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ABSTRACT
Coverage pattern mining is an important model in data min-
ing. It provides useful information pertaining to the sets of
items that have coverage interesting to the users in a trans-
actional database. The coverage patterns do not satisfy the
anti-monotonic property. This increases the search space
in the itemset lattice, which in turn increases the computa-
tional cost of mining these patterns. An Apriori-like algo-
rithm known as CMine has been proposed in the literature
to discover the patterns. It uses a pruning technique to re-
duce the search space. We have observed that there exists
further scope for reducing the search space effectively. In
this paper, we theoretically analyze different measures used
in the pattern model and introduce a novel pruning tech-
nique to reduce the search space. Furthermore, we extend
this technique to CMine to improve its performance. We
call the algorithm as CMine++. Experimental results show
that the proposed algorithm is efficient.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining.

General Terms
Algorithms

Keywords
Data mining, knowledge discovery, coverage set and pattern
mining.

1. INTRODUCTION
Coverage patterns (or itemsets) are an important class of
regularities that exist in a database. In many real-world
applications, they provide useful information pertaining to
the sets of items that have coverage interesting to the users
in a database [1, 2]. The model of coverage patterns is as
follows.
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Let I = {i1, i2, · · · , in} be the set of items. A transaction
t = (tid, Y ) is a tuple, where tid represents a transactional-
id and Y ⊆ I is a pattern (or an itemset). A pattern
that contains k items is known as a k-pattern. A transac-
tional database DB over I is a set of transactions such that
T = {t1, t2, · · · , tm}, where m represents the total number
of transactions. Let TIDDB = {1, 2, · · · ,m} be the set of
all tids in the database. If an item (or 1-pattern) ij ⊆ Y ,
1 ≤ j ≤ n, then it is said that ij occurs in Y or Y con-

tains ij and such tid is denoted as tid
ij
k , k ≤ m. Therefore,

TIDij = {tidijp , · · · , tidijq }, 1 ≤ p ≤ q ≤ m, be the set of tids
in which ij occurs inDB. The relative frequency of ij inDB,

denoted as RF (ij) =
|TID

ij |
|TIDDB | , where |TID

ij | and |TIDDB |
denote the total number of transactions containing ij in DB
and database size, respectively. An item ij ∈ I is said to
be a frequent item if RF (ij) ≥ minRF , where minRF
is the user-defined minimum relative frequency threshold.
Let X = {ip, iq, · · · , ir} ⊆ I, 1 ≤ p ≤ q ≤ r ≤ n, be
an itemset (or a pattern). A pattern containing k number
of items is called a k-pattern. The coverage set of a pat-
tern X, denoted as TIDX , represents the set of distinct
TIDs containing an item ij ∈ X in DB. That is, TIDX =
{TIDip ∪ TIDiq ∪ · · · ∪ TIDir}. In a pattern X, if items
are ordered in descending order of their relatively frequen-
cies, i.e., RF (ip) ≥ RF (iq) ≥ · · · ≥ RF (ir), then its overlap
ratio, denoted as OR(X), is the ratio of number of transac-
tions common in X−ir and ir to the number of transactions

in ir. That is, OR(X) = |TIDX−ir∩TIDir |
|TIDir | . A pattern X is

said to be a non-overlap pattern if ∀ij ∈ X, RF (ij) ≥
minRF and OR(X) ≤ maxOR, where maxOR is the user-
defined maximum overlap ratio. The coverage-support of a
pattern X, denoted as CS(X), represents the ratio of the
size of coverage set of X to the database size. That is,

CS(X) = |TIDX |
|TIDDB | . A pattern X is said to be a coverage

pattern if ∀ij ∈ X, RF (ij) ≥ minRF , OR(X) ≤ maxOR
and CS(X) ≥ minCS, where minCS is the user-defined
minimum coverage support.

