-list order i.e., {b,a}, as shown in Fig. 3(a). The tail-node
“a : 1” carries the tid of the transaction. Fig. 3(b) shows the QPF-tree generated in the
similar procedure after scanning the second transaction. Fig. 3(c) shows the resultant
QPF-tree generated after scanning every transaction in the database.

Based on the QPF-list population technique and the above example, we have the
following property and lemmas of a QPF-tree. For each transaction t in T , let PI(t) be
the set of potential items in t that exist in QPF-list, i.e., PI(t) = item(t)∩PI, and is
called the potential item projection of t.
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Algorithm 1 QPF-list (T : Transactional database, I: set of items, minsup: minimum
support, maxperiod: maximum period, minpr: minimum periodic-ratio)
1: Let idl be a temporary array that explicitly records the tids of the last occurring transactions

of all items in the QPF-list. Let tcur be the tid of current transaction.
2: for each transaction tcur ∈ T do
3: for each item i in tcur do
4: if tcur is i’s first occurrence then
5: s = 1, idl = tcur;
6: ip = tcur ≤ maxperiod?1 : 0;
7: else
8: if tcur− idl ≤ maxperiod then
9: ip++;

10: end if
11: s++, idl = tcur;
12: end if
13: end for
14: end for
15: /*Measuring correct number of interesting periods.*/
16: for each item i in QPF-list do
17: if |T |− idl ≤ maxperiod then
18: ip++;
19: end if
20: end for
21: /* Identifying potential items in QPF-list. */
22: for each item i in QPF-list do
23: if (s < minsup)||( ip

(minsup+1) < minpr) then
24: remove i from QPF-list;
25: else
26: if ip

(s+1) ≥ minpr then
27: output i as quasi-periodic-frequent item.
28: end if
29: end if
30: end for
31: Sort the remaining (potential) items in the QPF-list in descending order of their support

values. Let PI be the set of potential items.
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Fig. 3: QPF-tree. (a) After scanning first transaction (b) After scanning second transac-
tion and (c) After scanning complete transactional database.

Property 3. A QPF-tree maintains a complete set of all potential item projection for
each transaction in T only once.

Lemma 3. Given a transactional database T , a minsup, a maxperiod and a minpr,
the complete set of all potential item projections of all transactions in T can be derived
from the QPF-tree.

Proof. Based on Property 3, PI(t) of each transaction t is mapped to only one path in
the tree and any path from the root up to a tail-node maintains the complete projection
for exactly n transactions (where n is the total number of entries in the tid-list of the
tail-node).

Lemma 4. The size of a QPF-tree (without the root node) on a transactional database
T for a minsup, a maxperiod and a minpr is bounded by ∑

t∈T
|PI(t)|.

Proof. According to the QPF-tree construction process and Lemma 3, each transaction
t contributes at best on path of the size |PI(t)| to a QPF-tree. Therefore, the total size
contribution of all transactions can be ∑

t∈T
|PI(t)| at best. However, since there are usu-

ally a lot of common prefix patterns among the transactions, the size of a QPF-tree is
normally much smaller than ∑

t∈T
|PI(t)|.

One can assume that the structure of a QPF-tree may not be memory efficient, since
it explicitly maintains tids of each transaction. But, we argue that the QPF-tree achieves
the memory efficiency by keeping such transaction information only at the tail-nodes
and avoiding the support count field at each node. Moreover, keeping the tid infor-
mation in tree can also been found in literature for efficient periodic-frequent pattern
mining [3].

Therefore, the highly compact QPF-tree structure maintains the complete informa-
tion for all periodic-frequent patterns. Once the QPF-tree is constructed, we use an FP-
growth-based pattern growth mining technique to discover the complete set of periodic-
frequent patterns from it.
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4.5 Mining Quasi-Periodic-Frequent Patterns

Even though both of the QPF-tree and FP-tree arrange items in support-descending
order, we cannot directly apply FP-growth mining on a QPF-tree. The reason is that,
QPF-tree does not maintain support count at each node, and it handles the tid-lists at
tail-nodes. Therefore, we devise a pattern growth-based bottom-up mining technique
that can handle the additional features of QPF-tree. The basic operations in mining a
QPF-tree for quasi-periodic-frequent patterns are (i) counting length-1 potential items,
(ii) constructing the prefix-tree for each potential pattern, and (iii) constructing the con-
ditional tree from each prefix-tree. The QPF-list provides the length-1 potential items.
Before discussing the prefix-tree construction process we explore the following impor-
tant property and lemma of a QPF-tree.

Property 4. A tail-node in a QPF-tree maintains the occurrence information for all the
nodes in the path (from that tail-node to the root) at least in the transactions in its
tid-list.

