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Abstract

Association rule mining is an actively studied topic
in recommender systems. A major limitation of an
association rule-based recommender system is the
problem of reduced coverage. It is generally caused
due to the usage of a single global minimum sup-
port (minsup) threshold in the mining process, which
leads to the effect that no association rules involving
rare items can be found. To confront the problem,
researchers have introduced Neighborhood-Restricted
rule-based Recommender System (NRRS) using the
concept of multiple minsups. We have observed that
NRRS is computationally expensive to use and can
recommend uninteresting products to the users. With
this motivation, this paper proposes an improved
NRRS using the relative support measure. We call
the proposed system as NRRS++. Experimental re-
sults show that NRRS++ can provide better recom-
mendations and is runtime efficient than NRRS.

Keywords: Recommender Systems, Association Rules
and Coverage Problem.

1 Introduction

Association rule mining is an important knowledge
discovery technique in data mining. It detects the
association between items that are interesting to the
user in a database. The classic application is mar-
ket basket analysis, where (association) rule mining
analyzes how the items purchased by customers are
associated. An example of a rule is as follows,

bed ⇒ pillow [support = 10%, confidence = 75%]

This rule says that 10% of customers have bought bed
and pillow together, and those who bought bed have
also bought pillow 75% of the time. The support and
confidence are the statistical measures used to access
the “strength” of a rule. In particular, the confidence
of a rule measures the degree of correlation among
the items, while the support of a rule measures the
significance of the correlation among items. These
terms are defined in the later parts of the paper.

Recently, rules were being used in developing rec-
ommender systems (Adomavicius et al. 2001, Smyth
et al. 2005, Abel et al. 2008). It is because their per-
formance is comparable to nearest-neighbor (kNN)
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collaborative filtering approaches, and do not suf-
fer from scalability problems like memory-based algo-
rithms as the rules can be mined in an offline model-
learning phase (Lin et al. 2002).

The general working of a rule-based recommender
system is as follows:

1. (Offline.) Users (or items) are grouped based on
their purchased history. A dataset is generated
using the purchased history of each group. Fre-
quent itemsets are discovered from each dataset.
An itemset (or a set of items) is said to be
frequent if it satisfies the user-defined mini-
mum support (minsup) threshold. The minsup
threshold controls the minimum number of trans-
actions in which an itemset (or a rule) must occur
in the database.

2. (Online.) The discovered frequent itemsets are
stored in a tree-structure which preserves the
confidence value of a rule generated from a fre-
quent itemset. Recommendations are generated
by performing depth-first search on the con-
structed tree-structure using the purchased his-
tory of the user.

The frequent itemset mining is a key step in a rule-
based recommender system, because, it affects the
computational cost and predictive accuracy of a rec-
ommender system.

A major limitation of a rule-based recommender
system is the problem of reduced coverage (Lin et al.
2002, Gedikli & Jannach 2010). This phenomenon is
generally caused due to the usage of a single global
minsup threshold in the mining process, which leads
to the effect that no rules involving rare items can be
found.

To confront the problem, researchers have intro-
duced Neighborhood-Restricted rule-based Recom-
mender System (NRRS) (Gedikli & Jannach 2010)
using multiple minsups framework (Liu 1999). The
NRRS uses an Apriori-like algorithm known as Im-
proved Multiple Support Apriori (IMSApriori) (Kiran
& Reddy 2009) to discover frequent itemsets and a
tree-structure known as Extended Frequent Itemset-
graph (EFI-graph) to store the rules and recommend
products to the users. The following performance is-
sues were observed in NRRS:

• In the multiple minsups framework, each item
in the database require a minsup-like constraint
known as minimum item support (MIS). The
methodology to specify items’ MIS values is an
open research problem in this framework.

• The frequent itemsets discovered with the multi-
ple minsups framework do not satisfy the anti-
monotonic property. This increases the search



space, which in turn increases the computational
cost of mining the frequent itemsets. In addi-
tion, IMSApriori suffers from the performance
problems involving the generation of huge num-
ber of candidate itemsets and multiple scans on
the database. Thus NRRS is a computationally
expensive recommender system.