Table 1: Transactional database.
TID Items TID Items
1 abcf 6 bdg
2 acef 7 bd
3 aceg 8 beg
4 acd 9 beh
5 bdf 10 abh

Example 1. Consider the transactional database shown
in Table 1. It contains 10 transactions and the set of items,



I = {a, b, c, d, e, f, g, h}. The set of all tids in the database,
i.e., TIDDB = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The TIDs con-
taining the item ‘a’ are 1, 2, 3, 4 and 10. Therefore, TIDa =

{1, 2, 3, 4, 10} and RF (a) = |TIDa|
|TIDDB | =

4
10

= 0.4. Similarly,

for the item ‘b’, TIDb = {1, 5, 6, 7, 8, 9, 10} and RF (b) =
0.7. If the user-defined minRF = 0.4, then both ‘a’ and
‘b’ are frequent items. The set of items ‘b’ and ‘a’, i.e.,
{b, a} is a pattern. For the simplicity purpose, we repre-
sent this pattern as ‘ba’. It is a 2-pattern because it has
only two items. The coverage set of ‘ba’, i.e., TIDba =
TIDb ∪ TIDa = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The overlap ra-

tio of ‘ba’, i.e., OR(ba) = |TIDb∩TIDa|
|TIDa| = 2

5
= 0.4. If

the user-defined maxOR = 0.5, then it is a non-overlap
pattern because RF (b) ≥ minRF , RF (a) ≥ minRF and
OR(ba) ≤ maxOR. The coverage support of ‘ba’, CS(ba) =
|TIDba|
|TIDDB | = |{1,2,3,4,5,6,7,8,9,10}|

|{1,2,3,4,5,6,7,8,9,10}| = 1. If the user-defined

minCS = 0.7, then the non-overlap pattern ‘ba’ is a cov-
erage pattern as CS(ab) ≥ minCS. Please note that we
will be using the same threshold values to illustrate different
concepts that were discussed in later parts of this paper.

The problem definition of coverage patterns is as follows.
Given the transactional database (DB), set of items (I)
and the user-defined minimum relative frequency (minRF ),
maximum overlap ratio (maxOR) and minimum coverage
support (minCS) thresholds, discover the complete set of
coverage patterns that satisfy the minRF , maxOR and
minCS thresholds.

The coverage patterns do not satisfy the anti-monotonic
property [1]. That is, all non-empty subsets of a cover-
age pattern may not be coverage patterns. This increases
the search space in the itemset lattice, which in turn in-
creases the computational cost of mining the patterns. An
Apriori-based Granular Computational Technique (Apriori-
GCT) algorithm [3, 4] known as CMine has been introduced
to discover the complete set of coverage patterns [2]. It uses
a pruning technique to reduce the search space and com-
putational cost of mining the patterns. We have observed
that there exists further scope for reducing the search space
effectively.

With this motivation, this paper makes an effort to discover
the patterns effectively. To reduce the search space, this
paper introduces a novel pruning technique by theoretically
analyzing the relationship between the relative frequency,
overlap ratio and coverage measures. We also extend the
proposed technique to improve the performance of CMine.
We call the algorithm as CMine++. By conducting experi-
ments on different datasets, we show that CMine++ is effi-
cient than CMine.

The rest of this paper is organized as follows. Section 2
describes the working of CMine. Section 3 describes the
performance issue of CMine and introduces the proposed
CMine++ algorithm. Section 4 reports the experimental
results conducted on CMine and CMine++ algorithms. Fi-
nally, we conclude the paper with future research directions.

2. THE CMINE ALGORITHM
CMine is an Apriori-like algorithm [3] to discover the cover-
age patterns. Since the coverage patterns do not satisfy the

anti-monotonic property, it follows a slightly different ap-
proach (as compared with Apriori) to discover the patterns.
The approach is based on the following pruning technique
to reduce the search space.

“If X is a coverage pattern, then ∃Y ⊂ X such
that |Y | = |X| − 1 and OR(Y ) ≤ maxOR.”

