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Abstract. Correlated patterns are an important class of regularities that exist
in a database. The all-con f idence measure has been widely used to discover
the patterns in real-world applications. This paper theoretically analyzes the all-
confidence measure, and shows that, although the measure satisfies the null-
invariant property, mining correlated patterns involving both frequent and rare
items with a single minimum all-confidence (minAllCon f ) threshold value causes
the “rare item problem” if the items’ frequencies in a database vary widely. The
problem involves either finding very short length correlated patterns involving
rare items at a high minAllCon f threshold, or generating a huge number of pat-
terns at a low minAllCon f threshold. The cause for the problem is that the sin-
gle minAllCon f threshold was not sufficient to capture the items’ frequencies
in a database effectively. The paper also introduces an alternative model of cor-
related patterns using the concept of multiple minAllCon f thresholds. The pro-
posed model facilitates the user to specify a different minAllCon f threshold for
each pattern to reflect the varied frequencies of items within it. Experiment results
show that the proposed model is very effective.

Keywords: Knowledge discovery, frequent patterns, correlated patterns and rare
item problem.

1 Introduction

1.1 Background and Related Work

Mining frequent patterns (or itemsets) [1] from transactional databases has been actively
and widely studied in data mining. In the basic model, a pattern is said to be frequent if it
satisfies the user-defined minimum support (minSup) threshold. The minSup threshold
controls the minimum number of transactions that a pattern must cover in a transac-
tional database. Since only a single minSup threshold is used for the entire database,
the model implicitly assumes that all items within a database have uniform frequencies.
However, this is often not the case in many real-world applications. In many applica-
tions, some items appear very frequently in the data, while others rarely appear. If the
items’ frequencies vary a great deal, mining frequent patterns with a single minSup
threshold leads to the dilemma known as the rare item problem [2]. It involves either
completely missing of frequent patterns involving rare items at a high minSup threshold
or generating too many patterns at a low minSup threshold.
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To confront the rare item problem in applications, alternative interestingness mea-
sures have been discussed in the literature [3, 4]. Each measure has a selection bias that
justifies the significance of a knowledge pattern. As a result, there exists no universally
acceptable best measure to judge the interestingness of a pattern for any given dataset or
application. Researchers are making efforts to suggest a right measure depending upon
the user and/or application requirements [5–7].

Recently, all-confidence is emerging as a measure that can disclose true correla-
tion relationships among the items within a pattern [8, 9]. The two key reasons for its
popular adoption are anti-monotonic and null-invariant properties. The former prop-
erty facilitates in the reduction of search space as all non-empty subsets of a correlated
pattern must also be correlated. The latter property facilitates to disclose genuine cor-
relation relationships without being influenced by the object co-absence in a database.
The basic model of correlated patterns is as follows [10].

Let I = {i1, i2, · · · , in} be a set of items, and DB be a database that consists of a
set of transactions. Each transaction T contains a set of items such that T ⊆ I. Each
transaction is associated with an identifier, called T ID. Let X ⊆ I be a set of items,
referred as an itemset or a pattern. A pattern that contains k items is a k-pattern. A
transaction T is said to contain X if and only if X ⊆ T . The support of a pattern X in
DB, denoted as S(X), is the number of transactions in DB containing X . The pattern X is
said to be frequent if it occurs no less frequent than the user-defined minimum support
(minSup) threshold, i.e., S(X)≥ minSup. The all-confidence of a pattern X , denoted as
all-conf(X), can be expressed as the ratio of its support to the maximum support of an

item within it. That is, all-con f (X) =
S(X)

max{S(i j)|∀ i j ∈ X}
.

Definition 1. (The correlated pattern X .) The pattern X is said to be all-confident or
associated or correlated if

S(X) ≥ minSup

and
S(X)

max(S(i j)|∀i j ∈ X)
≥ minAllCon f . (1)

Where, minAllConf is the user-defined minimum all-confidence threshold value. The
minSup threshold controls the minimum number of transactions a pattern must cover in
a database. The minAllCon f threshold controls the minimum number of transactions a
pattern must cover with respect to its items’ frequencies in a database.