• It has also been observed that NRRS can recom-
mend uninteresting items to the users. Further
details on this issue are discussed in later parts
of this paper.

This paper makes an effort to improve the perfor-
mance of NRRS. The key contributions are as follows:

1. An improved NRRS using the relative support
measure (Yun et al. 2003) has been proposed
to confront the coverage problem. We call it as
NRRS++.

2. An improved EFI-graph structure, called EFI-
growth++, has been introduced to improve the
recommendations.

3. Experimental results on the real-world datasets
demonstrate that NRRS++ can provide better
recommendations and is runtime efficient than
NRRS.

The rest of the paper is organized as follows. Sec-
tion 2 describes background and related work on rule
mining and rule-based recommender systems. Sec-
tion 3 describes the NRRS. Section 4 describes the
performance problems of NRRS and introduces the
proposed NRRS++. The experimental evaluations of
NRRS and NRRS++ have been reported in Section
5. Finally, Section 6 concludes the paper.

2 Background and Related Work

2.1 Association Rule Mining

Since the introduction of association rules by Agrawal
et al. (1993), the problem of effective mining of rules
from databases has received a great deal of attention
(Han et al. 2007). An association rule mining algo-
rithm generally involves the following two steps:

1. Discover all frequent itemsets that satisfy the
user-defined minimum support (minsup) thresh-
old.

2. Generate all strong rules that satisfy the user-
defined minimum confidence (minconf) thresh-
old using frequent itemsets.

The frequent itemset mining is a key step as it
effectively reduces the search space and limits the
number of rules getting generated. The popular
algorithms to discover frequent itemsets are Apri-
ori (Agrawal & Srikanth 1994) and FP-growth (Han
et al. 2004). The Apriori uses “candidate generate-
and-test approach,” while FP-growth uses “pattern-
growth technique” to discover the complete set of fre-
quent itemsets. Generally, FP-growth performs bet-
ter than Apriori as the latter suffers from the per-
formance problems involving the generation of huge
number of candidate itemsets and multiple scans on
the database.

Since only a single minsup constraint is used for
the entire dataset, the model implicitly assumes that
all items in a database have uniform frequencies.
However, this is often not the case in many real-world
databases. In many real-world applications, some

items appear very frequently in the data, while others
rarely appear. If the items’ frequencies in a database
vary widely, we encounter the following issues:

i. If minsup is set too high, we will miss those rules
that involve rare items.

ii. In order to find the rules involving both frequent
and rare items, we have to set low minsup. How-
ever, this may cause combinatorial explosion,
producing too many frequent itemsets, because
those frequent items will combine with one an-
other in all possible ways and many of them can
be meaningless depending upon the user and/or
application requirements.

This dilemma is called the rare item problem (Weiss
2004).

To confront the problem, the concept of finding
frequent itemsets with multiple minsups framework
has been introduced in the literature (Liu 1999). In
this framework, each item in the database is specified
with a minsup-like constraint known as the minimum
item support (MIS), and minsup for an itemset is
represented with the minimal MIS value among all
its items. This framework can effectively confront
the rare item problem. However, it has the following
issues:

• This framework is computational expensive to
use as the discovered frequent itemsets do not
satisfy the anti-monotonic property.

• An open problem with this framework is the
methodology to determine the items’ MIS val-
ues.

Efforts are being made in the literature to address the
above two issues (Kiran & Reddy 2009, 2010, 2011).

In the literature, researchers have also introduced
other measures to discover frequent itemsets involving
both frequent and rare items. Examples include all-
confidence, any-confidence, bond, lift, relative support
and χ2 (Brin et al. 1997, Omiecinski 2003, Yun et al.
2003). Unlike the support measure, these measures
assess the interestingness of an itemset with respect
to the frequencies of items within itself. Each mea-
sure has a selection bias that justifies the significance
of a knowledge itemset. As a result, there exists no
universally acceptable best measure to judge the in-
terestingness of an itemset for any given dataset. Re-
searchers are making efforts to suggest a right mea-
sure depending upon the user and/or application re-
quirements (Tan & Kumar 2002, Akshat et al. 2010).

