
A System-Design Outline
of the Distributed-Shogi-System Akara 2010

Kunihito Hoki
The Center for Frontier Science and Engineering

The University of Electro-Communications
Tokyo, Japan

hoki@cs.uec.ac.jp

Daisaku Yokoyama
Department of Informatics and Electronics,

Institute of Industrial Science, the University of Tokyo
Tokyo, Japan

yokoyama@tkl.iis.u-tokyo.ac.jp

Hiroshi Yamashita
Freelance

Kanagawa, Japan
yss@bd.mbn.or.jp

Tomoyuki Kaneko
The Department of Multi-Disciplinary Science

Graduate School of the University of Tokyo
Tokyo, Japan

kaneko@graco.c.u-tokyo.ac.jp

Takuya Obata
Canon Inc.

Kanagawa, Japan
obata.taku@gmail.com

Yoshimasa Tsuruoka
Department of Electrical Engineering and Information Systems

Graduate School of Engineering, the University of Tokyo
Tokyo, Japan

tsuruoka@logos.t.u-tokyo.ac.jp

Takeshi Ito
Department of Information and Communication Engineering

The University of Electro-Communications
Tokyo, Japan

ito@minerva.cs.uec.ac.jp

Abstract— This paper describes Akara 2010, the distributed
shogi system that has defeated a professional shogi player in a
public game for the first time in history. The system employs a
novel design to build a high-performance computer shogi player for
standard tournament conditions. The design enhances the
performance of the entire system by means of distributed
computing. To utilize a large number of computers, a majority-
voting method using four existing programs is combined with a
distributed-search method. Although the performance of the entire
system could not be tested, the majority-voting component
increased the winning percentage from 62% to 73%, and the
distributed-search component increased it from 50% to 70% or
more.

Keywords—chess variant; shogi; distriuted search; majority
voting; Akara 2010

I. INTRODUCTION
Human-computer chess matches have provided an index of

advances in modern artificial intelligence. One of the most

prominent pieces of historical evidence has been provided by
Deep Blue, which won the six-game match against Garry
Kasparov by one point in 1997 [1]. Since then, chess machines
have started playing chess better than top-level human players.
Nowadays, programs running on mobile phones seem to have
reached the grandmaster level, and Pocket Fritz 4 won the Copa
Mercosur tournament in 2009 [2].

In creating artificial intelligence, shogi (a Japanese chess
variant) is probably a more difficult target than chess [3].
Because shogi has a dropping rule, i.e., a captured piece can be
dropped back onto the board, the average number of legal moves
is greater than in chess (the raw branching factor in shogi is
around 80) [4]. This suggests that a shogi program needs to
search a much larger game tree than a chess program to reach
the grandmaster level. In fact, human-computer shogi matches
are still challenging for a computer player in 2013.

In chess and shogi, the performance of game-tree searches is
considerably improved by pruning techniques, such as alpha-
beta pruning [5], with the use of a large transposition table [6, 7].

This research has been supported by the Information Processing Society of Japan
(IPSJ).

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.24

474978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.24

466

2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.24

466

Therefore, a distributed search should visit more nodes in the
tree than a single-processor search does without losing the
efficiency of such pruning techniques. Compared to SMP
parallelization such as dynamic tree splitting (DTS) [8], the
difficulty of distributed computing comes from the limitation
in network-connection speed between multiple processors: (i)
synchronization of individual searches at each processor
when one processor experiences a beta cutoff, and (ii)
management of the large transposition table that has to be
updated and probed frequently by the multiple processors.

In this paper, we discuss distributed computing in shogi to
play grandmaster-level games. We propose a novel design to
build a high-performance yet fault-tolerant system for
demonstrations in standard tournament conditions of shogi.
Our system design utilizes multiple existing shogi programs.
It also utilizes massive computer resources, i.e., a lot of
existing computers of various architectures at various places
with internet connections.

Our system uses the majority-voting method proposed by
Obata et al. [9]. The voters are four different existing
programs, Gekisashi1 [10], GPS Shogi2, Bonanza3 [11], and
YSS4. Their performance is enhanced by state-of-the-art
techniques such as machine learning of evaluation functions,
which has now become common practice in computer shogi
due to the successful application in Bonanza [12]. Given a
large number of available computers, the majority-voting
method is combined with the distributed-game-tree-search
method [13].