Lemma 5. Let B = {b1,b2, · · · ,bn} be a branch in a QPF-tree where node bn is the
tail-node carrying the tid-list of the path. If the tid-list is pushed-up to node bn−1, then
bn−1 maintains the occurrence information of the path B′ = {b1,b2, · · · ,bn−1} for the
same set of transactions in the tid-list without any loss.

Proof. Based on Property 4, bn maintains the occurrence information of the path B′ at
least in the transactions in its tid-list. Therefore, the same tid-list at node bn−1 exactly
maintains the same transaction information for B′ without any loss.

Using the feature revealed by the above property and lemma, we proceed to con-
struct each prefix-tree starting from the bottom-most item, say i, of the QPF-list. Only
the prefix sub-paths of nodes labeled i in the QPF-tree are accumulated as the prefix-tree
for i, say PTi. Since i is the bottom-most item in the QPF-list, each node labeled i in the
QPF-tree must be a tail-node. While constructing the PTi, based on Property 4 we map
the tid-list of every node of i to all items in the respective path explicitly in a temporary
array (one for each item). It facilitates the support and number of interesting periods’
calculation for each item in the QPF-list of PTi. Moreover, to enable the construction
of the prefix-tree for the next item in the QPF-list, based on Lemma 5 the tid-lists are
pushed-up to respective parent nodes in the original QPF-tree and in PTi as well. All
nodes of i in the QPF-tree and i’s entry in the QPF-list are deleted thereafter. Fig. 4(a)
shows the status of the QPF-tree of Fig. 3(c) after removing the bottom-most item ‘d’.
Besides, the prefix-tree for ‘d’, PTd is shown in Fig. 4(b).

The conditional tree CTi for PTi is constructed by removing the items whose support
is less than minsup or mai value is less than minpr. If the deleted node is a tail-node,
its tid-list is pushed-up to its parent node. Fig. 4(c), for instance, shows the conditional
tree for ‘d’, CTd constructed from the PTd of Fig. 4(b). The contents of the tempo-
rary array for the bottom item ‘ j’ in the QPF-list of CTi represent T i j (i.e., the set
of all tids where items i and j are occurring together). Therefore, it is rather simple
calculation to compute S(i j), mai(i j) and periodic-ratio(i j) from T i j by generating
Pi j. If S(i j) ≥ minsup and periodic-ratio(i j) ≥ minpr, then the pattern “i j” is gen-
erated as a quasi-periodic-frequent pattern with support and periodic-ratio values of
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Fig. 4: Prefix-tree and conditional tree construction with QPF-tree. (a) QPF-tree after
removing item ‘d’ (b) Prefix-tree for ‘d’ and (c) Conditional tree for ‘d’.

S(i j) and periodic-ratio(i j), respectively. The same process of creating prefix-tree and
its corresponding conditional tree is repeated for further extensions of “i j”. Else, if
mai(i j)≥minpr and S(i j)≥minsup, then the above process is still repeated for further
extensions of “i j” even though “i j” is not a quasi-periodic-frequent pattern. The whole
process of mining for each item is repeated until QPF-list 6= /0.

For the transactional database in Fig. 1(a), the quasi-periodic-frequent patterns gen-
erated at minsup = 3, maxperiod = 2 and minpr = 0.8 are shown in Table 1. The above
bottom-up mining technique on support-descending QPF-tree is efficient, because it
shrinks the search space dramatically as the mining process progresses.

Table 1: Quasi-periodic-frequent patterns generated for the transactional database
shown in Fig. 1(a).

S.No. Patterns Support Periodic-ratio S. No. Patterns Support Periodic-ratio
1 {a} 6 0.85 4 {d} 4 0.8
2 {b} 5 0.83 5 {c,d} 4 0.8
3 {c} 4 0.8 6 {a,b} 5 0.83

4.6 Relation Between Frequent, Periodic-Frequent and Quasi-Periodic-Frequent
Patterns

In a transactional database T , let F be the set of frequent patterns generated at minsup=
a. In T , let PF be the set of periodic-frequent patterns generated at minsup = a and
maxprd = b. In T , let QPF be the set of quasi-periodic-frequent patterns generated at
minsup = a, maxperiod = b and minpr = c. The relationship between these patterns is
PF ⊆ QPF ⊆ F . If minpr = 1, then PF = QPF . Else, PF ⊆ QPF .

4.7 Differences between QPF-tree and PF-tree

The prefix-structure of QPF-tree is similar to that of PF-tree. However, the differences
between these two trees are as follows.

