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Abstract— This paper describes Akara 2010, the distributed 
shogi system that has defeated a professional shogi player in a 
public game for the first time in history. The system employs a 
novel design to build a high-performance computer shogi player for 
standard tournament conditions. The design enhances the 
performance of the entire system by means of distributed 
computing. To utilize a large number of computers, a majority-
voting method using four existing programs is combined with a 
distributed-search method. Although the performance of the entire 
system could not be tested, the majority-voting component 
increased the winning percentage from 62% to 73%, and the 
distributed-search component increased it from 50% to 70% or 
more. 

Keywords—chess variant; shogi; distriuted search; majority 
voting; Akara 2010 

I.  INTRODUCTION 
Human-computer chess matches have provided an index of 

advances in modern artificial intelligence. One of the most 

prominent pieces of historical evidence has been provided by 
Deep Blue, which won the six-game match against Garry 
Kasparov by one point in 1997 [1]. Since then, chess machines 
have started playing chess better than top-level human players. 
Nowadays, programs running on mobile phones seem to have 
reached the grandmaster level, and Pocket Fritz 4 won the Copa 
Mercosur tournament in 2009 [2]. 

In creating artificial intelligence, shogi (a Japanese chess 
variant) is probably a more difficult target than chess [3]. 
Because shogi has a dropping rule, i.e., a captured piece can be 
dropped back onto the board, the average number of legal moves 
is greater than in chess (the raw branching factor in shogi is 
around 80) [4]. This suggests that a shogi program needs to 
search a much larger game tree than a chess program to reach 
the grandmaster level. In fact, human-computer shogi matches 
are still challenging for a computer player in 2013. 

In chess and shogi, the performance of game-tree searches is 
considerably improved by pruning techniques, such as alpha-
beta pruning [5], with the use of a large transposition table [6, 7]. 

This research has been supported by the Information Processing Society of Japan 
(IPSJ). 
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Therefore, a distributed search should visit more nodes in the 
tree than a single-processor search does without losing the 
efficiency of such pruning techniques. Compared to SMP 
parallelization such as dynamic tree splitting (DTS) [8], the 
difficulty of distributed computing comes from the limitation 
in network-connection speed between multiple processors: (i) 
synchronization of individual searches at each processor 
when one processor experiences a beta cutoff, and (ii) 
management of the large transposition table that has to be 
updated and probed frequently by the multiple processors. 

In this paper, we discuss distributed computing in shogi to 
play grandmaster-level games. We propose a novel design to 
build a high-performance yet fault-tolerant system for 
demonstrations in standard tournament conditions of shogi. 
Our system design utilizes multiple existing shogi programs. 
It also utilizes massive computer resources, i.e., a lot of 
existing computers of various architectures at various places 
with internet connections. 

Our system uses the majority-voting method proposed by 
Obata et al. [9]. The voters are four different existing 
programs, Gekisashi1 [10], GPS Shogi2, Bonanza3 [11], and 
YSS4. Their performance is enhanced by state-of-the-art 
techniques such as machine learning of evaluation functions, 
which has now become common practice in computer shogi 
due to the successful application in Bonanza [12]. Given a 
large number of available computers, the majority-voting 
method is combined with the distributed-game-tree-search 
method [13]. 

The shogi program Akara 2010 has been developed on the 
basis of this proposal and defeated one of the top female players, 
Ichiyo Shimizu, on October 11, 2010. Here, the game used a 
standard time control, i.e., 180 minutes plus a 60-second 
countdown. This was the first time a shogi machine defeated a 
professional in a public game. Moreover, some new results of 
the majority-voting method are presented in this paper. 

II. RELATED WORK 
Distributed computing of game-tree searches has been 

extensively studied. One prominent strategy for using a massive 
computer resource is to build specialized hardware for the game-
playing program to lift the limitation in network-connection 
speed. Deep Blue [1] and Hydra [14] are famous examples of 
massively parallelized chess machines. 

The second strategy for distributed computing is to improve 
the divisions of the tasks on the bases of alpha-beta pruning, 
where the entire game tree is decomposed into multiple sub-trees. 
One naive way would be to divide the tasks at the root position. 
Here, all children of the root node are partitioned among the 
multiple processors, and each processor takes charge of the 
subset of the children by using a local transposition table. Since 
this naive way does not change the subsets throughout an entire 
search, all separate tasks across multiple processors can be 
independently computed without frequent network 
communication. One important extension from such a naive 
parallelization would be dividing the tree not only at the root 

node but also at multiple interior nodes of different depths. Such 
an extension can be found in early work, e.g., the young brothers 
wait concept (YBWC) [15], asynchronous parallel game-tree 
search (APHID) [16], and transposition-table driven scheduling 
alpha-beta (TDSAB) [17]. 

