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Abstract—The prevalence of multi-core processors has raised
the question of whether applications can use the increasing
number of cores efficiently in order to provide predictable
quality of service (QoS). In this paper, we study the horizontal
scalability of n-tier application performance within a multi-
core processor (MCP). Through extensive measurements of
the RUBBoS benchmark, we found one major source of
performance variations within MCP: the mapping of cores to
virtual CPUs can significantly lower on-chip cache hit ratio,
causing performance drops of up to 22% without obvious
changes in resource utilization. After we eliminated these
variations by fixing the MCP core mapping, we measured the
impact of three mainstream hypervisors (the dominant Com-
mercial Hypervisor, Xen, and KVM) on intra-MCP horizontal
scalability. On a quad-core dual-processor (total 8 cores), we
found some interesting similarities and dissimilarities among
the hypervisors. An example of similarities is a non-monotonic
scalability trend (throughput increasing up to 4 cores and then
decreasing for more than 4 cores) when running a browse-
only CPU-intensive workload. This problem can be traced to
the management of last level cache of CPU packages. An ex-
ample of dissimilarities among hypervisors is their handling of
write operations in mixed read/write, I/O-intensive workloads.
Specifically, the Commercial Hypervisor is able to provide
more than twice the throughput compared to KVM. Our
measurements show that both MCP cache architecture and the
choice of hypervisors indeed have an impact on the efficiency
and horizontal scalability achievable by applications. However,
despite their differences, all three mainstream hypervisors have
difficulties with the intra-MCP horizontal scalability beyond 4
cores for n-tier applications.

Keywords-virtualization; QoS; multi-core; scalability; cloud;
hypervisor; performance comparison; RUBBoS; n-tier;

I. INTRODUCTION
Providing predictable quality of service (QoS) is an im-

portant goal for web-facing applications in cloud environ-
ments. The prevalence of multi-core processors (MCPs) in
computing clouds and data centers today has raised the ques-
tion of whether applications can use the increasing number
of cores efficiently in order to provide predictable QoS. On a
physical chip, an MCP often has a hierarchical organization
with multiple CPUs each having multiple cores. A dual-
CPU quad-core processor would have 2 CPUs, each with

four cores. One of the most important challenges in clouds
and data centers is the intra-MCP horizontal scalability of
system software. This is often attempted through virtual-
ization, where a hypervisor maps virtual CPUs (vCPU)
of a virtual machine (VM) into physical cores. The intra-
MCP horizontal scalability is a particular problem for n-
tier applications and systems due to the several layers and
various system component choices. In this paper, we run
extensive experiments to measure and compare the intra-
MCP horizontal scalability of n-tier server components.
The first contribution of the paper is the identification of

an important source of measurement variance: mapping of
vCPUs to physical cores. For a dual-CPU MCP, mapping
4 vCPUs to a single CPU (with 4 cores on the same
memory bank and cache) produced significant performance
gains compared to mapping 4 vCPUs to two CPUs that
do not share cache. The performance gains of up to 22%
are achieved without any obvious sign of resource under-
utilization, since cores remain ”busy” when cache misses
and they have to await the memory access. By pinning
vCPUs to appropriate physical cores we were able to elim-
inate this source of variance and accurately compare the
performance differences due to 3 mainstream hypervisors
(Section III).
The second and main contribution of the paper is an

experimental comparative study of 3 major hypervisors with
regard to their support of n-tier applications running on
MCP. Concretely, we ran an n-tier application benchmark
(RUBBoS [1]) on 3 major hypervisors (i.e., the dominant
Commercial Hypervisor, XEN, and KVM) to compare their
support of intra-MCP horizontal performance scalability.
Our data shows that the hypervisors showed both similarities
and dissimilarities.
For similarities, we observed a non-monotonic scalability