Table 1: Transactional database.
TID ITEMS TID ITEMS TID ITEMS TID ITEMS TID ITEMS
1 a, b 5 c, d 9 c, d, g 13 a, b, e 17 c, d
2 a, b, e 6 a, c 10 a, b 14 b, e, f, g 18 a, c
3 c, d 7 a, b 11 a, b 15 c, d 19 a, b, h
4 e, f 8 e, f 12 a, c, f 16 a, b 20 c, d, f



Discovering Correlated Patterns With Multiple Minimum All-Confidence Values 3

Example 1. Consider the transactional database of 20 transactions shown in Table 1.
The set of items I = {a, b, c, d, e, f , g, h}. The set of items a and b, i.e., {a, b}
is a pattern. It is a 2-pattern. For simplicity, we write this pattern as “ab”. It occurs
in 8 transactions (tids of 1,2,7,10,11,13,16 and 19). Therefore, the support of “ab,”
i.e., S(ab) = 8. If the user-specified minSup = 3, then “ab” is a frequent pattern because
S(ab)≥minSup. The all-confidence of “ab”, i.e., all-conf (ab) = 8

max(11,9) = 0.72. If the
user-specified minAllCon f = 0.63, then “ab” is a correlated pattern because S(ab) ≥
minSup and all-conf (ab)≥ minAllCon f .

1.2 Motivation

A pattern-growth algorithm known as CoMine has been proposed in [10] to discover
the complete set of correlated patterns. We introduced the concept of items’ support in-
tervals and proposed an improved CoMine algorithm known as CoMine++ [11]. While
testing the performance of our algorithm on various datasets, we have observed that
although the null-invariant property of all-confidence facilitates the effective discov-
ery of correlated patterns involving both frequent and rare items, the usage of a single
minAllCon f threshold for the entire database confines the effective discovery of cor-
related patterns involving both frequent and rare items to the databases in which the
items’ frequencies do not vary widely. If the items’ frequencies in the database vary
widely, then mining correlated patterns with a single minAllCon f threshold can lead to
the following problems:

– At a high minAllCon f threshold, many discovered correlated patterns involving
rare items can have very short length. Most of them were singleton patterns as they
always have all-con f = 1.

– In order to discover long correlated patterns involving rare items, we have to set
low minAllCon f threshold. However, it causes combinatorial explosion producing
too many correlated patterns.

We call this dilemma as the “rare item problem”. In this paper, we analyze the all-
confidence measure, introduce concepts to describe the problem and propose a gener-
alized correlated pattern model to address the problem.

1.3 Contributions of this Paper

i. In this paper, we theoretically analyze the all-confidence measure and show that
mining correlated patterns involving both frequent and rare items with a single
minAllCon f leads to the rare item problem.

ii. We describe the reason for the problem by using the concepts known as items’
support intervals and cutoff-item-supports.

iii. We also propose a technique to confront the problem. The technique is based
on the notion of multiple constraints, where each pattern can satisfy a different
minAllCon f value depending upon the frequencies of items within itself.

iv. By conducting experiments on various datasets, we show that the proposed tech-
nique can discover interesting correlated patterns involving both frequent and rare
items without generating a huge number of meaningless correlated patterns.
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1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the rare item prob-
lem in the correlated pattern model. Section 3 describes the proposed model. Section 4
presents the experimental evaluations of basic and proposed models. Finally, Section 5
concludes the paper with future research directions.

2 The Rare Item Problem in Correlated Pattern Mining

In this section, we first introduce the concepts “items’ support intervals” and “cutoff-
item-support.” These two concepts facilitate us to understand the problem, which is
discussed subsequently.

2.1 Items’ Support Intervals

The concept of items’ support intervals was introduced in [11]. It says that every item
can generate correlated patterns of higher-order by combining with only those items that
have support within a specific interval. For the user-defined minAllCon f and minSup
thresholds, the support interval of an item i j ∈ I ismax

(
S(i j)×minAllCon f ,

minSup

)
, max

 S(i j)

minAllCon f
,

minSup

. The correctness is given in

[11]. The support interval width of items plays a key role in correlated pattern mining.
It defines the range of items’ frequencies with which an item can combine to generate
correlated patterns of higher-order.

Example 2. The support of f in Table 1 is 5. If minAllCon f = 0.63 and minSup = 3,
then the item ‘ f ’ can generate correlated patterns of higher order by combining with
only those items that have support in the range of [3, 8] (= [max(5×0.63,3),max( 5

0.63 ,3)]).

If the support interval width of an item is large, then it can combine with wide range
of items’ supports to generate correlated patterns of higher order. If the support interval
width of an item is relatively small, then it can combine with only a small range of
items’ supports to generate correlated patterns of higher order.