The shogi program Akara 2010 has been developed on the
basis of this proposal and defeated one of the top female players,
Ichiyo Shimizu, on October 11, 2010. Here, the game used a
standard time control, i.e., 180 minutes plus a 60-second
countdown. This was the first time a shogi machine defeated a
professional in a public game. Moreover, some new results of
the majority-voting method are presented in this paper.

II. RELATED WORK
Distributed computing of game-tree searches has been

extensively studied. One prominent strategy for using a massive
computer resource is to build specialized hardware for the game-
playing program to lift the limitation in network-connection
speed. Deep Blue [1] and Hydra [14] are famous examples of
massively parallelized chess machines.

The second strategy for distributed computing is to improve
the divisions of the tasks on the bases of alpha-beta pruning,
where the entire game tree is decomposed into multiple sub-trees.
One naive way would be to divide the tasks at the root position.
Here, all children of the root node are partitioned among the
multiple processors, and each processor takes charge of the
subset of the children by using a local transposition table. Since
this naive way does not change the subsets throughout an entire
search, all separate tasks across multiple processors can be
independently computed without frequent network
communication. One important extension from such a naive
parallelization would be dividing the tree not only at the root

node but also at multiple interior nodes of different depths. Such
an extension can be found in early work, e.g., the young brothers
wait concept (YBWC) [15], asynchronous parallel game-tree
search (APHID) [16], and transposition-table driven scheduling
alpha-beta (TDSAB) [17].

The third strategy is the extended use of pondering
methods [18, 19]. In an ordinary pondering method, the
expected move of the opponent is considered as already played,
and a computer player starts searching during the opponent’s
thinking time to avoid the computer being idle while the
opponent is thinking. The reported method is to start searching
speculatively ahead on the basis of the expected move sequence
during both the player’s and opponent’s thinking time.

Althöfer and Snatzke have reported 3-Hirn in two-player
games [20], where two programs provide move opinions and a
human selects a single move from these two. Therefore, the
majority-voting method can be regarded as a reduction from 3-
Hirn, where the human intervention in two computer programs
is removed. The majority voting has been applied to shogi [9]
and chess [21]. Moreover, it has been reported that majority
voting is even effective in the Monte-Carlo tree search of Go
programs [22].

The majority-voting method utilizes the distributed
environment for better performance. This was demonstrated in
tournament conditions in 2009 [23]. The distributed shogi-tree
search has also been demonstrated in tournament conditions in
2010 [13]. The notable advantage of these methods is simplicity,
and most existing shogi programs can be made into worker
programs with minimal modifications.

Recently, an artificial intelligence system has challenged
human experts in games other than variants of two-player games.

1Developed by Y. Tsuruoka, D. Yokoyama et al., commercial software from
Mynavi corporation.
2T. Kaneko, T. Tetsuro et al., source codes are available online from
http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/.

3Developed by K. Hoki, commercial software from Magnoria, Inc., source codes
are available online from http://www.geocities.jp/bonanza_shogi/.
4Developed by H. Yamashita, commercial software (named AI Shogi) from e
frontier, Inc.

1 Game Server

3 Wrapper for Communication Protocols
and Keeping TCP/IP Connection

4 Distributed-
Search Server

Shogi Board G
U

I

2 Majority
Voting Server

G
PS Shogi

G
ekisashi

A

C

B

4 Distributed-
Search Server

Bonanza

YSS

G
ekisashi

G
ekisashi

G
PS Shogi

G
PS Shogi

G
PS Shogi

G
ekisashi

Bonanza

YSS

For debugging
and behavior test

Fig. 1 Outline of entire system.

475467467

In 2011, Watson defeated two former winners of the quiz show
Jeopardy! [24]. Watson is a question answering system that can
carry out natural language processing and reasoning to answer
questions on a quiz show [25].

III. SETUP OF ENTIRE SYSTEM
Figure 1 shows the outline of the entire system. The workers

in the three sets (A, B, and C) individually compute their best
move for a given position. Each worker is one of the four
programs running on a single computer. Because the computer
has multiple cores, each worker carries out a shared-memory
parallel search of the given game tree. Sets A, B, and C connect
to servers 1, 2, and 4, respectively.