trend to multi-cores across all three hypervisors when run-
ning a browse-only CPU-intensive workload. For instance,
we found that the system was only able to scale linearly up
to four cores and five cores onward the throughput starts
to deteriorate while all cores were still fully utilized. This
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problem can be traced to the CPU overhead induced by
inefficient management of the last level cache (LLC) in
CPU packages (Section IV). For dissimilarities, we found
that each hypervisor has its own strategy of handling write
operations (i.e., I/O). Due to this difference, we observed
significant performance differences among hypervisors when
running a mixed read/write I/O-intensive workload. Specifi-
cally, XEN outperforms the Commercial Hypervisor by 22%
and the Commercial Hypervisor is able to provide more than
twice the throughput compared to KVM (Section V).
Our empirical analysis suggests that in order for enterprise

n-tier applications to better scale in multi-core virtualization
environments, both MCP cache architecture and the choice
of hypervisors should be considered integral components.
However despite their differences, performance scalability
of n-tier applications beyond four cores remains a challenge
for all three mainstream virtualization technologies.
The remainder of this paper is organized as follows. The

next section presents the description of our experimental
setup including the profiling environments, tools and bench-
mark. Subsequently, Section III introduces the performance
variation induced by core mapping. Section IV describes
a non-monotonic scalability trend to multi-core processors.
Section V illustrates performance difference among hyper-
visors. Finally, we present the related work in Section VI
and conclude our work in Section V.

II. EXPERIMENTAL SETUP
While the intra-MCP horizontal scalability may be eval-

uated using any type of application, the focus of this paper
is n-tier applications with LAMP (Linux, Apache, MySQL,
and PHP) implementations. Typically, n-tier applications
are organized as a pipeline of servers1, starting from web
servers (e.g., Apache), through application servers (e.g.,
Tomcat), and ending in database servers (e.g., MySQL). This
organization, commonly referred to as n-tier architecture
(e.g., 3-tier in Figure 1(a)), serves many important web-
facing applications such as e-commerce, customer relation-
ship management, and logistics.
In our experiments, we adopt the RUBBoS n-tier bench-

mark, based on bulletin board applications such as Slash-
dot [1]. RUBBoS has been widely used in numerous research
efforts due to its real production system significance. The
workload includes 24 different interactions such as register
user or view story. The benchmark includes two kinds of
workload modes: browse-only and read/write interaction
mixes. Our default experiment trial consists of a three-
minute ramp-up, a three-minute runtime, and a 30-second
ramp-down. We run the RUBBoS benchmark in a 3-tier
system (Figure 1(a)) with workload raging from 1000 up
to 35000 users while scaling the system from one up to

1In this paper, server is used in the sense of computer programs serving
client requests. Hardware is referred to as a physical computing node or
node for short.
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(a) 3-tier application system with seven servers (i.e., web,
application, and database) and four physical hardware nodes
in total. Two dedicated web/app server VMs are co-located on
a single physical hardware node.
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(b) Details of resource mapping between web/app server VMs
and a shared physical hardware node. The VMs’ virtual CPUs
and memory are explicitly mapped to separate physical CPU
packages and memory banks to mitigate interference.

Figure 1: Example of a 3-tier application system deploy-
ment, presented as mappings of virtual machines to physical
hardware nodes.

eight cores under four different environments. We exploit
hardware-assisted VM (HVM) and performance measure-
ments (e.g., CPU utilization) are taken during the runtime
period using Sysstat and Collectl at one and 0.1 second
granularity respectively. We utilize OProfile and Xenoprof
to monitor last level cache misses from host.

CPU Quad Xeon 2.27GHz * 2 CPU (8M L3 Cache)
Memory 16GB (8GB per Memory Bank)
HDD SATA, 7200RPM, 500GB
Network I/F 1Gbps
Web Server HTTPD-2.2.22
App Server Apache Tomcat-5.5.17
Connector Tomcat Connectors-1.2.32-src
DB Server Mysql-5.5.28-linux2.6-x86 64
Java JDK-1.6 23
Monitoring Tools Sysstat, OProfile(Xenoprof), Collectl
Hypervisor Commercial Hypervisor (CH), KVM, XEN
Virtualization Type Full virtualization (HVM)
Guest OS RHEL Server 6.3 64-bit
Guest OS Kernel 2.6.32-279.19.1.el6.x86 64

Table I: Summary of experimental setup (i.e., hardware, op-
erating system, software, and virtualization environments).