2.2 Cutoff-item-support

The concept of items’ support intervals alone is not sufficient to describe the rare item
problem. Therefore, we introduce another concept, called cutoff-item-support, to de-
scribe the problem. It is as follows.

From the definition of correlated pattern (see Equation 1), it turns out that if X is a
correlated pattern, then

S(X)≥ max(max(S(i j)|∀i j ∈ X)×minAllCon f ,minSup) (2)

Based on Equation 2, we introduce the following definition.
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Definition 2. (Cutoff-item-Support of an item.) The cutoff-item-support (CIS) for an
item i j ∈ I, denoted as CIS(i j), is the minimum support a pattern X ∋ i j must have to
be a correlated pattern. It is equal to the maximum of minSup and product between its
support and minAllCon f . That is, CIS(i j) = max(minSup, S(i j)×minAllCon f ).

Example 3. The support of ‘a’ in Table 1 is 11. If the user-specified minSup = 3 and
minAllCon f = 0.63, then the CIS of ‘a’, denoted as CIS(a) = 7 (≃ max(3, 0.63×11)).
It means any pattern containing ‘a’ must have support no less than 7 to be a correlated
pattern. Similarly, the CIS values of ‘b’, ‘c’, ‘d’, ‘e’, ‘ f ’, ‘g’ and ‘h’ are 6, 6, 4, 3, 3, 3
and 3, respectively.

The CIS of an item plays a key role in correlated pattern mining. If the items have
their CIS values very close to their supports, then it is difficult to expect long patterns
containing those items (due to the apriori property [1]). If the items have their CIS
values very far away from their supports, then it is possible to discover long patterns
involving those items. However, this can cause combinatorial explosion, producing too
many patterns as the items can combine with one another in all possible ways. Thus,
while specifying the minAllCon f and minSup thresholds, we have to take care that
items’ CIS values are neither too close nor too far away from their respective supports.

Definition 3. (Redefinition of a correlated pattern using items’ CIS values.) A pattern
X is said to be correlated if its support is no less than the maximum CIS value of all
its items. That is, if X is a correlated pattern satisfying the user-defined minSup and
minAllCon f thresholds, then S(X)≥ max(CIS(i j)|∀i j ∈ X).

Since the CIS of an item i j ∈ X , i.e., CIS(i j) = max(S(i j)×minAllCon f , minSup), the
correctness of the above definition is straight forward to prove from Equation 2.

2.3 The Problem

When we use a single minAllCon f threshold value to mine correlated patterns, then:

– The support interval width of items do not remain uniform. Instead it decreases
from frequent items to (less frequent or) rare items (see Property 1). It is illustrated
in Example 4.

Example 4. In Table 1, the item ‘a’ appears more frequently than the item ‘d’. If
the user-defined minSup = 3 and minAllCon f = 0.63, then the support intervals
for ‘a’ and ‘d’ are [7,17] and [6,14], respectively. It can be observed that the sup-
port interval width of ‘a’ is 10, while for ‘ f ’ is only 8. Thus, the support interval
decreases from frequent to rare items.

Thus, the usage of a single minAllCon f threshold facilitates only the frequent items
to combine with wide range of items’ supports.

– The difference (or gap) between the items’ support and corresponding CIS values
do not remain uniform. Instead, it decreases from frequent to rare items (see Prop-
erty 2).
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Example 5. Continuing with Example 3, it can be observed that the difference be-
tween the support and corresponding CIS values of ‘a’ and ‘d’ are 4 and 2, re-
spectively. Thus, the gap between the items’ support and corresponding CIS values
decreases from frequent to rare items.

Property 1. Let i j and ik, 1 ≤ j ≤ n, 1 ≤ k ≤ n and j ̸= k, be the items such that S(i j)≥
S(ik). For the user-defined minAllCon f and minSup thresholds, it turns out that the
support interval width of i j will be no less than the support interval width of ik. That is,

max
(

S(i j)×minAllCon f ,
minSup

)
−max

 S(i j)

minAllCon f
,

minSup

≥

max
(

S(ik)×minAllCon f ,
minSup

)
−max

 S(ik)
minAllCon f

,

minSup

 (3)

Property 2. Let ip and iq be the items having supports such that S(ip) ≥ S(iq). For the
user-specified minAllCon f and minSup thresholds, it turns out that S(ip)−CIS(ip) ≥
S(iq)−CIS(iq).