The third strategy is the extended use of pondering 
methods [18, 19]. In an ordinary pondering method, the 
expected move of the opponent is considered as already played, 
and a computer player starts searching during the opponent’s 
thinking time to avoid the computer being idle while the 
opponent is thinking. The reported method is to start searching 
speculatively ahead on the basis of the expected move sequence 
during both the player’s and opponent’s thinking time. 

Althöfer and Snatzke have reported 3-Hirn in two-player 
games [20], where two programs provide move opinions and a 
human selects a single move from these two. Therefore, the 
majority-voting method can be regarded as a reduction from 3-
Hirn, where the human intervention in two computer programs 
is removed. The majority voting has been applied to shogi [9] 
and chess [21]. Moreover, it has been reported that majority 
voting is even effective in the Monte-Carlo tree search of Go 
programs [22]. 

The majority-voting method utilizes the distributed 
environment for better performance. This was demonstrated in 
tournament conditions in 2009 [23]. The distributed shogi-tree 
search has also been demonstrated in tournament conditions in 
2010 [13]. The notable advantage of these methods is simplicity, 
and most existing shogi programs can be made into worker 
programs with minimal modifications. 

Recently, an artificial intelligence system has challenged 
human experts in games other than variants of two-player games. 

1Developed by Y. Tsuruoka, D. Yokoyama et al., commercial software from 
Mynavi corporation. 
2T. Kaneko, T. Tetsuro et al., source codes are available online from 
http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/. 

3Developed by K. Hoki, commercial software from Magnoria, Inc., source codes 
are available online from http://www.geocities.jp/bonanza_shogi/. 
4Developed by H. Yamashita, commercial software (named AI Shogi) from e 
frontier, Inc. 
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Fig. 1 Outline of entire system. 
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In 2011, Watson defeated two former winners of the quiz show 
Jeopardy! [24]. Watson is a question answering system that can 
carry out natural language processing and reasoning to answer 
questions on a quiz show [25]. 

III. SETUP OF ENTIRE SYSTEM 
Figure 1 shows the outline of the entire system. The workers 

in the three sets (A, B, and C) individually compute their best 
move for a given position. Each worker is one of the four 
programs running on a single computer. Because the computer 
has multiple cores, each worker carries out a shared-memory 
parallel search of the given game tree. Sets A, B, and C connect 
to servers 1, 2, and 4, respectively. 

Server 1 continuously makes and runs shogi games between 
two workers. For the server program, we used the shogi-server 
program package that is available online. This program had been 
maintained and run on the internet shogi server, Floodgate, for 
the past two years [26]. For the purpose of programs and the 
hardware test, game-server 1 had worker-set A and majority-
voting-server 2 connected for 24 hours. The game records and 
log messages were continuously uploaded to the Web, and the 
authors were able to check the activity of the system any time. 

The system is able to play a game with human players using a 
shogi-board Graphical User Interface (GUI) client connected to 
game-server 1. We used the SFICP GUI program with some 
modifications to suspension and resumption functions [27]. 

Majority-voting-server 2 and the following play the central 
role in the entire system. The main role of server 2 is to gather 
move opinions on the current game position from workers and 
decide the move to play on the basis of majority voting, where 
the weights of votes are adjustable parameters. Majority-voting 
server 2 allows shutdowns and connections from workers 
anytime in the middle of a game. However, at least one worker 
has to be connected to guarantee the continuation of a game. 

Unit 4 is a wrapper program that absorbs the difference in 
communication protocols. Moreover, unit 4 manages to restart 
each worker and establish a new connection again to the 
majority-voting-server 2 when the old internet connection 
experiences an interruption. 

The dark-shaded box indicates the indispensable units to 
continue a shogi game. These were necessary to display the 
move decision of the system to the GUI client. Moreover, the 
pondering function while the opponent is thinking was provided 
by majority-voting-server 2, and the suspend-and-resume 
function is provided by game-server 1, majority-voting-server 2, 
and the GUI client. These indispensable units were composed 
using reliable hardware and software that have passed more than 
1000 game tests (see Table I). 