Server 1 continuously makes and runs shogi games between
two workers. For the server program, we used the shogi-server
program package that is available online. This program had been
maintained and run on the internet shogi server, Floodgate, for
the past two years [26]. For the purpose of programs and the
hardware test, game-server 1 had worker-set A and majority-
voting-server 2 connected for 24 hours. The game records and
log messages were continuously uploaded to the Web, and the
authors were able to check the activity of the system any time.

The system is able to play a game with human players using a
shogi-board Graphical User Interface (GUI) client connected to
game-server 1. We used the SFICP GUI program with some
modifications to suspension and resumption functions [27].

Majority-voting-server 2 and the following play the central
role in the entire system. The main role of server 2 is to gather
move opinions on the current game position from workers and
decide the move to play on the basis of majority voting, where
the weights of votes are adjustable parameters. Majority-voting
server 2 allows shutdowns and connections from workers
anytime in the middle of a game. However, at least one worker
has to be connected to guarantee the continuation of a game.

Unit 4 is a wrapper program that absorbs the difference in
communication protocols. Moreover, unit 4 manages to restart
each worker and establish a new connection again to the
majority-voting-server 2 when the old internet connection
experiences an interruption.

The dark-shaded box indicates the indispensable units to
continue a shogi game. These were necessary to display the
move decision of the system to the GUI client. Moreover, the
pondering function while the opponent is thinking was provided
by majority-voting-server 2, and the suspend-and-resume
function is provided by game-server 1, majority-voting-server 2,
and the GUI client. These indispensable units were composed
using reliable hardware and software that have passed more than
1000 game tests (see Table I).

On the other hand, the light-shaded box indicates optional
units that are designed to boost the performance of the entire
system. The purpose of the separation from the dark-shaded
ones is to utilize whatever hardware and system software are
available at that moment. The requirements for the workers
inside the light-shaded box are to result in a freezing or
termination state without sending low-quality moves when they

TABLE I. THE LIST OF COMPUTERS USED IN AKARA2010

Set Processor Number

Hongo Campus, the University of Tokyoa, b, c, d

B Intel Xeon W3680 3.33GHz, 6 cores 4

istbs Cluster, Graduate School of Information Science and Technology,
The University of Tokyoa, b, c

C
C

Intel Xeon 2.80GHz, 2 cores
Intel Xeon 2.40GHz, 2 cores

106
60

InTrigger5 Clustera, b, c, d
C
C
C

Intel Xeon X5560 2.80GHz, 8 cores
AMD Opteron 2380 2.4GHz, 8 cores
Intel Xeon E5410 2.33GHz, 8 cores

10
2
9

Komaba Campus, the University of Tokyob
C
C
C
C
C
C

Intel Xeon X5570 2.93GHz, 8 cores
Intel Xeon X5470 3.33GHz, 8 cores
Intel Xeon X5365 3.00GHz, 8 cores
AMD Opteron 2376 2.3GHz, 8 cores
AMD Opteron 280 2.4GHz, 4 cores
Intel Core2 Quad Q6700 2.66GHz, 4 cores

1
1
1
4
1
1

The University of Electro-Communicationsc

C
C
C
C

Intel X5680, 12 cores
Intel W3680, 6 cores
Intel Core i7 980X, 6 cores
Intel W3440, 4 cores

4
1
1
1

Kanagawad

C Intel Core i7 980X 3.3GHz, 6 cores 1
Used by aGekisashi, bGPS Shogi, cBonanza, and dYSS

1

31

Root Position

Multiple
Sequences

Single
Sequence

31

Root Position

1 2

1 1

Principal Variation A

Principal Variation B

Principal Variation C

Principal Variation D

Move
m1 Move m2

White to Play

Black to Play

Fig. 2 An example of the game tree and majority voting method.

476468468

experience abnormal behavior. Distributed-search-server 4
divides the game-tree into multiple sub-trees and assigns one of
these sub-trees to each worker in set C. These workers ran on the
cluster istbs, InTrigger5, and the other computers (see Table 1).

