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Abstract

This paper investigates the importance of
a word lattice generation algorithm in joint
word segmentation and POS tagging. We
conducted experiments on three Japanese
data sets to demonstrate that the previ-
ously proposed pruning-based algorithm is
in fact not efficient enough, and that the
pipeline algorithm, which is introduced in
this paper, achieves considerable speed-
up without loss of accuracy. Moreover,
the compactness of the lattice generated
by the pipeline algorithm was investigated
from both theoretical and empirical per-
spectives.

1 Introduction

Many approaches to joint word segmentation and
POS tagging can be interpreted as reranking with
a word lattice (Jiang et al., 2008), wherein a small
lattice is generated for an input sentence, and then
the lattice paths are reranked to obtain the optimal
one. Examples of such a method include (Asahara
and Matsumoto, 2000; Kudo et al., 2004; Kru-
engkrai et al., 2006; Jiang et al., 2008).

In such a framework, it is crucial to develop an
efficient lattice generation algorithm. Since there
are n+1C2 = O(n2) word candidates, where n is
the number of characters in the sentence, to be in-
cluded in the lattice, it is prohibitively expensive
to check all of them exhaustively. Such a naive
method constitutes a severe bottleneck in a rerank-
ing system. Accordingly, in practice, it is neces-
sary to resort to some technique to speed-up lattice
generation.

It is, however, not straightforward to speed-up
lattice generation for reranking, because there are

requirements that the lattice has to satisfy and it
is necessary to achieve a speed-up while satisfy-
ing those requirements. Most importantly, the lat-
tice should contain a sufficient amount of correct
words; otherwise, the accuracy of the reranking
system will be seriously degraded. Moreover, the
lattice should be small: an excessively large lat-
tice spoils the efficiency of the reranking system
because it is expensive to find the optimal path of
such a lattice.

For the reasons stated above, it is not readily
obvious what sort of technique is effective for lat-
tice generation. Despite its practical importance,
this question, however, has not been well studied.
For example, (Kudo et al., 2004) used a dictionary
to filter word candidates. While indeed efficient,
such a method is obviously prone to removing out-
of-vocabulary (OOV) words from a lattice and de-
grade accuracy (Uchimoto et al., 2001). Jiang et
al. (2008) employed a pruning-based algorithm to
reduce the O(n2) cost, but they did not investigate
computational time required.

Given the above issues, the present study revis-
its lattice reranking by exploring the effectiveness
of the lattice generation algorithm. Specifically,
large-scale experiments were conducted on three
Japanese data sets. The results of the experiments
show that the pruning-based algorithm (Jiang et
al., 2008) in fact incurs a non-negligible compu-
tational cost, which constitutes a bottleneck in the
reranking system. Moreover, a pipelined lattice
generation algorithm (see Section 3) was investi-
gated as an alternative to the pruning-based one,
and it was demonstrated that the reranking system
using the pipeline algorithm speeds up the rerank-
ing more than 10 times without loss of accuracy.
After that, the compactness of the lattice generated
by the pipeline algorithm was examined from not
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Figure 1: Example lattice (Kudo et al., 2004). The circle and arrow represent the node and edge, respec-
tively. The bold edges represent the correct analysis.

only theoretical but also empirical perspectives.
The first contribution of this study is to shed

light on the importance of the lattice generation al-
gorithm in lattice reranking. As mentioned earlier,
past studies paid little attention to elaborating the
lattice generation algorithm. On the contrary, the
results of our experiments reveal that the design
of the lattice generation algorithm crucially affects
the performance of the reranking system (includ-
ing speed, accuracy, and lattice size).

The second contribution is to provide clear em-
pirical evidence concerning the effectiveness of
the pipeline algorithm. Although the pipeline
algorithm itself is a simple application of well-
known techniques (Xue, 2003; Peng et al., 2004;
Neubig et al., 2011) and does not have much nov-
elty, its effectiveness has been left unexplored in
the context of lattice reranking. Consequently,
its merits (or demerits) in relation to the pruning-
based algorithm have also been unknown.

The third contribution is to develop an accu-
rate reranking system based on the pipeline al-
gorithm. The developed system achieved consid-
erably higher F1-score than three software tools
that are widely used in Japanese NLP (JUMAN1,
MeCab2, and Kytea3), while achieving high speed
close to two of the three.

2 Preliminaries

As a preliminary, a word lattice and lattice rerank-
ing for joint word segmentation and POS tagging
are explained in Sections 2.1 and 2.2, respectively.
After that, the pruning-based lattice generation al-
gorithm proposed by Jiang et al. (2008) is intro-
duced in Section 2.3.