On the other hand, the light-shaded box indicates optional 
units that are designed to boost the performance of the entire 
system. The purpose of the separation from the dark-shaded 
ones is to utilize whatever hardware and system software are 
available at that moment. The requirements for the workers 
inside the light-shaded box are to result in a freezing or 
termination state without sending low-quality moves when they 

TABLE I.  THE LIST OF COMPUTERS USED IN AKARA2010 

Set Processor Number 

Hongo Campus, the University of Tokyoa, b, c, d 

B Intel Xeon W3680 3.33GHz, 6 cores 4 

istbs Cluster, Graduate School of Information Science and Technology,
The University of Tokyoa, b, c 

C 
C 

Intel Xeon 2.80GHz, 2 cores 
Intel Xeon 2.40GHz, 2 cores 

106 
60 

InTrigger5 Clustera, b, c, d 
C 
C 
C 

Intel Xeon X5560 2.80GHz, 8 cores 
AMD Opteron 2380 2.4GHz, 8 cores 
Intel Xeon E5410 2.33GHz, 8 cores 

10 
2 
9 

Komaba Campus, the University of Tokyob 
C 
C 
C 
C 
C 
C 

Intel Xeon X5570 2.93GHz, 8 cores 
Intel Xeon X5470 3.33GHz, 8 cores 
Intel Xeon X5365 3.00GHz, 8 cores 
AMD Opteron 2376 2.3GHz, 8 cores 
AMD Opteron 280 2.4GHz, 4 cores 
Intel Core2 Quad Q6700 2.66GHz, 4 cores 

1 
1 
1 
4 
1 
1 

The University of Electro-Communicationsc 

C 
C 
C 
C 

Intel X5680, 12 cores 
Intel W3680, 6 cores 
Intel Core i7 980X, 6 cores 
Intel W3440, 4 cores 

4 
1 
1 
1 

Kanagawad 

C Intel Core i7 980X 3.3GHz, 6 cores 1 
Used by aGekisashi, bGPS Shogi, cBonanza, and dYSS 
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Fig. 2 An example of the game tree and majority voting method. 
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experience abnormal behavior. Distributed-search-server 4 
divides the game-tree into multiple sub-trees and assigns one of 
these sub-trees to each worker in set C. These workers ran on the 
cluster istbs, InTrigger5, and the other computers (see Table 1).  

IV. MAJORITY VOTING METHOD 
The primary goal of the majority-voting method is to make 

each base program stronger by composing an ensemble of the 
four programs. Because these programs are different, we are 
able to have four different principal variations. Some variations 
may branch off at the root node, while the others branch off at 
some interior nodes. In the example shown in the left panel of 
Fig. 2, the number in the nodes indicates votes, and move m2 is 
the majority. The selection of m2 is unfounded in the strict sense. 
However, one can speculate that the selection of m2 supported 
by three programs is less risky than the other one supported by a 
single program. 

The right panel of Fig. 2 shows an example of a game tree, 
where the majority voting is effective. There are four playable 
move sequences. Because of the huge size of the game tree and 
the limitation of the time control, we have no hope to verify 
these sequences by in-depth consideration. Under this 
circumstance, the selection of move m2 supported by three 
playable sequences is reasonable. However, a single base 
program has a probability of 0.25 to select move m1. Majority 
voting is able to reduce this probability. 

There are two more favorable properties of the majority-
voting method in addition to the enhancement of strength. The 
first is fault tolerance. The standard tournament conditions of 
shogi games are real-time games. Therefore, stable computations 
and input/output functions are necessary to win a game. 
However, to the best of our knowledge, existing distributed-
search methods do not take into account hardware and network 
troubles. That is, the more computers, the more accidents. In 
contrast, the majority-voting method is fault tolerant. The 
majority-voting server allows the shutdown and connection of a 
worker at any point in time. Therefore, whatever the number of 
computers we use in the light-shaded box in Fig. 1, the 
probability of having accidents is mostly determined only by 
those in the dark-shaded box. 

The second favorable property of the majority-voting method 
is that it is difficult for a human player to predict the result of 
votes in advance. This property is expected to help disturb the 
opponent modeling of a human player. That is, even if she/he 
knows a tactical deficiency of a specific program in advance, 
she/he cannot use this knowledge to win the game when the 
other programs do not have the same deficiency. 