IV. MAJORITY VOTING METHOD
The primary goal of the majority-voting method is to make

each base program stronger by composing an ensemble of the
four programs. Because these programs are different, we are
able to have four different principal variations. Some variations
may branch off at the root node, while the others branch off at
some interior nodes. In the example shown in the left panel of
Fig. 2, the number in the nodes indicates votes, and move m2 is
the majority. The selection of m2 is unfounded in the strict sense.
However, one can speculate that the selection of m2 supported
by three programs is less risky than the other one supported by a
single program.

The right panel of Fig. 2 shows an example of a game tree,
where the majority voting is effective. There are four playable
move sequences. Because of the huge size of the game tree and
the limitation of the time control, we have no hope to verify
these sequences by in-depth consideration. Under this
circumstance, the selection of move m2 supported by three
playable sequences is reasonable. However, a single base
program has a probability of 0.25 to select move m1. Majority
voting is able to reduce this probability.

There are two more favorable properties of the majority-
voting method in addition to the enhancement of strength. The
first is fault tolerance. The standard tournament conditions of
shogi games are real-time games. Therefore, stable computations
and input/output functions are necessary to win a game.
However, to the best of our knowledge, existing distributed-
search methods do not take into account hardware and network
troubles. That is, the more computers, the more accidents. In
contrast, the majority-voting method is fault tolerant. The
majority-voting server allows the shutdown and connection of a
worker at any point in time. Therefore, whatever the number of
computers we use in the light-shaded box in Fig. 1, the
probability of having accidents is mostly determined only by
those in the dark-shaded box.

The second favorable property of the majority-voting method
is that it is difficult for a human player to predict the result of
votes in advance. This property is expected to help disturb the
opponent modeling of a human player. That is, even if she/he
knows a tactical deficiency of a specific program in advance,
she/he cannot use this knowledge to win the game when the
other programs do not have the same deficiency.

We design the majority-voting server to be as simple as
possible to avoid unexpected accidents. The server program is
written by using about 1000 lines of Perl script. The server
program had the following three phases:

Phase 1: The system considers a move to play. After waiting for

thinking-time t, the majority-voting server sends the
majority move to the game server and all workers. The
system proceeds to phase 2.

Phase 2: The system predicts the opponent’s move. As soon as it
receives the opponent’s move from the game server, the
systems forward it to all workers and returns to phase 1.
After waiting for a shorter time than t, the opponent is
assumed to play the majority move. The system sends
the predicted move to all workers and proceeds to
phase 3.

Phase 3: The system considers a response move to the predicted
move. It waits for the opponent’s move from the game
server. If the opponent’s move and the predicted move
are the same, then it returns to phase 1. Otherwise, the
system sends the opponent’s move as an alternating
move to all workers and then returns to phase 1.

If the system is the player who moves first, the phase starts

from 1; otherwise the phase starts from 2. To resume a
suspended game, the majority-voting server sends a move
sequence to the suspended position to all workers. Then the
phase starts from 1 if the system is the player who moves first
from the suspended position. Otherwise, it starts from 2.

The thinking-time t is determined in terms of the extent of
voting agreements. When all workers vote for the same move,
the time t is reduced by half from a standard thinking time. On
the other hand, when all workers vote for different moves, the
time t is increased up to twice from the standard thinking time.
The standard thinking time is set to consume 180 minutes by 60
moves.

The workers are required to carry out the following
processing:

� They keep on considering the best move for the current

position. As soon as the best move at the moment changes,
they send the new best move to the majority-voting server.

� When a move arrives from the majority-voting server, the
workers update the current position in accordance with the
move. Also, when an alternation move arrives from the
majority-voting server, they play back the last move of the
position and then update the current position in accordance
with the alternation move.

The workers also take care of the following auxiliary

functions:

5New IT Infrastructure for the Information-explosion Era, MEXT Grant-in-Aid
for Scientific Research on Priority Areas.

TABLE II. THE PERFORMANCE OF MAJORITY VOTING

Player Win

The majority voting of these four players 73%

Gekisashi 50%

GPS Shogi 36%

Bonanza 62%

YSS 37%

477469469

� They send the total nodes searched to the majority-voting
server at the right interval to keep network connections
alive.

� They send the opening signal when a worker recognizes the
current position an opening. This signal is used to reduce
the thinking time in early opening.