1http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
2http://code.google.com/p/mecab
3http://www.phontron.com/kytea

2.1 Word lattice

A word lattice, or lattice for short, is a data repre-
sentation that compactly encodes an exponentially
large number of word segmentations and POS tag-
ging results (Kudo et al., 2004; Jiang et al., 2008).

An example lattice is illustrated in Figure 1. A
lattice is formally a directed acyclic graph. A node
(a circle in Figure 1) corresponds to the position
between two characters, representing a possible
word boundary. Moreover, two special nodes, b
and e, represent the beginning and ending of the
sentence. An edge (an arrow) represents a word-
POS pair (w, t), where w is a word defined by two
nodes, and t is a member of the predefined POS
tag set.

Since every path from node b to e represents one
candidate analysis of the sentence, the task of joint
word segmentation and POS tagging can be seen
as locating the most probable path amongst those
in the lattice. Dynamic programming is usually
used to locate the optimal path.

For later convenience, notations that will be
used throughout this paper are introduced as fol-
lows. x and y are used to denote an input sentence
and a lattice path. It is presumed that sentence x
has n characters, and ci is used to denote the i-th
character (1 ≤ i ≤ n). w and t are used to
denote a word and a POS tag, respectively.

2.2 Lattice reranking

Lattice reranking is an approximate inference
technique for joint word segmentation and POS
tagging (Jiang et al., 2008). In this approach, a
small lattice is generated for an input sentence, and
the paths of the lattice are then reranked to obtain
the optimal one. The advantage of this approach
is that the search space is greatly reduced in the
same manner as conventional list-based reranking
(Collins, 2000), while an exponentially large num-
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ber of candidates is maintained in the lattice (Jiang
et al., 2008).

In this framework, the task of joint word seg-
mentation and POS tagging can be formalized as

ŷ = arg max
y∈L(x)

SCORE(x, y) (1)

where ŷ is the optimal path, L(x) is the lattice cre-
ated for sentence x, and SCORE(x, y) is a func-
tion for scoring path y of lattice L(x). For nota-
tional convenience, lattice L(x) is treated as a set
of paths.

In this paper we explore the algorithm for gen-
erating the lattice L(x). A naive approach requires
O(n2) time to determine which word candidate to
include in L(x), as mentioned in Section 1, and
constitutes a bottleneck. Although additional time
is required to perform the arg max operation, it is
practically negligible because the lattice generated
in this framework is generally small.

2.3 Pruning-based algorithm

Jiang et al. (2008) proposed a pruning-based lat-
tice generation algorithm for reranking. Here, we
briefly describe their algorithm. Interested readers
may refer to (Jiang et al., 2008) for its details.

The pruning-based algorithm generates a lat-
tice, specifically the edge set E constituting a lat-
tice, by considering each character in a left-to-
right fashion (Algorithm 1). The algorithm enu-
merates word-POS pairs (w, t), or edges, that end
with the current character, ci, and stores them in
the candidate list, C (line 5-10). Top-scored k
edges in C are then moved to E (line 11). Note
that the word length l is limited to, at most, K
characters (line 5).

This algorithm can be understood as pruning
O(n2) candidate space by setting threshold K
on the maximum word length. Although this
method is much more efficient than exhaustively
searching over the entire candidates, it still incurs
non-negligible computational overhead, as we will
demonstrate in the experiments.

An additional issue involving the pruning-based
algorithm is how to determine the value of K.
Although a smaller value of K reduces computa-
tional cost more, it is prone to remove more cor-
rect word-POS pairs from the search space. While
this trade-off was not investigated by Jiang et al.
(2008), it is examined in our experiment (see Sec-
tion 5).

Algorithm 1 Pruning-based lattice generation al-
gorithm.
1: T ← a set of all POS tags
2: E ← ∅
3: for i = 1 . . . n do
4: C ← ∅
5: for l = 1 . . . min(i, K) do
6: w← ci−l+1ci−l+2 . . . ci

7: for t ∈ T do
8: C ← C ∪ (w, t)
9: end for

10: end for
11: add top-k edges in C to E.
12: end for
13: return E

Algorithm 2 Pipelined lattice generation algo-
rithm.
1: E ← ∅
2: W ← WORDGENERATOR(x)
3: for w ∈ W do
4: T ← POSTAGGENERATOR(x, w)
5: for t ∈ T do
6: E ← E ∪ (w, t)
7: end for
8: end for
9: return E

3 Pipeline Algorithm

As an alternative to the pruning-based algorithm, a
pipelined lattice generation algorithm, which gen-
erates words and POS tags independently, is pro-
posed here. In a nutshell, this method first gener-
ates the word set W constituting the lattice (Algo-
rithm 2 line 2), and it then generates POS tags for
each of the words (line 4).