The non-uniform width of items’ support intervals and the non-uniform gap be-
tween the items’ support and corresponding CIS values causes the following problems
while mining correlated patterns with a single minAllCon f threshold:

i. At a high minAllCon f value, rare items will have CIS values very close (or almost
equivalent) to their respective supports. In addition, the support interval width for
rare items will be very small allowing only rare items to combine with one another.
Since it is difficult for the rare items to combine with one another and have support
which is almost equivalent to their actual support, many discovered rare correlated
patterns may have very short length. We have observed that many correlated pat-
terns involving rare items discovered at a high minAllCon f threshold value were
singleton patterns as they always have all-con f = 1.

ii. To discover long correlated patterns involving rare items, we must specify a low
minAllCon f threshold value. However, a low minAllCon f causes frequent items to
have their CIS values far away from their respective supports causing combinatorial
explosion and producing too many correlated patterns.

We call this dilemma as the rare item problem. In the next section, we discuss the
technique to address the problem.

3 Proposed Model

To address the rare item problem, it is necessary for the correlated pattern model to si-
multaneously set high minAllCon f threshold for a pattern containing frequent items and
low minAllCon f threshold for a pattern containing rare items. To do so, we exploit the
notion of “multiple constraints” and introduce the model of mining correlated patterns
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using multiple minimum all-confidence thresholds. The idea is to specify minAllCon f
threshold for each item depending upon its frequency (or occurrence behavior in the
database) and specify the minAllCon f for a pattern accordingly. We inherit this ap-
proach from the multiple minSups-based frequent pattern mining, where each pattern
can satisfy a different minSup depending upon the items’ frequencies within itself [12].

In our proposed model, the definition of correlated pattern remains the same. How-
ever, the definition of minAllCon f is changed to address the problem. In the proposed
model, each item in the database is specified with a minAllCon f constraint, called min-
imum item all-confidence (MIAC). Next, minAllCon f of the pattern X = {i1, i2, · · · , ik},
1 ≤ k ≤ n, is represented as maximum MIAC value among all its items. That is,

minAllCon f (X) = max
(

MIAC(i1), MIAC(i2),
· · · , MIAC(ik)

)
(4)

where, MIAC(i j) is the user-specified MIAC threshold for the item i j ∈ X . Thus, the
definition of correlated pattern is as follows.

Definition 4. (Correlated pattern.) The pattern X = {i1, i2, · · · , ik}, 1 ≤ k ≤ n, is said
to be correlated if

S(X) ≥ minSup

and (5)

all-con f (X) ≥ max
(

MIAC(i1), MIAC(i2),
· · · , MIAC(ik)

)
Please note that the correctness of all-confidence measure will be lost if minAllCon f
of a pattern is represented with the minimal MIAC of all the items within itself. In
particular, if the items’ MIAC values are converted into corresponding CIS values, then
the above definition still preserves the definition of correlated pattern given in Definition
3.

Definition 5. (Problem Definition.) Given the transactional database (DB), the mini-
mum support (minSup) threshold and the items’ minimum item all-confidence (MIAC)
threshold values, discover the complete set of correlated patterns that satisfy the minSup
and maximum MIAC value of all items within itself.

The proposed model facilitates the user to specify the all-confidence thresholds such
that the support interval width of items can be uniform and the gap between the items’
supports and corresponding CIS values can also be uniform. In addition, it also allows
the user to dynamically set high minAllCon f value for the patterns containing frequent
items and low minAllCon f value for the patterns containing only rare items. As a result,
this model can efficiently address the rare item problem. Moreover, the proposed model
is the generalization of basic model to discover the patterns with all-confidence and
support measures. If all items are specified with a same MIAC value, then the proposed
model is same as the basic model of correlated pattern.

The correlated patterns discovered with the proposed model satisfy the downward
closure property. That is, all non-empty subsets of a correlated pattern must also be
correlated patterns. The correctness is based on Property 3 and shown in Lemma 1.
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Property 3. If Y ⊃ X , then minAllCon f (Y )≥ minAllCon f (X) as max(MIAC(i j)|∀i j ∈
Y )≥ max(MIAC(i j)|∀i j ∈ X).

Lemma 1. The correlated patterns discovered with the proposed model satisfy the
downward closure property.