� They send the thinking-stop signal. This signal is sent when
a worker finds the current position in the opening database
or the position is solved. The majority-voting server is able
to play a move immediately when the majority is achieved
from workers that send this signal.

Table II shows the performance of the majority-voting

method. Each winning percentage is measured by 1000 games
whose opening moves are randomly chosen according to their
opening databases. The opponent of all games is Gekisashi,
and the winning percentage, 50%, of Gekisashi is a theoretical
value. For each move, all players use four seconds of the same
ordinary desktop computer with a sufficient memory allocation
for the transposition tables. To resolve tied votes, the weight of
the vote of Gekisashi is set to a value slightly higher than 1.
The majority voting provides the highest percentage, 73%.
Although these results are produced using the short time
control, they indicate that the majority voting using these four
programs is effective.

V. DISTRIBUTED SEARCH FOR GAME TREES
Distributed searches of the game tree remain challenging,

and a definitive method is still unknown. Because a distributed
computing environment needed to be practically used to build
the entire system, we adopted a simple master/slave model of
communication in this paper. In this section, we use the
terminologies master and slaves instead of server and worker.
That is, the distributed-search server is the master program, and
the workers in set C are the slave programs.

The master/slave model behaves as described by Kaneko and
Tanaka [13], and we summarize the model below:

� The master program expands a shallow and narrow tree T

rooted at the current node and assigns each slave to search for
a large tree rooted at a node contained in T. The small tree T
is composed on the basis of the move ordering of the slaves.

� The slave assigned a leaf node of T takes charge of all
children of the leaf node. On the other hand, the slave
assigned an internal node of T takes charge of all children
nodes that are not contained in T.

� Each slave sends its best child and the corresponding
evaluation value every time these are updated through their
tree searches and the master program updates and sends the
best move to the majority-voting server.

This distributed-search method is effective because each slave is
able to start a tree search from a deeper node than the current
node if the master program expands a proper small tree T. The
server program is written by about 2,500 lines of Perl script.

This distributed-search method has two advantages. The first
is the less-frequent communication between master and slave
programs. The size of messages that each slave has to send to
the master is less than 1000 bytes, and the communication
frequency is about once per second. The second is the
applicability to an existing program. The requirements for a
slave are to compute a good move ordering, the best child, and
an evaluation value. Note that any practical shogi program has
these functions.

The performance test using GPS Shogi and ordinary desktop
computers with the time control of 15 seconds per move shows
the effectiveness of our implementation. The distributed search
using eight slaves has a winning percentage of more than 70%
against a single slave program.

In the game on October 11, 2010, because most computers
had not been available for tests, the weights of votes from the
light-shaded box in Fig. 1 were set sufficiently smaller than 1 to
stay on the safe side. Although the distributed-search
components did not strongly influence the move decision, the
components were effectively used to determine thinking-time t
as described in Sec. IV.

VI. CONCLUSION
We have presented a system design to build a high-

performance computer shogi player. In the system design, we
have considered enhancing the performance by means of a
distributed computing environment. At the same time, we have
also considered the stabilization of the entire system to play a
game under standard tournament conditions. To utilize a large

all< new
Time limits: max=97.40 fine=48.80 easy=24.60s
YSS is confident in 7776FU.
all< move 7776FU 1
pid is set to 1.
Ponder on +7776FU.
8 valid ballots are found.
sum = 4.8

2.90 8384FU nps= 0.0K 0.2s Gekisashi final
1.90 8384FU nps= 0.0K 0.0s Bonanza final

sum = 4.2
1.00 3334FU nps= 0.0K 2.9s gpsshogi final
1.90 3334FU nps= 0.0K 0.7s YSS final
0.10 3334FU nps= 0.0K 0.2s yss_cluster final
0.10 3334FU nps= 0.0K 0.1s Bonanza_cluster final
1.00 3334FU nps= 0.0K 0.2s gpsshogi_cluster final
0.10 3334FU nps= 0.0K 0.1s gekisashi_cluster final

csa> +2726FU,T74
all< alter 2726FU 2
pid is set to 2.
Opponent made an unexpected move +2726FU,T74.
Time: 74s / 74s.