1. The list (i.e., PF-list) of PF-tree captures periodicity (maximum period) of a pattern.
The QPF-list of QPF-tree captures the number of interesting periods of a pattern.
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2. The periodic-frequent patterns follow downward closure property. Therefore, only
the periodic-frequent items (or 1-patterns) participate in the construction of PF-
tree. The quasi-periodic-frequent patterns do not follow downward closure prop-
erty. Therefore, potential items participate in the construction of QPF-tree.

3. Mining procedure used for discovering periodic-frequent patterns from PF-tree and
quasi-periodic-frequent patterns from QPF-tree are completely different. The rea-
son is quasi-periodic-frequent patterns do not satisfy downward closure property.

In the next section, we present the experimental results on finding quasi-periodic-
frequent patterns from the QPF-tree.

5 Experimental Results

In this section, we first investigate the interestingness of the quasi-periodic-frequent
patterns with respect to the periodic-frequent patterns. Next, we investigate the com-
pactness (memory requirements) and execution time of QPF-tree on various datasets
with varied minsup, maxperiod and minpr values. Finally, we investigate the scala-
bility of the QPF-tree. All programs are written in C++ and run with Ubuntu on a
2.66 GHz machine with 1 GB memory. The runtime specifies the total execution time,
i.e., CPU and I/Os. The experiments are pursued on synthetic (T 10I4D100K) and real-
world datasets (retail, mushroom and kosarak). The T 10I4D100k dataset is a sparse
dataset containing 1,00,000 transactions and 886 items. The retail dataset [6] is also a
sparse dataset containing 88,162 transactions and 16,470 items. The mushroom dataset
is a dense dataset containing 8,124 transactions and 119 items. The kosarak dataset is
a huge sparse dataset with a large number of distinct items (41,270) and transactions
(990,002). These datasets are widely used in frequent pattern mining literature and are
available at Frequent Itemset MIning (FIMI) repository [7].

5.1 Experiment 1: Interestingness of Quasi-Periodic-Frequent Patterns

In this experiment, we study the interestingness of quasi-periodic-frequent patterns
with reference to the periodic-frequent patterns. Note that at minpr = 1, all the quasi-
periodic-frequent patterns discovered using the proposed model are periodic-frequent
patterns.

The quasi-periodic-frequent patterns generated on the variations of minsup, maxper-
iod and minpr values over several datasets are reported in Table 2. The columns titled
“A” and “B” respectively denote the number of quasi-periodic-frequent patterns and
maximal length of the quasi-periodic-frequent patterns getting generated at different
minsup, maxperiod and minpr values.

The data in the table demonstrate the following. First, increase in minsup (keep-
ing other constraints fixed) decreases the number of quasi-periodic-frequent patterns.
It is because many items fail to satisfy increased minsup constraint. Second, increase
in minpr also decreases the number of quasi-periodic-frequent patterns. The reason is
that many patterns have failed to appear periodically for longer time durations. Third,
increase in maxperiod increases the number of quasi-periodic-frequent patterns. It is
because of the increased interval range in which a pattern should reappear.
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Table 2: Quasi-periodic-frequent patterns generated at different minsup, maxperiod and
minpr values.

Database minsup maxperiod1 = 0.1% maxperiod2 = 0.5%
minpr=0.5 minpr=0.75 minpr=1 minpr=0.5 minpr=0.75 minpr=1

A B A B A B A B A B A B
T10I4D100k 0.1% 624 5 272 1 0 0 20748 10 6360 8 229 2

1.0% 385 3 272 1 0 0 385 3 385 3 229 2
Retail 0.1% 837 5 293 5 4 2 5849 5 2177 5 15 3

1.0% 159 4 102 4 4 2 159 4 159 4 15 3
Mushroom 10% 574,431 16 570,929 16 15 4 574,431 16 574,431 16 135 6

20% 53,583 15 53,583 15 15 4 53,583 15 53,583 15 135 6

In Table 2, it can be observed that at minpr = 1, the number of quasi-periodic-
frequent patterns (or periodic-frequent patterns) getting generated in different datasets
(especially in sparse datasets) are very few, and also the maximal length of these pat-
terns is very less. Whereas, by relaxing the minpr, we are able to generate more number
of quasi-periodic-frequent patterns, and more importantly, the maximal length of the
patterns is relatively large. This shows that relaxing the periodic occurrences of a pat-
tern throughout a database, facilitates the user to find interesting knowledge pertaining
to the patterns that are “mostly” occurring periodically in the database.