The relative support measure was introduced in
the literature to discover the frequent itemsets involv-
ing both frequent and rare items effectively (Yun et al.
2003) . An Apriori-like algorithm known as Relative
Support Apriori (RSA) has been proposed to discover
the itemsets. The performance issues of RSA are as
follows:

• The rule model used in RSA requires the user’s
classification of items into either frequent or rare
items. This classification can be difficult for the
user in real-world applications.

• The frequent itemsets discovered with the rela-
tive support measure do not satisfy the anti-
monotonic property. Thus, mining itemsets
with RSA is a computationally expensive pro-
cess.

Recently, it was shown in the literature that the
measure relative support satisfies the anti-monotonic



property if items within an itemset are considered as
an ordered set with respect to their supports (Kiran
& Kitsure 2012). This property is known as the con-
vertible anti-monotonic property (Pei & Han 2002).
In addition, a simplified model which do not require
the classification of items into either frequent or rare
items has been proposed along with a pattern-growth
algorithm, called Relative Support Frequent Pattern-
Growth (RSFP-growth). The model is as follows:

Let I = {i1, i2, · · · , in} be a set of items, and DB
be a database that consists of a set of transactions.
Each transaction T contains a set of items such that
T ⊆ I. Each transaction is associated with an iden-
tifier, called TID. Let X ⊆ I be a set of items,
referred as an itemset (or a pattern). An itemset that
contains k items is a k-itemset. A transaction T is
said to contain X if and only if X ⊆ T . The fre-
quency (or support count) of an itemset X in DB,
denoted as f(X), is the number of transactions in
DB containing X. The support of X, denoted as
S(X), is the ratio of its frequency to the DB size, i.e.,

S(X) =
f(X)

|DB|
. The relative support of an itemset X,

denoted as Rsup(X), is the ratio of its support to the
minimum support of an item (or 1-itemset) within it-

self. That is, Rsup(X) =
S(X)

min(S(ij)|∀ij ∈ X)
. An

itemset X is said to be frequent if its support and
relative support are no less than the user-defined min-
imum support (minsup) and minimum relative sup-
port (minRsup) thresholds, respectively. An associa-
tion rule is an implication of the form, A ⇒ B, where
A ⊂ X, B ⊂ X and A ∩ B = ∅. The confidence
of a rule A ⇒ B, denoted as C(A ⇒ B), represents
the number of transactions in T that support A also

support B. That is, C(A ⇒ B) =
S(A ∪B)

S(A)
. The

rules which satisfy minsup, minRsup and minconf
thresholds are called strong rules.

Example 1 Consider the transactional database of
20 transactions shown in Table 1. The set of items
I = {a, b, c, d, e, f, g}. The set of items ‘a’ and ‘b’,
i.e., {a, b} is an itemset. It is a 2-itemset. For sim-
plicity, we write this itemset as “ab”. It occurs in
8 transactions (tids of 1, 2, 7, 10, 11, 13, 16 and 19).
Therefore, the support count of “ab,” i.e., f(ab) = 8.

The support of ab is 0.4

(
=

8

20

)
. The relative sup-

port of ab is 0.88

(
=

0.4

min(0.55, 0.45)

)
. If the user-

specified minsup = 0.3 and minRsup = 0.65, then
ab is a frequent itemset because S(ab) ≥ minsup and
Rsup(ab) ≥ minRsup. The association rules gener-
ated from this itemset are a ⇒ b and b ⇒ a. The

confidence of a ⇒ b, i.e., C(a ⇒ b) =
0.4

0.55
= 0.72.

Similarly, the confidence of b ⇒ a, i.e., C(b ⇒ a) =
0.4

0.45
= 0.88. If the user-specified minconf = 0.8,

then only b ⇒ a is a strong rule.