My turn starts.
Time limits: max=487.00 fine=244.00 easy=123.00s
YSS is confident in 3334FU.
csa< -3334FU
all< move 3334FU 3

- Initialize the board of all workers
- thinking time for opponent’s move prediction

max: upper limit
fine: overwhelming majority
easy: unanimous

- move 7776FU is found in YSS’s book
- send the move and position ID 1 to all workers

- start thinking for the move prediction
- majority voting of eight workers

solid box:
weight of vote and move oppinion

broken box:
total nodes searched in kilo-nodes
and total time spent in second

dotted box:
worker name
and thinking-stop signal (final)

- move 2726FU that is different from prediction is arrived from game server
- send alternating move 2726FU and positional ID 2 to all workers

- total time spent by opponent

- thinking time
- move 7776FU is found in YSS’s book
- send move 3334FU to game server
- send move 3334FU and position ID 3 to all workers

Fig. 3 Extract from log file of majority-voting server of game on October

11, 2010 and some explanations [28].

478470470

number of computers, a majority-voting method has been
combined with the distributed-search method. On the basis of
this system design, we have developed a shogi-machine, Akara
2010. The move decision has been made by the majority voting
of four programs: Gekisashi, GPS Shogi, Bonanza, and YSS.
Because the entire system of Akara 2010 had been operational
for only a few days, a statistically reliable test of the
performance was not available. We have carried out partial tests
of the entire system, where the majority-voting component
increased the winning probability from 62% to 73%, and the
distributed-search component increased it from 50% to 70% or
more. Moreover, Akara 2010 defeated a professional player in a
public game, the log file of which is available online (see Fig. 3).
These results indicate the effectiveness of our system design.

ACKNOWLEDGMENT
We are grateful to Professor Hitoshi Matsubara for the

fruitful discussion on the human-computer shogi match project.
We are also grateful to associate Professor Tsuyoshi Hashimoto
for the fruitful discussion on the shogi opening database. We are
grateful to Professor Hideyuki Nakashima for his support of this
work.

REFERENCES
[1] M. Campbel, A.J. Hoane, Jr., and F.-h. Hsu, “Deep blue”, Artificial

Intelligence, Elsevier, vol. 134, pp. 57-83, 2002.
[2] M. Crowther, The Week in Chess (TWIC) 771, August 17, 2009,

url: http://www.chess.co.uk/twic/twic771.html (last access: 2013).
[3] H. Iida, M. Sakuta, and J. Rollason, “Computer Shogi”, Artificial

Intelligence, Elsevier, vol. 134, pp. 121-144, 2002.
[4] H. Matubara, H. Iida, and R. Grimbergen, “Chess, Shogi, Go, A Natural

Development in Game Research”, ICCA Journal, International Computer
Chess Association (ICCA), vol. 19, pp. 103-112, 1996.

[5] D.E. Knuth and R.W. Moore, “An Analysis of Alpha-Beta Pruning”,
Artificial Intelligence, Elsevier, vol. 6, pp. 293-326, 1975.

[6] A.L. Zobrist, “A New Hashing Method with Application for Game
Playing”, ICCA Journal, International Computer Chess Association
(ICCA), vol. 13, pp. 69-73, 1990.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd
ed., Prentice Hall, 2002.

[8] R. Hyatt, “The DTS high-performance parallel tree search algorithm”,
url: http://www.cis.uab.edu/info/faculty/hyatt/search.html (last access:
2013).

[9] T. Obata, T. Sugiyama, K. Hoki, and T. Ito, “Consultation algorithm in
computer Shogi - a move decision by majority”, Computers and Games,
7th International Conference (CG2010), Kanazawa, Japan, 2010, H.J. van
den Herik, H. Iida, and A. Plaat Eds., Lecture Notes in Computer Science
(LNCS) 6515, Springer, 2011, pp. 156-165.

[10] Y. Tsuruoka, D. Yokoyama, T. Chikayama, “Game-tree search algorithm
based on realization probability”, ICGA Journal, International Computer
Games Association (ICGA), vol. 25, pp. 145-152, 2002.

[11] K. Hoki and M. Muramatsu, “Efficiency of three forward-pruning
techniques in shogi: Futility pruning, null-move pruning, and Late Move

Reduction (LMR)”, Entertainment Computing, Elsevier, vol. 3, pp. 51-57,
2012.