The working of CMine using this pruning technique is as
follows: Discover the set of coverage k-patterns (denoted as
Lk) and non-overlap k-patterns (denoted as NOk) from the
set of candidate k-patterns (denoted as Ck). Next, generate
Ck+1 by performing NOk 1 NOk. Repeat this process until
NOk = ∅ or no more candidate patterns can be generated.

A performance problem of an Apriori-like algorithm is that
it requires multiple scans on the database. To confront this
problem, granular computational technique (GCT) was pro-
posed in [4]. The CMine employs GCT to discover the
patterns with a single scan on the database. It is as fol-
lows. The bit string of a pattern X, denoted as BX =
{Bip ∨Biq ∨ · · · ∨Bir}, records the information pertaining
to the occurrence of an ij ∈ X in distinct transactions of a
database. Each bit b ∈ BX uniquely represents a transac-
tion in the database. If an item ij ∈ X occurs in a transac-
tion, the corresponding bit is represented as 1, otherwise it
is represented as 0. The relative frequency of an item ij ∈ I,

i.e., RF (ij) =
card(B

ij )
|DB| . Similarly, CS(X) = card(BX )

|DB| and

OR(X) = card(BX−ir∧Bir )

card(Bir )
. Figure 1 shows the step-by-step

working of CMine using GCT.
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Figure 1: The working of CMine algorithm on Table
1. The term ‘I’ is an acronym for pattern.

3. PROPOSED ALGORITHM
In this section, we first describe the performance problem
of CMine. Next, we introduce the basic idea and proposed
CMine++ algorithm.

3.1 The Performance Issue of CMine
The pruning technique of CMine uses all non-overlap (k−1)-
patterns to generate candidate k-patterns. Unfortunately



this technique is not efficient because some of the non-overlap
(k − 1)-patterns can never generate a coverage k-pattern.

Example 2: Since the coverage support of ‘ba’ is
1 (see Figure 1), it is straight forward to show that
the overlap ratio of all its supersets will be equal to 1,
which is more than the user-defined maxOR thresh-
old. In other words, any superset of ‘ba’ will never
be a coverage pattern, and therefore, it should not be
considered for generating candidate 3-patterns. The
CMine algorithm considers ‘ba’ for generating candi-
date 3-patterns (see Figure 1). Therefore, the pruning
technique of CMine is not efficient.

3.2 Basic Idea: Potential Coverage Patterns
We propose the following technique to prune those non-
overlap (k− 1)-patterns that cannot generate coverage pat-
terns at higher-order.

“If X is a coverage pattern, then X − ir must be
non-overlap pattern (i.e., OR(X − ir) ≤ maxOR)
with CS(X − ir) ≤ 1− (maxOR×minRF ).”

The correctness of the technique is shown in Lemma 2. Now,
we introduce the following concept using this technique.

Definition 1. (Potential coverage pattern.) A pat-
tern X is said to be a potential coverage pattern if

CS(X) ≤ 1− (maxOR×minRF ),

OR(X) ≤ maxOR and

∀ij ∈ X,RF (ij) ≥ minRF.

The potential coverage patterns satisfy the convertible anti-
monotonic property [5] (see Definition 2). The correctness
is straight forward to prove from Property 1. Pei et al [5]
have theoretically shown that this property is same as the
anti-monotonic property if the items within a pattern are
considered as an ordered set with respect to their relative
supports. As a result, mining coverage patterns using po-
tential coverage patterns is no more a computationally ex-
pensive process.

Lemma 2. If X is a coverage pattern, then CS(X− ir) ≤
1− (maxOR×minRF ).