In this paper, we use this model to discover fre-
quent itemsets from the dataset generated using the
purchased history of each user’s group.

2.2 Association Rule-based Recommender
System

Since the introduction of recommender systems in
(Resnick et al. 1995), they have received a great deal

Table 1: Transactional database.

TID Items TID Items
1 a, b 11 a, b
2 a, b, e 12 a, c, f
3 c, d 13 a, b, e
4 e, f 14 b, e, f, g
5 c, d 15 c, d
6 a, c 16 a, b
7 a, b 17 c, d
8 e, f 18 a, c
9 c, d,g 19 a, b
10 a, b 20 c, d, f

of attention from both industry and academia (Ado-
mavicius et al. 2001). The popular approaches to
improve the performance of recommender systems in-
volved the usage of machine learning techniques (Bill-
sus & Pazzani 1998) and data mining techniques (Lin
et al. 2002). In this paper, we focus on the usage of
data mining techniques to improve the performance
of recommender systems.

Association rule mining has been widely used in
developing recommender systems (Adomavicius et al.
2001, Smyth et al. 2005). Adomavicius & Tuzhilin.
(2005) have been employed association rules to build
behavioral profiles of individual users. Shaw et al.
(2010) have used association rules to address cold-
start problem in the recommender systems. The as-
sociation rule model used in most of these works is
based on the single minsup framework, where only
a single minsup constraint is used to discover fre-
quent itemsets from the entire database. Since the
single minsup framework cannot effectively capture
the non-uniform frequencies of items in a database,
these recommender systems suffer from the problem
of reduced coverage.

To confront the problem, “adaptive-support”
framework has been proposed in (Lin et al. 2002).
In this framework, a minsup threshold is determined
individually for each user’s (or item’s) database. This
framework can still suffer from the coverage problem
if items’ frequencies in the database vary widely.

The concept of rule mining with multiple minsups
framework was introduced in (Gedikli & Jannach
2010) to confront the coverage problem. In addition,
NRRS was proposed to recommend the products to
the users. It has been observed that NRRS is compu-
tationally expensive to use and can recommend unin-
teresting items to the users. In this paper, we address
these two issues and propose an improved NRRS.

3 Neighborhood-Restricted Rule-Based Rec-
ommender System

The NRRS uses the concept of mining frequent item-
sets with the multiple minsups framework to address
the coverage problem that persists in the traditional
rule-based recommender system (Gedikli & Jannach
2010). In particular, it employs user-based collabo-
rative filtering technique and uses two neighborhood
sizes for recommending items to the users. Briefly,
the working of NRRS is as follows:

1. (Offline phase.) For each user u, top-k1 and
top-k2, where k1 ≥ k2, number of neighboring
users who had similar purchased history are dis-
covered. (The top-k1 neighboring users will be
used for learning rules, while the top-k2 neigh-
boring users will be used for prediction or recom-
mendation of products to the user u.) A transac-
tional database is generated using the purchased



history of top-k1 neighbors of the user u. Next,
the complete set of frequent itemsets are discov-
ered from the database using IMSAprori algo-
rithm. The items’MIS values are specified using
Equation 1 (Kiran & Reddy 2009).

MIS(ij) = max(S(ij)− SD, LS) (1)

where, MIS(ij) is the minimum item support for
an item ij , S(ij) refers to support of an item ij ,
SD refers to the support difference and LS refers
to the lowest minimum item support allowed for
an item. The parameter SD can be either user-
specified or derived using Equation 2

SD = λ(1− β) (2)

where, λ represents the parameters like mean,
meadian, or mode of items supports in a database
and β ∈ [0, 1] is a user-specified constant.

2. (Online phase.) For each user u, the discov-
ered frequent itemsets of top-k2 number of neigh-
boring users are stored in a lexical order in a
tree-structure, called Extended Frequent Itemset
Graph (EFI-graph). Recommendations to the
user u are generated by traversing EFI-graph us-
ing depth-first search.