The advantage of this approach is that it can nat-
urally avoid searching the O(n2) candidate space
by exploiting a character-based word segmenta-
tion model (Xue, 2003; Peng et al., 2004; Neubig
et al., 2011) to obtain the word set W . This algo-
rithm has linear-time complexity in the sentence
length and hence is efficient.

This section proceeds as follows. Sections 3.1
and 3.2 describe how to generate words and POS
tags, respectively. The computational complexity
is then examined in Section 3.3.

3.1 Word generation

The character-based word segmentation model
(Xue, 2003; Peng et al., 2004; Neubig et al., 2011)
is used to generate word set W (Figure 2 line 2).
This model performs segmentation by assigning
tag sequence b to the input sentence:

b = arg max
b

Λw · Fw(x,b)
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Name Template
Char. n-gram 〈ci−1, bi〉, 〈ci, bi〉, 〈ci+1, bi〉, 〈ci−2, ci−1, bi〉, 〈ci−1, ci, bi〉, 〈ci, ci+1, bi〉, 〈ci+1, ci+2, bi〉,

〈ci−3, ci−2, ci−1, bi〉, 〈ci−2, ci−1, ci, bi〉, 〈ci−1, ci, ci+1, bi〉 〈ci, ci+1, ci+2, bi〉, 〈ci+1, ci+2, ci+3, bi〉
Char. type n-gram 〈c′i−1, bi〉, 〈c′i, bi〉, 〈c′i+1, bi〉, 〈c′i−2, c

′
i−1, bi〉, 〈c′i−1, c

′
i, bi〉, 〈c′i, c′i+1, bi〉, 〈c′i+1, c

′
i+2, bi〉,

〈c′i−3, c
′
i−2, c

′
i−1, bi〉, 〈c′i−2, c

′
i−1, c

′
i, bi〉, 〈c′i−1, c

′
i, c

′
i+1, bi〉, 〈c′i, c′i+1, c

′
i+2, bi〉, 〈c′i+1, c

′
i+2, c

′
i+3, bi〉

Dictionary 〈BEGIN, bi〉,〈END, bi〉, 〈INSIDE, bi〉, 〈BEGIN, s, bi〉, 〈END, s, bi〉, 〈INSIDE, s, bi〉

Table 1: Feature templates of word generation. ci and c′i represent the target character and its type,
respectively. c′i specifically takes one of the following values: (1) Roman alphabet, (2) Chinese kanji
characters, (3) Japanese hiragana characters, (4) Japanese katakana characters, (5) numerical symbols,
or (6) others. The neighboring characters and their types are similarly referred to as ci−1, ci+1, c′i+1,
and so on. bi is the tag (B or I) given to the target character. BEGIN and END represent whether a
word in a dictionary begins with or ends before the target character, respectively. INSIDE means that the
target character is inside the word. s denotes the length (1, 2, 3, 4, or 5≤) of the word registered in the
dictionary.

Name Template
Word 〈w, t〉
Word length 〈LENGTH(w), t〉
Affix 〈ci, t〉, 〈ci, ci+1, t〉, 〈cj−1, t〉, 〈cj−2, cj−1, t〉
Neighboring string 〈ci−1, t〉, 〈ci−2, ci−1, t〉, 〈ci−3, ci−2, ci−1, t〉, 〈cj , t〉, 〈cj , cj+1, t〉, 〈cj , cj+1, cj+2, t〉
Dictionary 〈DICT(w, t)〉, 〈DICT(w, t), t〉

Table 2: Feature templates of POS tag generation. w = cici+1 . . . cj−1 represents the word string, and t
represents the target POS tag. LENGTH(w) returns the length of the word w in the number of characters:
1, 2, 3, 4, or 5≤. DICT(w, t) is an indicator representing that word w with POS tag t is registered in a
dictionary. The features in the last row are fired only when the target word is found in a dictionary.

where b = b1 . . . bn is the character-based tag
sequence that encodes the segmentation results;
bi = B and bi = I represent whether the i-th char-
acter is the beginning or inside of a word, respec-
tively. Λw and Fw(x,b) are weight and feature
vectors, respectively.

The model is trained with the averaged struc-
tured perceptron (Collins, 2002) due to its sim-
plicity and efficiency. The features illustrated in
Table 1, as well as tag bigrams, were used for the
training. The features in Table 1 is basically taken
from (Neubig et al., 2011). The first two rows
represent character strings surrounding the target
character; the last row represents dictionary-based
features similar to those described in (Neubig et
al., 2011). The dictionary-based features are fired
if a string in a sentence is registered as a word in
a dictionary, and they encode whether the string
begins with or ends before the target character, or
includes the target character.