At an abstract level, the deployment of n-tier applications
in a cloud computing infrastructure can be modeled as a
mapping between component servers and physical comput-
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(a) Throughput comparison between the two
4-core mappings (4 cores in 1 CPU package
vs 2 cores in 2 CPU packages); VMs mapped
with cores in same CPU package provides
22% more performance than VMs with cores
mapped to different CPU packages.
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(b) CPU utilization comparison between the
two 4-core mappings (4 cores in 1 CPU
package vs 2 cores in 2 CPU packages);
While both mappings report 100% CPU
utilization, cores mapped to different CPU
packages saturate earlier.
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(c) Comparison of LLC misses per core be-
tween the two 4-core mappings; Cores in
two different CPU packages showed overall
128% more LLC misses and the cores used
in both mappings get less efficient due to
significant increase in LLC misses.

Figure 2: Analysis of performance variation induced by core mapping.

ing nodes. Figure 1(a) exemplifies our n-tier application
deployment with two web server virtual machines (VM),
four application server virtual machines, and one dedicated
database server virtual machine. Other than the database
server VM, each server VM has two virtual cores (virtual
CPUs), 2GB of memory, and 20GB HDD and we co-
located two server VMs on a single physical node using the
dominant Commercial Hypervisor2 (CH) as illustrated in the
Figure 1. In order to mitigate interference between the two
co-located VMs, each VM’s virtual resources are explicitly
mapped (i.e., pin) to separate physical CPU packages and
memory banks as shown in Figure 1(b). Through extensive
experiments we confirmed that this topology does not intro-
duce any artificial bottlenecks induced by VM co-location in
web-tier and application-tier; however these empirical results
are omitted here due to space constraints. Other important
characteristics of our experimental testbed are summarized
in Table I.

III. PERFORMANCE VARIATIONS
INDUCED BY CORE MAPPING

When we started running the experiments outlined in
Sections II and IV, we encountered significant variance
in the measurement results as we repeated exactly the
same experiments (hardware and software). This variance
(up to more than 20%) has been reported anecdotally in
various cloud environments for a variety of benchmarks,
but to the best of our knowledge its sources have yet to
be unambiguously identified. This variance is a significant
problem in the analysis of our experimental results, since
it is about the same order of magnitude as the measured
differences among the hypervisors.

2Due to licensing and copy rights issues which prevent publications of
performance or comparison data, we mask our choice of commercial virtu-
alization technology. We use commercial hypervisor or CH interchangeably
throughout the paper.

Through the data collection from a large number of
experiments and careful analysis, we found that the cache
hit ratio that influences overall application performance
(described in Section IV) also seem to be connected to the
variances in the repeated measurements. Since the repeated
experiments run on exactly the same hardware and software
configurations, we concluded that the ”hidden variable” must
reside at a level below the typical hardware configuration
settings. A careful study of the CPU cache architecture
(outlined schematically in Figures 1(b) and 3) showed that
the mapping of virtual CPUs (vCPU) in VMs to physical
cores is not necessarily static for every hypervisor, unless
they are explicitly ”pinned”. By comparing the measured
performance of experiments with different mappings of
vCPUs to physical cores, we were able to find the main
source of the variances observed: the cache hit ratio.
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Figure 3: Schematic illustration of CPU and memory archi-
tecture in our experimental testbed.

The mapping/pinning of vCPUs to physical cores has
significant influence on cache hit ratio because the 2 physical
CPUs have separate memory banks and caches. Therefore,
only if all vCPUs (up to 4) are mapped to the 4 cores of a
single CPU will they share the same L3 cache (Figure 3).
Using a concrete scenario to illustrate the problem, let
us consider two different mapping strategies for 4 cores
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(a) Max throughput of the system under 4 different envi-
ronments when scaling from 1 core to 8 cores; For all
environments, the system shows a non-monotonic scalability
trend.
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(b) Average CPU utilization when scaling from 1 core to 8
cores; While performance decays from 5 cores onward, all
cores are fully utilized.