We now describe and illustrate the structure and
working of EFI-graph for the product recommenda-
tion.

0

A(10) B(30) C(20) D(35)

AB(5) AC(3) AD(5) BC CD

ABC(3) ACD(2)

Start nodes={  , BC, CD}0

Figure 1: Extended Frequent Itemset Graph ap-
proach.

Lin et al. (2002) have introduced Frequent Item-
set Graph (FI-graph) to make real-time recommen-
dations without explicitly learning rules derived from
the frequent itemsets of single minsups framework.
Thus, FI-graph can be used to store only those fre-
quent itemsets which satisfy the anti-monotonic prop-
erty. The frequent itemsets discovered with the mul-
tiple minsups framework do not satisfy the anti-
monotonic property. Therefore, FI-graph cannot be
used to store the frequent itemsets discovered with the
multiple minsups framework. To address this prob-
lem, Yun et al. (2003) have extended the FI-graph to
store the frequent itemsets discovered with the mul-
tiple minsups framework. It is called Extended Fre-
quent Itemset Graph (EFI-graph). In EFI-graph (see
Figure 1), nodes represent both frequent and infre-
quent itemsets that are arranged in lexicographical

order, and organized in a tree structure such that the
size of the itemsets gets increased on each level. The
nodes representing frequent itemsets preserve their re-
spective support value. The nodes representing infre-
quent itemsets cannot preserve their respective sup-
port value as they were pruned by the pattern discov-
ery algorithm (or IMSApriori). If a parent node repre-
sents a frequent itemset, then the links connecting the
respective parent node and child nodes will preserve
the confidence value of an association rule. If a par-
ent node represents an infrequent itemset, then the
links connecting the respective parent node and child
nodes will not preserve the confidence of an associa-
tion rule. The recommendations to the user are made
by employing depth-first search on the EFI-graph.

Example 2 Let the set of frequent itemsets discov-
ered from the transactional database of the user u
be {{A : 10}, {B : 20}, {C : 30}, {D : 35}, {AB :
5}, {AC : 3}, {AD : 5}, {ABC : 3}, {ACD : 2}} (i.e.,
{itemset, support count}). Figure 1 shows an EFI-
graph constructed for the discovered frequent itemsets.
The numbers in brackets of a node stand for the sup-
port count of the respective frequent itemset in the
database. The nodes with no support count represent
the infrequent itemsets. In other words, the nodes
{BC} and {CD} in EFI-graph represent the infre-
quent itemsets whose supersets are frequent. The par-
ent node {A,D} represents a frequent itemset. There-
fore, the link containing the {A,D} and {A,C,D}
nodes preserve the confidence of the rule {A,D} ⇒
{C}, i.e., C({A,D} ⇒ {C}) = S({A,C,D})

S({A,D}) = 2
5 . The

parent node {C,D} represents an infrequent itemset.
Therefore, the link connecting {C,D} and {A,C,D}
do not preserve the confidence of the rule {C,D} ⇒
{A}. Given a set of past transactions T = {A,D} of
user u, recommendations are produced by traversing
the tree in depth-first order and looking for (single-
element) supersets of {A,D} in the graph that has
high confidence. That is, C could be recommended
to u if the recommendation score of item C is high
enough. On the other hand, if the set of past trans-
actions of user u represent an infrequent itemset, say
T = {C,D}, then the item A will be recommended by
simply traversing the tree in depth-first order looking
for supersets of {C,D} without any confidence value.
Please note that the solid arrows in the figure indicate
how the graph would be traversed in depth-first order
if past transactions of a user represent {A,D}.

In the next section, we discuss the perfor-
mance problems of NRRS and describe the proposed
NRRS++.

4 Improved Neighborhood Restricted Asso-
ciation Rule-based Recommender System

In this section, we first discuss the performance issues
of NRRS. Next, we describe the proposed NRRS++.