We design the majority-voting server to be as simple as 
possible to avoid unexpected accidents. The server program is 
written by using about 1000 lines of Perl script. The server 
program had the following three phases: 

 
Phase 1: The system considers a move to play. After waiting for 

thinking-time t, the majority-voting server sends the 
majority move to the game server and all workers. The 
system proceeds to phase 2. 

Phase 2: The system predicts the opponent’s move. As soon as it 
receives the opponent’s move from the game server, the 
systems forward it to all workers and returns to phase 1. 
After waiting for a shorter time than t, the opponent is 
assumed to play the majority move. The system sends 
the predicted move to all workers and proceeds to 
phase 3. 

Phase 3: The system considers a response move to the predicted 
move. It waits for the opponent’s move from the game 
server. If the opponent’s move and the predicted move 
are the same, then it returns to phase 1. Otherwise, the 
system sends the opponent’s move as an alternating 
move to all workers and then returns to phase 1. 

 
If the system is the player who moves first, the phase starts 

from 1; otherwise the phase starts from 2. To resume a 
suspended game, the majority-voting server sends a move 
sequence to the suspended position to all workers. Then the 
phase starts from 1 if the system is the player who moves first 
from the suspended position. Otherwise, it starts from 2. 

The thinking-time t is determined in terms of the extent of 
voting agreements. When all workers vote for the same move, 
the time t is reduced by half from a standard thinking time. On 
the other hand, when all workers vote for different moves, the 
time t is increased up to twice from the standard thinking time. 
The standard thinking time is set to consume 180 minutes by 60 
moves. 

The workers are required to carry out the following 
processing: 

 
� They keep on considering the best move for the current 

position. As soon as the best move at the moment changes, 
they send the new best move to the majority-voting server. 

� When a move arrives from the majority-voting server, the 
workers update the current position in accordance with the 
move. Also, when an alternation move arrives from the 
majority-voting server, they play back the last move of the 
position and then update the current position in accordance 
with the alternation move. 
 
The workers also take care of the following auxiliary 

functions: 
 

5New IT Infrastructure for the Information-explosion Era, MEXT Grant-in-Aid 
for Scientific Research on Priority Areas. 

TABLE II.  THE PERFORMANCE OF MAJORITY VOTING 

Player Win 

The majority voting of these four players 73% 

Gekisashi 50% 

GPS Shogi 36% 

Bonanza 62% 

YSS 37% 
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� They send the total nodes searched to the majority-voting 
server at the right interval to keep network connections 
alive. 

� They send the opening signal when a worker recognizes the 
current position an opening. This signal is used to reduce 
the thinking time in early opening. 

� They send the thinking-stop signal. This signal is sent when 
a worker finds the current position in the opening database 
or the position is solved. The majority-voting server is able 
to play a move immediately when the majority is achieved 
from workers that send this signal. 

 
Table II shows the performance of the majority-voting 

method. Each winning percentage is measured by 1000 games 
whose opening moves are randomly chosen according to their 
opening databases. The opponent of all games is Gekisashi, 
and the winning percentage, 50%, of Gekisashi is a theoretical 
value. For each move, all players use four seconds of the same 
ordinary desktop computer with a sufficient memory allocation 
for the transposition tables. To resolve tied votes, the weight of 
the vote of Gekisashi is set to a value slightly higher than 1. 
The majority voting provides the highest percentage, 73%. 
Although these results are produced using the short time 
control, they indicate that the majority voting using these four 
programs is effective. 

V. DISTRIBUTED SEARCH FOR GAME TREES 
Distributed searches of the game tree remain challenging, 

and a definitive method is still unknown. Because a distributed 
computing environment needed to be practically used to build 
the entire system, we adopted a simple master/slave model of 
communication in this paper. In this section, we use the 
terminologies master and slaves instead of server and worker. 
That is, the distributed-search server is the master program, and 
the workers in set C are the slave programs. 

The master/slave model behaves as described by Kaneko and 
Tanaka [13], and we summarize the model below: 

 
� The master program expands a shallow and narrow tree T  

rooted at the current node and assigns each slave to search for 
a large tree rooted at a node contained in T. The small tree T  
is composed on the basis of the move ordering of the slaves. 

� The slave assigned a leaf node of T takes charge of all 
children of the leaf node. On the other hand, the slave 
assigned an internal node of T takes charge of all children 
nodes that are not contained in T. 