[12] K. Hoki, “Optimal control of minimax search results to learn positional
evaluation”, 11th Game Programing Workshop, Kanagawa, Japan, 2006,
pp. 78–83 (in Japanese).

[13] T. Kaneko and T. Tanaka, “Distributed game-tree search based on
prediction of best moves”, IPSJ Journal, Information Processing Society of
Japan (IPSJ), vol. 53, pp. 2517-2524, 2012 (in Japanese).

[14] C. Donninger and U. Lorenz, “The chess monster Hydra”, Proc. of 14th
international conference on field-programmable logic and applications
(FPL), Antwerp, Belgium. Lecture Notes in Computer Science (LNCS)
3203, Springer-Verlag, 2004, pp. 927-932.

[15] R. Feldmann, P. Mysliwietz, and B. Monien, “A fully distributed chess
program”, Advances in Computer Chess 6, D.F. Beal Ed., Ellis Horwood
Series in Artificial Intelligence, 1991.

[16] M.G. Brockington and J. Schaeffer, “The APHID parallel alpha-beta
search algorithm”, IEEE Symposium of Parallel and Distributed Processing
(SPDP'96), New Orleans, USA, 1996.

[17] A. Kishimoto and J. Schaeffer, “Transposition table driven work
scheduling in distributed game-tree search”, 15th Conference of the
Canadian Society for Computational Studies of Intelligence on Advances
in Artificial Intelligence (AI 2002), Calgary, Canada, R. Cohen and
B. Spencer Eds., Lecture Notes in Artificial Intelligence (LNAI) 2338,
Springer-Verlag, 2002, pp. 56-68.

[18] K. Himstedt, U. Lorenz, D.P.F. Möller, “A twofold distributed game-tree
search approach using interconnected clusters”, 14th International Euro-Par
Conference, Lecture Notes in Computer Science (LNCS) 5168, Springer,
2008, pp. 587-598.

[19] K. Himstedt, “GridChess: combining optimistic pondering with the young
brothers wait concept”, ICGA Journal, International Computer Games
Association (ICGA), vol. 35, pp. 67-79, 2012.

[20] I. Althöfer, and R.G. Snatzke, “Playing games with multiple choice
system”, Computer and Games, third international conference, (CG2002),
Edmonton, Canada, 2002, J. Schaeffer, M. Müller, and Y. Björnssonpp
Eds., Lecture Notes in Computer Science (LNCS) 2883, Springer, 2003,
pp. 142-153.

[21] S. Omori, K. Hoki, and T. Ito, “Performance Analysis of Consultation
Methods in Computer Chess”, The 2012 Conference on Technologies and
Applications of Artificial Intelligence (TAAI 2012), Tainan, Taiwan, 2012.

[22] Y. Soejima, A. Kishimoto, and O. Watanabe, “Evaluating root
parallelization in Go”, IEEE Transactions on Computational Intelligence
and AI in Games, IEEE, vol. 2, pp. 278-287, 2010.

[23] T. Ito, “Consultation Player “Monju” - A Majority Rule to Increasing the
Winning Rate”, IPSJ Magazine, IPSJ Journal, Information Processing
Society of Japan (IPSJ), vol. 50, pp. 887-894, 2009 (in Japanese).

[24] J. Markoff, “Computer wins on ‘Jeopardy!’: Trivial, It’s Not”, The New
York Times, 2011, url: http://www.nytimes.com/2011/02/17/science/
17jeopardy-watson.html (last access 2013).

[25] D. Ferrucci et al., “Building watson: an overview of the DeepQA project”,
AI Magazine, Association for the Advancement of Artificial Intelligence
(AAAI), vol. 31, pp. 59-79, 2010.

[26] Internet computer shogi server Floodgate, url: http://wdoor.c.u-
tokyo.ac.jp/shogi/ (last access: 2013) (in Japanese).

[27] J. Takada, Shogi Framework Implements CSA Protocol,
url: http://www.junichi-takada.jp/sficp/ (last access: 2013) (in Japanese).

[28] Utl: http://www.ipsj.or.jp/50anv/shogi/20101012-2.html (last access: 2013)

479471471