Proof. Let X and Y be the two patterns in a transactional database such that X ⊂
Y . From the apriori property [1], it turns out that S(X) ≥ S(Y ) and all-con f (X) ≥
all-con f (Y ). Further, minAllCon f (Y ) ≥ minAllCon f (X) (see, Property 3). Therefore,
if all-con f (Y )≥ minAllCon f (Y ), then all-con f (X)≥ minAllCon f (X).

Pei et al. [13] have proposed a generalized pattern-growth algorithm known as FICA

(Mining frequent itemsets with convertible anti-monotone constraint) to discover pat-
terns if they satisfy downward closure property. Since the patterns discovered with the
proposed model satisfy the downward closure property, FICA algorithm can be ex-
tended to mine correlated patterns with the proposed model.

4 Experimental Results

In this section, we evaluate the basic and proposed models of correlated patterns. We
show that proposed model allows us to find correlated patterns involving rare items
without generating a huge number of meaningless correlated patterns with frequent
items.

Since the FICA algorithm discussed in [13] can discover the complete set of patterns
for any measure that satisfies the downward closure property, we extend it to discover
correlated patterns with either single minAllCon f or multiple minAllCon f thresholds.
We do not report the performance of FICA algorithm. They are available at [13].

4.1 Experimental setup

The FICA algorithm was written in GNU C++ and run with Ubuntu 10.04 operating sys-
tem on a 2.66 GHz machine with 1GB memory. The runtime specifies the total execu-
tion time, i.e., CPU and I/Os. We pursued experiments on synthetic (T10I4D100K) and
real-world (Retail [14] and BMS-WebView-2 [15]) datasets. The T10I4D100K dataset
contains 100,000 transactions with 870 items. The Retail dataset contains 88,162 trans-
actions with 16,470 items. The BMS-WebView-2 dataset contains 77,512 transactions
with 33,401 items. All of these datasets are sparse datasets with widely varying items’
frequencies.

4.2 A method to specify items’ MIAC values

For our experiments, we need a method to assign MIAC values to items in a dataset.
Since the non-uniform difference (or gap) between the items’ support and CIS values
is cause of rare item problem, we employ a method that specifies items’ MIAC values
such that there exists a uniform gap between the items’ support and CIS values. It is as
follows.
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Let δ be the representative (e.g. mean, median, mode) support of all items in the
database. Choosing a minAllCon f value, calculate the gap between support and corre-
sponding CIS values (see Equation 6). We call the gap as “support difference” and is
denoted as SD.

SD = δ−δ×minAllCon f

= δ× (1−minAllCon f ) (6)

Next, we specify MIAC values for other items such that the gap (or SD) remains con-
stant. The methodology to specify MIAC values to the items i j ∈ I is shown in Equation
7.

MIAC(i j) = max
((

1− SD
S(i j)

)
, LMAC

)
(7)

Where, LMAC is the user-defined lowest MIAC value an item can have. It is particularly
necessary as

(
1− SD

S(i j)

)
can give negative MIAC value for an item i j if SD > S(i j).
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Fig. 1: The items’ MIAC values in different datasets. (a) T10I4D100k dataset (b) BMS-
WebView-2 dataset and (c) Retail dataset.

Fig. 1(a), (b) and (c) respectively shows the MIAC values specified by the proposed
model in T 10I4D100K, BMS-WebView-2 and Retail datasets with minAllCon f = 0.9,
LMAC = 0.1 and δ representing the mean support of frequent items. The X-axis rep-
resents the rank of items provided in the descending order of their support values. The
Y-axis represents the MIAC values of items. It can be observed that the MIAC values de-
creases as we move from frequent to less frequent (or rare) items. The low MIAC values
for rare items facilitate them to combine with other items and generate correlated pat-
terns. The high MIAC values of frequent items will prevent them from combining with
one another in all possible ways and generating huge number of uninteresting patterns.