Figure 4: Observation of the non-monotonic scalability trend of the system.

under the XEN environment. The first configuration maps
all 4 vCPUs into a single CPU package, which are cores
numbered 0, 1, 2, 3 for Xen. The second configuration maps
2 vCPUs into each one of the 2 CPU packages, e.g., cores
0, 1 in one CPU and cores 4, 5 in the other CPU.
Figure 2(a) illustrates throughput comparison between the

two mapping cases when scaling from 1000 to 35000 users.
We found that the single-CPU mapping outperforms the
two-CPU mapping by 22%. Interestingly, the performance
gap between the two configurations happened without any
obvious under-utilization of system resources that may have
contributed to this performance penalty. Figure 2(b) shows
the CPU utilization comparison between the two mapping
strategies. Both mappings show all cores being fully utilized,
but cores in the two-CPU mapping saturate much earlier
than those from the single-CPU mapping. Further analysis
of measurement data revealed that the two-CPU mapping
cores have 128% higher LLC misses than the single-CPU
mapping. By identifying the LLC misses of individual cores,
we also observed that cores that were used in both cases
such as Core0 and Core1 show significant increase in LLC
misses (i.e., 228%, 175% respectively) in the two-CPU
mapping (Figure 2(c)). These results suggest strongly that
the mapping of vCPUs to physical cores can have significant
impact on the n-tier application performance due to cache
management issues.
From an operational point of view, the mapping through

pinning of vCPUs to physical cores is a non-trivial task.
First, the physical pinning facility may not be available
to a normal user of computing clouds. Often it requires
administrator privileges. Second, different hypervisors have
different core number assignment strategies. Concretely, CH
and XEN assign core numbers 0, 1, 2, 3 to CPU0 and core
numbers 4, 5, 6, 7 to CPU1. In contrast, KVM and the native

deployment of RHEL6 and Debian assign core numbers
0, 2, 4, 6 to CPU0 and core numbers 1, 3, 5, 7 to CPU1.
This lack of standard mapping/naming convention required
careful mapping specifications at the physical core level to
achieve the best cache hit ratios. For example, pinning 4
vCPUs to cores 0, 1, 2, 3 is a single-CPU mapping for Xen,
but a two-CPU mapping for KVM. Conversely, pinning 4
vCPUs to cores 0, 2, 4, 6 is a single-CPU mapping for KVM,
but a two-CPU mapping for Xen.

IV. NON-MONOTONIC SYSTEM SCALABILITY
TO MULTI-CORE ENVIRONMENTS

In the previous section, we showed that the mapping of
vCPUs to physical cores inside a single CPU package pro-
duced significant performance gains due to an increase in on-
chip cache hit ratio. In this section, we investigate intra-MCP
horizontal scalability on four different environments using
a browse-only CPU-intensive workload. Through extensive
measurements, we found that the system only scales linearly
up to four cores, and the performance starts to decrease
from five cores onward. We observed this non-monotonic
scalability trend appeared on all environments. Section IV-A
describes the experimental observation on non-monotonic
scalability trend of the system under three mainstream
hypervisors (i.e., Commercial Hypervisor, KVM, XEN) as
well as the native physical environment. Section IV-B illus-
trates the impact of the CPU overhead caused by last level
cache misses on n-tier application performance and system
scalability to multi-core.

A. Non-monotonic trend in intra-MCP horizontal scalability
One of the straightforward approaches of scaling an n-

tier application in modern cloud platforms is to scale up
(e.g., adding more CPUs or memory). While the growth
of virtualization technologies and multi-core processors has
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(b) Comparison of LLC misses per core be-
tween 4-core case and 5-core case; Cores
used in both cases are less efficiently utilized.
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Figure 5: Analysis of non-monotonic scalability trend of the system through LLC misses.

facilitated the scale up of existing systems, we found that
this approach does not always guarantee system scalability.
Figure 4(a) illustrates the performance trend of the system

under CH, KVM, XEN, and physical environment. Each
throughput value used in the figure represents the maximum
throughput that a system can achieve under a given fixed
allocation of cores when we scale from 1000 users up to
35000 users. This result shows that the system was able to
scale linearly up to four cores producing approximately 50%
more throughput as the number of affiliated cores increases;
however, from five cores onwards, the system stops scaling
further and the performance even starts to deteriorate. We
found out that this non-monotonic performance scalability
trend exists on all three virtual environments. We confirmed
that this trend also exists on the physical environment
running RHEL6 on bare metal hardware.
We diagnose the cause of the performance degradation