4.1 Performance Problems of NRRS

The NRRS uses the frequent itemsets discovered from
the multipleminsups framework to recommend prod-
ucts to the users. Since the multiple minsups frame-
work suffers from the open problem of determining
items’ MIS values, NRRS is difficult to be used in
real-world applications.

The frequent itemsets discovered with multiple
minsups do not satisfy the anti-monotonic property.



Therefore, IMSApriori is a computationally expen-
sive algorithm. Since NRRS uses IMSApriori to dis-
cover frequent itemsets for each user’s database, it is
straight forward to say that NRRS is a computation-
ally expensive recommender system.

In EFI-graph, the links connecting the parent node
of an infrequent itemset to their respective child nodes
do not preserve the confidence of a rule. It has been
observed that this may lead to recommend uninter-
esting items to the user.

Example 3 Continuing with the Example 2, NRRS
recommends item A for the user u by simply travers-
ing down the node of the infrequent itemset {C,D}.
If the support count of an infrequent itemset {C,D}
is 14, then confidence of the rule, {C,D} ⇒ {A} =
0.14 (= 2

14 ), is very low. Thus, it can be arguable that
NRRS may be suggesting an uninteresting item A for
the user u.

Algorithm 1 NRRS++ (U : set of users, ratingDB:
rating database, k1: learning neighborhood size,
k2: predicting neighborhood size minsup: user-
specified minimum support threshold, minRsup:
user-specified minimum relative support threshold)

1: (Offline: Discovery of Frequent itemsets)
2: for each u ∈ U do
3: Let k1-neighborhood

u and k2-neighborhood
u

be the set of top k1 and k2 neigh-
bors for the user u in ratingDB.
That is, k1-neighborhood

u = u ∪
findNeighbors(u, k1, ratingDB);

4: Let ratingDBu be the rating database created
using the ratings given by the each user in k1-
neighborhoodu.

5: Let UserFPs be the of frequent itemsets dis-
covered for u in ratingDBu using RSFP-
growth. That is, UserFPs = RSFP -
growth(ratingDBu,minsup,minRsup).

6: end for
7: (Online: Recommending items by constructing

EFI-graph++ for each user)
8: for each user u ∈ U do
9: recommendedItems = ∅;
10: for each user ui ∈ k1-neighborhood

u do
11: userRecs =

Recommend(u,EFIG++(UserFPs(ui)));
12: Scan ratingDBu to measure the support

count of infrequent itemsets in EFI-graph++
of u;

13: weightedUserRecs =
adjustConfidenceScores-
BySimilarity(userRecs, u, ui);

14: recommendedItems =
recommendedItems ∪ weightedUserRecs;

15: end for
16: recommendedItems = sortItemsByAdjusted-

Scores(recommendedItems);
17: output recommendedItems;
18: end for

4.2 An Improved Neighborhood-Restricted
Rule-based Recommender System:
NRRS++

To address the open problem of specifying items’
MIS values in NRRS, we use the relative support
measure to discover frequent itemsets involving both
frequent and rare items. The advantages of using the
relative support measure are as follows:

• The measure relative support satisfies the
convertible anti-monotonic property. Pei &
Han (2002) have theoretically shown that for
a pattern-growth algorithm the search space
of a measure satisfying the convertible anti-
monotonic property is same as that of the anti-
monotonic property. Thus, frequent itemsets can
be effectively discovered using the RSFP-growth.

• This measure satisfies the null-invariance prop-
erty. This property facilitates the measure rela-
tive support to disclose genuine correlation rela-
tionships without being influenced by the object
co-absence in a database.

To improve the predictions of NRRS, we have
modified the structure of EFI-graph so that the links
connecting the parent nodes of infrequent itemsets
to their respective child nodes can preserve the con-
fidence of a rule. We now describe the working of
NRRS++.