4.3 Performance results

Fig. 2(a), (b) and (c) respectively shows the number of correlated patterns generated
in the basic model and proposed model of correlated patterns in T10I4D100K, BMS-
WebView-2 and Retail datasets. The X-axis represents the minAllCon f values that are
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Fig. 2: Generation of Correlated patterns in different datasets. (a) T10I4D100k dataset
(b) BMS-WebView-2 dataset and (c) Retail datasets.

varied from 0.1 to 1. The Y-axis represents the number of correlated patterns discovered
at different minAllCon f values. Too many correlated patterns were discovered in both
models when minAllCon f = 0. For convenience, we are not showing the correlated
patterns discovered at minAllCon f = 0. The following observations can be drawn from
these two graphs:

i. At high minAllCon f values, the proposed model has generated more number of
correlated patterns than the basic model. The reason is as follows. In the basic
model, CIS values of rare items were very close (almost equal) to their respective
supports. Since it is difficult for the rare items to combine with other (rare) items
and have support as their own, very few correlated patterns pertaining to rare items
have been discovered. In the proposed model, some of the rare items had their CIS
values relatively away from their supports. This facilitated the rare items to combine
with other rare items and generate correlated patterns.

ii. At low minAllCon f values, the proposed model has generated less number of cor-
related patterns than the basic model. The reason is as follows. The basic model
has specified low CIS values for the frequent items at low minAllCon f . The low
CIS values of the frequent items facilitated them to combine with one another in all
possible ways and generate too many correlated patterns. In the proposed model,
the CIS values for the frequent items were not very far away from their respective
supports (as compared with basic model). As a result, the proposed model was able
to prevent frequent items to combine with one another in all possible ways and
generate too many correlated patterns.

4.4 A case study using BMS-WebView-2 Dataset

In this study, we show how the proposed model allows the user to find correlated pat-
terns containing rare items without generating a huge number of meaningless corre-
lated patterns with frequent items. Due to page limitations, we confine our discussion
only to BMS-WebView-2 dataset. Similar observations were also drawn from the other
datasets.

Fig. 3 (a) shows the CIS values specified for the items by the basic model. The
following observations can be drawn from this figure. (i) The gap between the support
and CIS values of items decreases as we move from frequent to rare items, irrespective
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Fig. 3: The CIS values specified for the items by both the models. The minSup is ex-
pressed in support count.

of the minAllCon f threshold value. (ii) At a high minAllCon f value, rare items have the
CIS values very close (or almost equivalent) to their respective supports. (iii) Choosing
a low minAllCon f value facilitates rare items to have CIS values relatively away from
their supports. However, it causes frequent items to have their CIS values far away from
their supports, which can cause combinatorial explosion.

Fig. 3 (b) shows the CIS values specified for items by the proposed model. It can be
observed that by using item specific minAllCon f values, appropriate gap between the
support and CIS values of items can be maintained irrespective of their frequencies.
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Fig. 4: Maximum length of the items in BMS-WebView-2 dataset. (a) Proposed model
with high all-confidence threshold value. (b) Basic model with high all-confidence
threshold value. (c) Basic model with low all-confidence threshold value.

Fig. 4(a) shows the maximum length of a correlated patten formed for each frequent
item in the proposed model with minSup = 100 (in support count), minAllCon f = 0.9
and δ representing the mean of frequent items. Fig. 4(b) provides the same information
for the basic model with minSup = 100 and minAllCon f = 0.9. In the basic model,
majority of the rare items (i.e., items having rank greater than 400) had the maximal
length of 1. In other words, correlated patterns involving rare items were only singleton
patterns. In our proposed model, maximal length of correlated patterns involving rare
items ranged from 1 to 4. This shows that the proposed model has facilitated the gener-
ation of correlated patterns containing both frequent and rare items at high minAllCon f
value.

At minAllCon f = 0.4, the basic model has also facilitated the generation of corre-
lated patterns containing rare items. However, the usage of low minAllCon f threshold
has caused combinatorial explosion producing too many correlated patterns. In Fig.
4(c), the increased maximal length of frequent items (i.e., items having rank from 1 to
100) from 10 (at minAllCon f = 0.9) to 14 (at minAllCon f = 0.4) signifies the com-
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binatorial explosion in which frequent items have combined with one another in many
possible ways.

5 Conclusion and Future Work
This paper has shown that although the all-confidence measure satisfies the null-invariant
property, mining correlated patterns with a single minAllCon f threshold in the databases
of widely varying items’ frequencies can cause the rare item problem. In addition, a
generalized model of mining the patterns with the multiple minAllCon f values has
been introduced to confront the problem. The effectiveness of the new model is shown
experimentally and practically.

As a part of future work, we would like to investigate the methodologies to specify
items MIAC values. It is also interesting to investigate efficient mining of closed and
maximal correlated patterns with the proposed model.
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