by investigating the CPU utilization of the VM. Figure 4(b)
depicts the average CPU utilization for each core assignment
scenario. It shows that the CPU is fully saturated for all
cases when we scale from one core to eight cores. Based
on these results we found that the additional CPU power
allocated to the VM is being fully utilized, but the perfor-
mance actually deteriorates. For example, under the eight-
core configuration, the average CPU utilization for all eight
physical cores measured at the host level of XEN, KVM,
CH, and physical environment shows 95%, 95%, 94%, and
98%, respectively but performance between the eight core
scenario and four core scenario actually decreases by 6%,
12%, 12%, and 15%. Upon further investigation, we found
that LLC misses introduce significant CPU overhead which
hampers all of the extra CPU power gained by allocating
additional cores to the VM which we discuss in the next
section.

B. CPU overhead induced by last level cache misses
For modern computer architectures, caching effectiveness

is one of the key factors for system performance [6], [7],
[13]. In order to monitor the last level cache, we used
OProfile and Xenoprof which utilize CPU performance

counter3. Figure 5(a) shows the total number of LLC misses
(i.e., L3 cache miss) under a given fixed allocation of cores.
The number of LLC misses increases linearly from one core
to four cores, but we observed a sudden dramatic increase
after four cores. For instance, from four cores to five cores
the total number of LLC misses increases 390%. Breaking
down the total number of LLC misses into individual cores
revealed that on-chip cache miss ratio increased significantly
for the same cores that were used in the four core allocation
scenario as shown in Figure 5(b). For example, Core0 which
was used in both cases showed a 200% increase in LLC
misses when we scaled from four to five cores. We also
observed a notable number of LLC misses on Core4. This
is due to Core4 being located in a different CPU package. As
explained in Section III, since only Core4 uses separate L3
cache and memory bank, an increase in cache miss ratio is
unavoidable. As more cores from the second CPU package
gets allocated, we could observe a significant decrease in
LLC misses on Core4 as shown in Figure 5(c).
An experienced reader may immediately question the

wisdom of LLC misses when scaling from seven to eight
cores, which appears to be an insignificant increase (i.e., 8%)
compared to the four to five cores (i.e., 390%). The focus
of this section is to show that LLC misses have significant
impact on the performance of n-tier system and its scalability
to multi-cores. There are many other factors limiting system
scalability such as spin locks and implementation issues
residing in the application [4].
Based on these results we realized that while additional

CPU cores were allocated and fully utilized, the extra
processing power was compensated due to the overhead
introduced by LLC misses. Considering the actual number
of LLC misses (i.e., LLC miss value times 6000), the high
number of the LLC misses cause frequent CPU stalls which
wastes its CPU cycles on waiting for the cache line thus
canceling the extra CPU power and even degrading the
performance.

3The CPU performance counter increases by 1 for every 6000 L3 cache
misses in our environmental settings.
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Figure 6: Analysis of performance difference among 3 hypervisors and limited scalability to multi-core

V. PERFORMANCE IMPACT OF UNDERLYING
VIRTUALIZATION TECHNOLOGIES

So far we have discussed that core mapping can cause
significant performance variations due to its influence on
cache hit ratio and under browse-only CPU-intensive work-
load, we observed a non-monotonic scalability trend on all
three hypervisors induced by inefficient last level cache
management. In this section, we focus on the empirical
analysis of performance differences among three hypervisors
when running a mixed read/write I/O-intensive workload.
The results here are based on the same configuration as
shown in Section IV except the workload characteristics.
When we scale from one core up to eight cores using