The proposed NRRS++ system is shown in Al-
gorithm 1, and summarized as follows. The input
parameters to NRRS++ are the set of users (U),
the ratings database of each user (ratingDB), the
two neighborhood sizes for rule learning and predic-
tion phases (k1 and k2), user-specific minimum sup-
port (minsup) constant, user-specific minimum rel-
ative support (minRsup) constant. The parameters
minsup and minRsup are used in RSFP-growth al-
gorithm to discover frequent itemsets. The NRRS++
is a two phase algorithm involving offline and online
phases. The working of NRRS++ is as follows:

1. (Offline phase.) For each user u, top-k1 and
top-k2, where k1 ≥ k2, number of neighboring
users who had similar purchased history are dis-
covered. A transactional database is generated
using the purchased history of top-k1 neighbors
of the user u. Next, frequent itemsets are discov-
ered from the database using the RSFP-growth
algorithm (Kiran & Kitsure 2012).

2. (Online phase.) The discovered user-specific
frequent itemsets (UserFPs) of the target user
and of the neighbors of the target user are
used to calculate predictions using the proposed
Extended Frequent Itemset Graph, i.e., EFI-
graph++ (lines 8 to 13 in Algorithm 1). The re-
sulting confidence scores are weighted according
to the similarity of the target user and the neigh-
bor (line 14 to 16 in Algorithm 1). The similar-
ity measure we use is Pearson correlation. These
user-specific predictions are finally combined and
sorted by the weighted confidence scores (line 16
and 17 in Algorithm 1).

Now, we introduce EFI-graph++ structure.
The EFI-graph++ (see Figure 2) is an extension

of EFI-graph to store the support counts of both fre-
quent and infrequent itemsets. The structure of EFI-
graph++ resembles that of EFI-graph. However, the
major difference is that the nodes representing the in-
frequent itemsets will also store their respective sup-
port counts. The construction of EFI-graph++ is
shown in Algorithm 2.

The algorithm works as follows. The EFIG++
is constructed bottom-up, starting with all frequent
itemsets of size k, beginning with the maximum size
n of the frequent itemsets (Lines 2 and 3 in Algorithm
2). Lines 4 to 14 in Algorithm 2 connect each k − 1
subset s of a k-frequent itemset with its superset f . If
subset s is an infrequent itemset, i.e., s ̸∋ F , then add
s into the list of infrequent itemset IF , create a new
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Figure 2: Proposed Extended Frequent Itemset
Graph approach.

node with s and support count equal to zero and add
it to the start nodes which contains all possible entry-
points to the graph. This set consists of the root node
(∅, the original start node) and all infrequent itemsets
whose supersets are frequent itemsets. (Lines 5 to 9
in Algorithm 2). If the subset s exists in the frequent
itemset, then a node with s and corresponding sup-
port count is created and linked to the node f (Lines
10 to 12 in Algorithm 2). Finally, the support counts
of the nodes representing the infrequent itemsets are
updated by performing another scan on the database
(Lines 17 and 18 in Algorithm 2).

Algorithm 2 EFIG++(F : the set of frequent item-
sets sorted in descending order of the number of items
within each itemset.)

1: Let n be the number of frequent itemsets discov-
ered by CFG. Let IF be the set of infrequent
itemsets whose supersets exists in F . Initialize
IF = ∅.

2: for k = n to 1 do
3: for all frequent k-itemsets f do
4: for all k − 1 subsets s of f do
5: if s ̸∋ F then
6: create a new node (s, 0);
7: add new edge (s, f);
8: add new start node s
9: IF = IF ∪ s; // add infrequent itemset

to the set of IF ;
10: else
11: create a new node (s, support);
12: add new edge (s, f);
13: end if
14: end for
15: end for
16: end for
17: Scan the database and find the support of every

infrequent itemset in IF .
18: In EFI-graph++, update the support of every in-

frequent itemset node.

Example 4 Figure 2 shows the EFI-graph++ con-
structed for the user u discussed in Example 2. It can
be observed that EFI-graph++ stores the support of
infrequent itemsets, while EFI-graph (shown in Figure
1) do not store the support of infrequent itemsets. The
storing of support values for infrequent itemsets facil-
itates the proposed NRRS++ framework to improve

the recommends to the users by pruning the recom-
mendations of those items that have low confidence
value.