5.2 Experiment 2: Compactness and Execution Time of the QPF-tree

The memory consumptions of QPF-tree on the variations of minsup, maxperiod and
minpr values over several datasets are reported in Table 3. It can be observed that similar
observations that are drawn from Experiment 1 can also be observed with respect to the
memory requirements of QPF-tree. The reason is that memory requirements of QPF-
tree depends on the number of quasi-periodic-frequent patterns getting generated. More
importantly, it is clear from the Table 3 that, the structure of QPF-tree can easily be
handled in a memory efficient manner irrespective of the dataset type (dense or sparse)
or size (large or small) and threshold values.

Table 3: Memory requirements for the QPF-tree. Memory is measured in MB.
Dataset minsup maxperiod1 = 0.1% maxperiod2 = 0.5%

minpr=0.5 minpr=0.75 minpr=1 minpr=0.5 minpr=0.75 minpr=1
T10I4D100k 0.1% 11.077 10.975 10.828 11.226 11.197 11.179

1.0% 8.255 7.820 6.656 8.255 8.255 8.255
Retail 0.1% 4.908 4.193 3.542 6.914 6.254 5.578

1.0% 1.060 0.942 0.789 1.060 1.060 1.051
Mushroom 10% 0.250 0.250 0.235 0.250 0.250 0.250

20% 0.131 0.131 0.122 0.131 0.131 0.127
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The runtime taken by QPF-growth for generating quasi-periodic-frequent patterns at
different minsup, maxperiod and minpr values on various datasets are shown in Table
4. The runtime encompasses all phases of QPF-list and QPF-tree constructions, and
the corresponding mining operation. The runtime taken for generating quasi-periodic-
frequent patterns depends upon the number of quasi-periodic-frequent patterns getting
generated. Therefore, similar observations that were drawn in Experiment 1 can also be
drawn from Table 4.

Table 4: Runtime requirements for the QPF-tree. Runtime is measured in seconds.
Dataset minsup maxperiod1 = 0.1% maxperiod2 = 0.5%

minpr=0.5 minpr=0.75 minpr=1 minpr=0.5 minpr=0.75 minpr=1
T10I4D100k 0.1% 120.533 124.766 128.057 105.951 110.085 113.957

1.0% 109.257 102.138 83.009 112.400 107.000 112.604
Retail 0.1% 43.780 35.982 30.527 67.782 58.759 50.289

1.0% 15.441 15.182 14.352 15.780 15.909 15.894
Mushroom 10% 20.580 20.180 16.510 20.320 20.270 18.860

20% 2.920 2.790 2.780 2.930 3.000 2.740

5.3 Experiment 3: Scalability of QPF-tree

We study the scalability of our QPF-tree on execution time and required memory by
varying the number of transactions in database. We use real kosarak dataset for the
scalability experiment, since it is a huge sparse dataset. We divided the dataset into five
portions of 0.2 million transactions in each part. Then we investigated the performance
of QPF-tree after accumulating each portion with previous parts and performing quasi-
periodic-frequent pattern mining each time. We fix the minsup = 2%, maxperiod =
50% and minpr = 0.75 for each experiment. The experimental results are shown in
Fig. 5. The time and memory in y-axes of the left and right graphs in Fig. 5 respectively
specify the total execution time and required memory with the increase of database size.
It is clear from the graphs that as the database size increases, overall tree construction
and mining time, and memory requirement increases. However, QPF-tree shows stable
performance of about linear increase in runtime and memory consumption with respect
to the database size. Therefore, it can be observed from the scalability test that QPF-
tree can mine quasi-periodic-frequent patterns over large datasets and distinct items
with considerable amount of runtime and memory.

6 Conclusion and Future Work

In this paper, we explored the notion “patterns that are mostly appearing periodically in
a database are interesting,” and introduced a new class of user-interest-based frequent
patterns, called quasi-periodic-frequent patterns. This paper proposes a more flexible
and powerful model. It facilitates the user to specify the minimum proportion in which
a pattern should appear periodically throughout the database. This model enables the
user to find periodically occurring patterns in the databases of longer time duration.
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Fig. 5: Scalability of QPF-tree. (a) Runtime (b) Memory

Also, an efficient pattern-growth approach (i.e., QPF-growth) was proposed to mine
these patterns. The quasi-periodic-frequent patterns do not follow downward closure
property. Therefore, the proposed QPF-growth approach uses the introduced heuris-
tic (mai) to minimize the search space. The experimental results from synthetic and
real-world databases, demonstrate that quasi-periodic patterns can provide useful in-
formation. Experimental results also demonstrate that our QPF-growth can be time and
memory efficient during mining the quasi-periodic-frequent patterns, and is highly scal-
able in terms of runtime and memory consumption.

As a part of future work, we have to investigate the mining of quasi-periodic-
frequent patterns consisting of rare items.
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