I/O intensive workload, we observed two interesting phe-
nomena - limited intra-MCP horizontal scalability and sig-
nificant performance differences among three hypervisors.
Figure 6(a) depicts the maximum achievable throughput of
the system under three different hypervisors (i.e., XEN, CH,
KVM) when scaling from one core up to eight cores. This
figure clearly shows our two observations. Firstly, the system
does not scale well to multiple cores. For instance, under
XEN and CH, the system was only able to scale up to
three cores and two cores respectively. Moreover, the KVM
system showed no throughput gains regardless of how many
cores were allocated to it. Secondly, there are significant per-

formance differences among three hypervisors. For example,
XEN outperforms the Commercial Hypervisor by 22% and
the CH is able to provide more than twice the throughput
compared to KVM. Let’s look into each observation in
detail.
The limited intra-MCP horizontal scalability problem can

be trace to the different bottlenecks among hypervisors. Un-
der KVM and CH environments, disk I/O was fully saturated
and under XEN environment it was due to rapid oscillating
bottleneck between CPU and disk I/O. Figure 6(b) depicts
the timeline of disk I/O utilization under the 4-core case
measured using iostat at one second granularity. This figure
shows that under CH and KVM environments, the system
I/O is fully saturated. Therefore adding more cores had
no effect on system throughput. In the case of XEN, we
zoom in to the highly aggregated average of the CPU and
I/O utilization through fine-grained analysis. Figure 6(c)
illustrates timeline of CPU and I/O utilization under the 4-
core case. Both utilization data are measured using Collectl
at 100ms granularity. In this figure we observed a negative
correlation between CPU utilization and disk I/O utilization
which suggests a rapidly oscillating bottleneck between the
two resources limiting the system scalability to multi-core
processors [2], [3].
Next we investigate the second observation - significant
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performance differences among hypervisors. In order to
understand what has caused such performance differences,
we first focus on KVM and CH where both cases showed I/O
saturation (see Figure 6(b)). Figure 6(d) and 6(e) illustrates
the histogram of CPU IOwait under CH and KVM environ-
ments respectively. These CPU IOwait data are collected by
sar every 1 second during a 180 second run-time. Figure 6(e)
shows that only one core (i.e., Core1) handles most of
the I/O under the KVM environment while all other cores
showed less than 5% CPU IOwait. This trend was also
visible in CPU utilization. Only the core that has high IOwait
shows near saturation while others show low utilization.
This low utilization in the other cores that are not handling
I/O is due to the characteristics of our storage engine (i.e.,
InnoDB). Since the InnoDB storage engine provides full
transactional support, operations that induce I/O such as
updates and inserts trigger various locking mechanisms (e.g.,
row-lock, table-lock, etc.) which prevent other threads to be
processed thus resulting in the low-utilization on other cores.
Under CH environment, on the other hand, we observed that
I/O is distributed to all cores as depicted in Figure 6(d). This
distribution of I/O enables CH to better utilize the underlying
multi-core architecture and is the key factor that explains
the higher throughput. By distributing I/O to different cores,
it allows multiple data manipulation operations that are
independent of each other to be executed simultaneously.
Consequently this contributes to reducing locking time hence
achieves higher utilization by processing more threads under
the same amount of time. The average CPU utilization
shown in Figure 6(f) indicates that CH achieves 1.9 times
higher utilization than KVM resulting in higher throughput.
Next let’s look into XEN case. From the Figure 6(a)

which shows the maximum achievable throughput of the
system, we observed that XEN achieves highest throughput
among 3 hypervisors. The reason can be traced to its I/O
utilization pattern from Figure 6(c). This figure shows that
XEN batches I/O tasks inside the memory and writes to the
disk intermittently. While XEN is batching I/O requests from
the guest domain that is CPU intensive period, increasing the
number of cores can relieve CPU bottleneck. As a result,
XEN shows best intra-MCP horizontal scalability among 3
hypervisors and achieves 17% higher CPU utilization than
CH (see Figure 6(f)) thereby providing better performance.
These results suggests that each hypervisor’s strategy of

handling write operations in a mixed read/write I/O-intensive
workload can have significant impact on n-tier applications
performance.