5 Experimental Results

In this section, we evaluate the NRRS and proposed
NRRS++. The programs were written in java and
run with Ubuntu on a 2.66 GHz machine with 2GB
memory. In the following, we will summarize the find-
ings of this evaluation.

5.1 Experimental Setup and Evaluation Met-
rics

5.1.1 Data sets.

The experiments were pursued on the following
datasets: (i) MovieLens rating dataset consisting of
100,000 ratings provided by 943 users on 1,682 items
and (ii) Yahoo!Movies dataset containing 211,231 rat-
ings provided by 7,642 users on 11,915 items.

In order to test NRRS and NRRS++ frameworks
also in settings with low data density, we varied
the density level of the original data sets by using
sub-samples of different sizes of the original data
set. Four-fold cross-validation was performed for each
data set; in each round, the data sets were split into
a 80% training set and a 20% test set.

5.1.2 Accuracy metrics.

To compare the predictive accuracy of NRRS and
NRRS++ systems, we use the following procedure.
First, we determine the set of existing “like” state-
ments (ELS) in the 20% test set and retrieve a top-N
recommendation list with each system based on the
data in the training set. The top-N recommendations
are generated based on the confidence of the produc-
ing rule. The set of predicted like statements returned
by a recommender shall be denoted as Predicted Like
Statements (PLS).

The standard information retrieval accuracy met-
rics are used in the evaluation. Precision is de-

fined as
|PLS ∩ ELS|

|PLS|
and measures the number of

correct predictions in PLS. Recall is measured as
|PLS ∩ELS|

|ELS|
, and describes how many of the ex-

isting “like” statements were found by the recom-
mender.

In the evaluation procedure, we use “top-10,” i.e.,
the list of top ten movies for a test user with pre-
dicted ratings values above the user’s mean ratings,
and calculate the corresponding precision and recall
values for all users in the test data set. The averaged
precision and recall values are then combined in the
usual F-score. That is,

F = 2×
(
precision× recall

precision+ recall

)
. (3)

5.1.3 Algorithm details and Parameters.

The sensitivity of parameters was analyzed through
multiple experiments on the MovieLens and Yahoo!
data set with different density levels. The neighbor-
hood sizes, k1 and k2, for both datasets and all den-
sity levels was empirically determined to be 900 and
60, respectively. For both the datasets, λ represented
mean of all frequent items, β = 0.25 and LS = 9%.



5.2 Results

Table 2 shows the performance of NRRS and
NRRS++ systems on MovieLens and Yahoo!Movies
datasets with varying densities. It can be observed
that the performance of NRRS++ is relatively better
than NRRS, independent of the density. The reason
is that EFI-graph++ facilitated NRRS++ to recom-
mended only those items that had high confidence
value although the past transactions of a user repre-
sented an infrequent itemset.

Fig. 3 shows the runtime taken by NRRS and
NRRS++ systems to generate recommendations to
the users with varying dataset sizes for learning the
rules (i.e., k1). It can be observed that although
both algorithms are linearly scalable with increase
in dataset size, NRRS++ is relatively more efficient
than NRRS system. It is because that CFG discov-
ered frequent itemsets for each user more effectively
than that of IMSApriori. Another important obser-
vation is that NRRS++ is more scalable than NRRS
with increase in neighborhood size for learning the
rules.
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Figure 3: Runtime comparison of NRRS and
NRRS++ Systems.

6 Conclusion

This paper proposed an effective and efficient rule-
based recommender system known as NRRS++ to
confront the coverage problem that persists in the
conventional rule-based recommender systems. It has
also shown that frequent itemsets discovered with
the relative support measure satisfy the convertible
anti-monotonic property, and therefore, can be effec-
tively discovered using CFG algorithm. Furthermore,
an efficient tree structure has been proposed to im-
prove the recommendations to the users if the discov-
ered itemsets satisfy the convertible anti-monotonic
property. Experimental results demonstrate that
NRRS++ is efficient than NRRS.
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