Proof. IfX is a coverage pattern, then |TIDX−ir∩TIDir |
|TIDir | ≤

maxOR. That is,

= |TIDX−ir ∩ TIDir | ≤ maxOR× |TIDir |. (1)

Since TIDX−ir ⊆ TIDDB , Equation 1 is possible if and
only if

|TIDX−ir | ≤ |TIDDB | −maxOR× |TIDir |

=
|TIDX−ir |
|TIDDB | ≤ |TIDDB |

|TIDDB | −
maxOR× |TIDir |

|TIDDB |
= CS(X − ir) ≤ 1− (maxOR×RF (ir)). (2)

According to the definition of coverage pattern, it turns out
that RF (ir) ≥ minRF . Therefore, Equation 2 can also
be expressed as CS(X − ir) ≤ 1 − (maxOR × minRF ) ≤
1− (maxOR×RF (ir)). Hence proved.

Definition 2. (The convertible anti-monotonic prop-
erty of a potential coverage pattern.) Let X = {i1, i2,-
· · · , ik}, k ≥ 2, be a sorted potential coverage k-pattern
such that RF (i1) ≥ RF (i2) ≥ · · · ≥ RF (ik) ≥ minRF . If
OR(X) ≤ maxOR and CS(X) ≤ 1− (maxOR ×minRF ),
then ∀Y ⊂ X, |Y | > 1 and ik ∈ Y , OR(Y ) ≤ maxOR and
CS(Y ) ≤ 1− (maxOR×minRF ).

Property 1. If X ⊃ Y , then TIDX ⊇ TIDY .

3.3 The CMine++ Algorithm
We extend the above pruning technique to improve the per-
formance of CMine. We call the algorithm as CMine++.
The level-wise search of CMine++ is as follows: Discover
the set of coverage k-patterns (denoted as Lk) and potential
coverage k-patterns (denoted as PCk) from the set of can-
didate k-patterns (denoted as Ck). Next, generate Ck+1 by
performing PCk 1 PCk. Repeat this process until PCk = ∅
or no more candidate patterns can be generated.

The CMine++ algorithm is shown in Algorithm 1, and de-
scribed as follows: Line 1 performs the database scan and
constructs a bit string for every candidate 1-pattern in C1.
Line 2 and 3 discover the set of coverage 1-patterns (L1)
and potential coverage 1-patterns (PC1), respectively. Line
4 sorts PC1 in ascending order of their relative frequencies.
Lines 5 to 10 are used to generate Ck in order to find Lk

and PCk for k ≥ 2. Figure 2 shows the step-by-step work-
ing of CMine++ algorithm. It can be observed that the
non-overlap 2-patterns, ‘ba,’ ‘bc’ and ‘be,’ which are consid-
ered by CMine to generate candidate 3-patterns (see Figure
1) have not been considered by CMine++ to perform the
same.

Algorithm 1 CMine++ (DB: database, minRF : mini-
mum relative frequency, maxOR: maximum overlap ratio,
minCS: minimum coverage support)

1: Scan the database, DB, and generate the set of can-
didate 1-patterns, C1. Simultaneously, generate the bit
string for every c ∈ C1. Let B(c) denote the bit string of
c ∈ C1. Let RF denote the relative frequency of c ∈ C1

such that RF (c) = card(B(c))
|DB| . Sort C1 in ascending or-

der of their relative frequencies.
2: L1 = {< c > |c ∈ C1, RF (c) ≥ max(minRF,minCS)};
3: PC1 = {< c > |c ∈ C1, RF (c) ≥ minRF};
4: Sort items in PC1 in ascending order of their relative

frequencies. That is, Sort(PC1);
5: for k = 2, PCk−1 ̸= ∅, k ++ do
6: Ck = candidateGen(PCk−1);
7: For each c ∈ Ck, construct bit string Bc =

{
∪

Bij |∀ij ∈ c} and measure its coverage support
(CS(c)) and overlap ratio (OR(c)).