VI. RELATED WORK
Traditionally, performance analysis in IT systems builds

models based on expert knowledge and uses a small set
of experimental data to parameterize them [10], [11], [15].
The most popular representative of such models is queuing
theory. Queuing networks have been widely applied in many

performance prediction methodologies [12], [14]. These
approaches are often constrained by their rigid assumptions
when handling n-tier systems due to the complex dependen-
cies. As an illustration of significant characteristics that are
hard to capture with traditional analysis, consider the sig-
nificance of context switching towards system performance
when a large number of threads is involved [9].
An increasing popularity of virtualization and cloud

computing has spawned interesting research on private
and public clouds. Barham et al. [16] benchmarked Xen
against VMware Workstation and User-Mode Linux, and
they showed that Xen outperforms VMware on a range of
micro benchmarks and system-wide tests. Clark et al. [17]
repeated this performance analysis of Xen in [16] and
confirmed the results presented in [16]. They also compared
Xen on x86 with IBM zServer and found that the former
had a better performance than the latter.
Padala et al. [18] compared Xen and OpenVZ’s perfor-

mance when used for consolidating multi-tiered applications.
Their experimental results showed that Xen incurs higher
overhead than OpenVZ and average response time can
increase by over 400% in Xen and only 100% in OpenVZ
as the number of application instances grows from one
to four. This can be explained by looking at L2 cache
misses; Xen has higher L2 cache misses than OpenVZ.
Meanwhile, Adams et al. [19] compared software VMM
(binary translation) with hardware-assisted VMM. They
showed that software and hardware VMMs both perform
well on compute-intensive workloads. However, if work-
loads include progressively more privileged operations such
as context switches, memory mapping, I/O, interrupts and
system calls, both VMMs suffer overheads while software
outperforms hardware.
Deshane et al. [20] focused on three aspects of bench-

marking Xen and KVM: overall performance, performance
isolation, and scalability. They illustrated that Xen has
excellent scalability while KVM has substantial problems
with guests crashing when a physical node hosts more than
four virtual guests. KVM outperforms Xen in isolation. In
overall performance tests, Xen has a better performance than
KVM on a kernel compile test while KVM outperforms Xen
on I/O-intensive tests. Camargos et al. [21] analyzed the
performance and scalability of six virtualization technologies
(KQEMU, KVM, Linux-VServer, OpenVZ, VirtualBox and
Xen) for Linux.
There are multiple research studies on evaluating appli-

cation performance on multi-core systems with and without
virtualization. For example, Xiang et al. [8] analyzed the
performance and scalability of para-virtualized VM and
hardware-assisted VM on Xen hypervisor (Xen 4.0.0) on a
48-cores shared memory machine using a set of application
benchmarks. Their results showed that the tested applications
degrade in both performance and scalability on both para-
virtualized VM and HVM compared to that on native Linux
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and they also showed that the main reasons are the additional
LLC misses and iTLB misses introduced by virtualization
and the idle problem, which is caused by the incompatibility
between the Linux idle mechanism (e.g., idle thread) and
the Xen idle mechanism (e.g., idle-VM). Similar study by
Bryan et al. [5] showed that, due to flow-level parallelism in
web server workloads, the number of cache and TLB misses
remained nearly constant per byte as the number of cores
increased. Likewise, shared cache between cores on the same
bus had little effect on performance when compared with
unshared cache. Because of flow-level parallelism, there was
little data shared between caches.

VII. CONCLUSION
In this paper, we studied the horizontal scalability of n-

tier application performance within a multi-core processor
(MCP) using the n-tier benchmark RUBBoS. We identi-
fied mapping of vCPUs to physical cores is an important
source of performance variation within the MCP due to
its significant influence on cache hit ratio (see Section III).
After we eliminated these variations by fixing the MCP core
mapping, we investigated the impact of three mainstream
hypervisors (the dominant Commercial Hypervisor, Xen, and
KVM) on intra-MCP horizontal scalability and presented
some interesting similarities and dissimilarities among the
hypervisors. For similarities, we found a non-monotonic
scalability trend (throughput increasing up to 4 cores and
then decreasing for more than 4 cores) when running a
browse-only CPU-intensive workload. This problem can be
traced to the inefficient management of last level cache
of CPU packages (see Section IV). For dissimilarities, we
found that each hypervisor’s strategy of handling write op-
erations can cause significant performance differences when
running a mixed read/write, I/O-intensive workloads (see
Section V). Our work suggests that both MCP cache archi-
tecture and the choice of hypervisors should be considered
as integral components due to its impact on the efficiency
and horizontal scalability achievable by n-tier applications.
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