� Each slave sends its best child and the corresponding 
evaluation value every time these are updated through their 
tree searches and the master program updates and sends the 
best move to the majority-voting server. 
 

This distributed-search method is effective because each slave is 
able to start a tree search from a deeper node than the current 
node if the master program expands a proper small tree T. The 
server program is written by about 2,500 lines of Perl script.  

This distributed-search method has two advantages. The first 
is the less-frequent communication between master and slave 
programs. The size of messages that each slave has to send to 
the master is less than 1000 bytes, and the communication 
frequency is about once per second. The second is the 
applicability to an existing program. The requirements for a 
slave are to compute a good move ordering, the best child, and 
an evaluation value. Note that any practical shogi program has 
these functions. 

The performance test using GPS Shogi and ordinary desktop 
computers with the time control of 15 seconds per move shows 
the effectiveness of our implementation. The distributed search 
using eight slaves has a winning percentage of more than 70% 
against a single slave program. 

In the game on October 11, 2010, because most computers 
had not been available for tests, the weights of votes from the 
light-shaded box in Fig. 1 were set sufficiently smaller than 1 to 
stay on the safe side. Although the distributed-search 
components did not strongly influence the move decision, the 
components were effectively used to determine thinking-time t 
as described in Sec. IV. 

VI. CONCLUSION 
We have presented a system design to build a high-

performance computer shogi player. In the system design, we 
have considered enhancing the performance by means of a 
distributed computing environment. At the same time, we have 
also considered the stabilization of the entire system to play a 
game under standard tournament conditions. To utilize a large 

all< new
Time limits: max=97.40 fine=48.80 easy=24.60s
YSS is confident in 7776FU.
all< move 7776FU 1
pid is set to 1.
Ponder on +7776FU.
8 valid ballots are found.
sum = 4.8

2.90 8384FU nps= 0.0K 0.2s Gekisashi final
1.90 8384FU nps= 0.0K 0.0s Bonanza final

sum = 4.2
1.00 3334FU nps= 0.0K 2.9s gpsshogi final
1.90 3334FU nps= 0.0K 0.7s YSS final
0.10 3334FU nps= 0.0K 0.2s yss_cluster final
0.10 3334FU nps= 0.0K 0.1s Bonanza_cluster final
1.00 3334FU nps= 0.0K 0.2s gpsshogi_cluster final
0.10 3334FU nps= 0.0K 0.1s gekisashi_cluster final

csa> +2726FU,T74
all< alter 2726FU 2
pid is set to 2.
Opponent made an unexpected move +2726FU,T74.
Time: 74s / 74s.

My turn starts.
Time limits: max=487.00 fine=244.00 easy=123.00s
YSS is confident in 3334FU.
csa< -3334FU
all< move 3334FU 3

- Initialize the board of all workers
- thinking time for opponent’s move prediction

max: upper limit
fine: overwhelming majority
easy: unanimous

- move 7776FU is found in YSS’s book
- send the move and position ID 1 to all workers 

- start thinking for the move prediction
- majority voting of eight workers

solid box: 
weight of vote and move oppinion

broken box: 
total nodes searched in kilo-nodes
and total time spent in second

dotted box: 
worker name 
and thinking-stop signal (final)

- move 2726FU that is different from prediction is arrived from game server
- send alternating move 2726FU and positional ID 2 to all workers

- total time spent by opponent

- thinking time
- move 7776FU is found in YSS’s book
- send move 3334FU to game server
- send move 3334FU and position ID 3 to all workers

 
Fig. 3 Extract from log file of majority-voting server of game on October 

11, 2010 and some explanations [28]. 
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number of computers, a majority-voting method has been 
combined with the distributed-search method. On the basis of 
this system design, we have developed a shogi-machine, Akara 
2010. The move decision has been made by the majority voting 
of four programs: Gekisashi, GPS Shogi, Bonanza, and YSS. 
Because the entire system of Akara 2010 had been operational 
for only a few days, a statistically reliable test of the 
performance was not available. We have carried out partial tests 
of the entire system, where the majority-voting component 
increased the winning probability from 62% to 73%, and the 
distributed-search component increased it from 50% to 70% or 
more. Moreover, Akara 2010 defeated a professional player in a 
public game, the log file of which is available online (see Fig. 3). 
These results indicate the effectiveness of our system design. 
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