8: Lk = {< c > |c ∈ Ck, CS(c) ≥ minCS and OR(c) ≤
maxOR};

9: PCk = {< c > |c ∈ Ck, OR(c) ≤
maxOR and CS(C) ≤ 1− (maxOR×minRF )};

10: end for

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of CMine and
CMine++ algorithms using synthetic and real-world datasets.
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Figure 2: Working of CMine++ algorithm.
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Figure 3: The number of coverage patterns discov-
ered in different datasets.

Both algorithms are written in Java and run with Ubuntu
on a 2.66 GHz machine with 2GB memory. The exper-
iments were pursued on the following datasets: (i) The
T10I4D100K [3] is a sparse synthetic dataset containing
100,000 transactions and 941 distinct items. (ii) The Mush-
room dataset is a dense real-world dataset containing 8,124
transactions and 119 distinct items. The datasets are avail-
able at Frequent Itemset MIning repository (http://fimi.
ua.ac.be/data/).

4.1 Generation of Coverage Patterns
Figure 3(a) and (b) show the number of coverage patterns
discovered in T10I4D100K and Mushroom datasets by vary-
ing minCS and maxOR thresholds. The minRF threshold
in T10I4D100K and Mushroom datasets were set at 0.003
and 0.001, respectively. The following observations can be
drawn from these figures: (i) At a fixedminRF andmaxOR
thresholds, increase in minCS threshold has decreased the
number of coverage patterns. The reason is as follows. To
satisfy a high minCS threshold, a pattern has to increase its
coverage support by combining with other items. However,
such an approach also increases the overlap ratio. As a re-
sult, although many supersets of a pattern were able to satisfy
the minCS threshold, they fail to have overlap ratio within
the maxOR threshold. (ii) At a fixed minRF and minCS
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Figure 4: The runtime comparison of CMine and
CMine++ algorithms.

thresholds, increase in maxOR has increased the number of
coverage patterns. It is because many patterns were able to
satisfy a minCS threshold with increase in maxOR.

4.2 Runtime Comparison the Algorithms
Figure 4 (a) and (b) show the runtime (in milli seconds) con-
sumed by CMine and CMine++ algorithms in T10I4D100K
and Mushroom datasets by varying minCS threshold. The
changes on the minCS threshold show the similar effect on
runtime for both CMine and CMine++ algorithms as of
the generation of coverage patterns. More important, the
CMine++ algorithm has taken relatively less runtime than
the CMine algorithm irrespective of the minCS threshold
and dataset type (i.e., sparse or dense).

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have made an effort to reduce the search
space and computational cost of mining the coverage pat-
terns which do not satisfy the anti-monotonic property. In
particular, we have introduced a pruning technique by ex-
ploiting the relationship between the minRF , maxOR and
minCS thresholds and proposed an Apriori-like algorithm
known as CMine++. The experimental results on both syn-
thetic and real-world datasets have shown that the CMine++
is efficient.

As a part of future work, we would like to investigate the
pattern-growth-like algorithms to discover the coverage pat-
terns effectively.

6. REFERENCES
[1] Sripada, B., Reddy, P. K., Kiran, R. U.: Coverage

patterns for efficient banner advertisement placement.
In: WWW Companion Volume, pp. 131–132 (2011)

[2] Srinivas, P. G., Reddy, P. K., Sripada, B., Kiran, R. U.,
Kumar, D. S.: Discovering Coverage Patterns for
Banner Advertisement Placement. In: PAKDD (2)
2012, pp. 133–144 (2012)

[3] Agrawal, R., Srikant, R.: Fast Algorithms for Mining
Association Rules in Large Databases. In: VLDB, pp.
487–499 1994)

[4] Lin, T.Y. and Xiaohua Hu and Louie, E.: A Fast
Association Rule Algorithm based on Bitmap and
Granular Computing. In: 12th IEEE International
Conference on Fuzzy Systems, pp. 678–683 (2003)

[5] Pei, J., Han, J.: Constrainted Frequent Pattern Mining:
A Pattern-Growth View. SIGKDD Explor. Newsl. Vol.
4, No. 1, pp. 31–39 (2002).