α-best outputs of this segmentation model are
used to obtain word set W :

W = ∪i=1...αWi

where Wi is a word set included in the i-th best
output. Hyperparameter α controls the size of

word set |W | and is tuned by using development
data.

3.2 POS tag generation

To generate POS tags for each word (Figure 2 line
4), a linear model was used. Given sentence x and
word w, it assigns the following score to each POS
tag t (Neubig et al., 2011):

Λt · Ft(x,w, t)

where Λt and Ft(x,w, t) are weight and feature
vectors, respectively. Averaged perceptron was
used for training (Freund and Schapire, 1999).

Table 2 shows the feature templates. Word
string, word length, prefixes and suffixes up to
length two were used, and the adjacent strings of
the word up to length three were used. We also
check the presence of the word in a dictionary.

For each word, top-β tags were used as the POS
tag set T (line 4). Hyperparameter β is also tuned
by using development data.

3.3 Computational complexity

Unlike the pruning-based algorithm, the pipeline
algorithm can generate words of arbitrary lengths.
Nevertheless, it still only needs O(n) time. This
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can be proved as follows. First, the word segmen-
tation model takes O(n) time to output word set
W , since this step can be efficiently performed
by dynamic programming. In addition, since
O(|W |) = O(n), the outer loop of the algorithm
requires O(n) time. This can be verified as

|W | = | ∪i=1...α Wi| ≤
∑

i=1...α

|Wi| ≤ α n

where |Wi| ≤ n. Since the process in lines 4-7 is
independent of n, the pipeline algorithm requires
O(n) time.

It also follows from the above discussion that
the lattice size, that is, the number of edges, is also
linear in the sentence length, i.e., O(|E|) = O(n).
Consequently, since the node degree is at most
α (i.e., not dependent on n), the lattice path can
be efficiently reranked in O(n) time by using dy-
namic programming.

4 Perceptron-based Reranker

This section presents our reranker. Since the main
focus of this study is in not reranking but lattice
generation, a perceptron-based reranker was de-
veloped by simply following the procedure pro-
posed by (Huang, 2008).

The scoring function SCORE(x, y) in equation
(1) is defined as follows:

ŷ = arg max
y∈L(x)

SCORE(x, y)

= arg max
y∈L(x)

Λ ·F(x, y)

where Λ is the weight vector and F(x, y) is the
feature vector.

4.1 Training

The averaged perceptron algorithm was used to
train weight vector Λ (Huang, 2008). Note here
two minor technical issues that have to be ad-
dressed before the perceptron algorithm can be
used for training the reranker.

First, the generated lattice L(x) might not in-
clude the oracle path. This possibility is avoided
by simply adding all the nodes and edges in the
oracle lattice to L(x). This approach worked rea-
sonably well in our experiments, while having the
advantage of being simpler than the alternative
(Huang, 2008; Jiang et al., 2008).

Second, the same data should not be used for
training the lattice generator (i.e., the two models

described in Sections 3.1 and 3.2) and reranker. If
the same data were used, we will end up using in-
juriously better lattices when training the reranker
than testing. To meet this requirement, the train-
ing data were split into ten subsets. During train-
ing of the reranker, the lattices of each subset were
provided by the lattice generator trained by using
the remaining nine subsets. During testing, on the
other hand, the lattice generator trained by using
the entire training data was used.

4.2 Features

The features used for training the reranker include
those listed in Table 1 and Table 2, as well as POS
tag bigrams. For the features in Table 1, BIES en-
coding (Nakagawa, 2004) is used. Since all those
features can be factorized, the optimal path is lo-
cated by using dynamic programming.

5 Experiment

The effectiveness of the lattice generation algo-
rithm was investigated in the experiment described
in the following. Sections 5.1, 5.2, and 5.3 explain
our experimental setting: data sets, lattice genera-
tion algorithms to be compared, and hyperparam-
eter tuning. The experimental results are reported
in Section 5.4. The experiments were performed
on a computer with 3.2 GHz Intel R© XeonTM CPU
and 32 GB memory.

5.1 Data sets

Three evaluation data sets were developed from
three corpora: Kyoto Corpus (KC) version 4.0
(Kurohashi and Nagao, 1998), Kyoto univer-
sity NTT Blog Corpus (KNBC) version 1.0
(Hashimoto et al., 2011), and Balanced Cor-
pus of Contemporary Written Japanese (BCCWJ)
(Maekawa, 2008). Each corpus was randomly
split into three parts: training, development, and
test set. The size of each data set is listed in Table
3.

JUMAN dictionary version 7.04 was used to ex-
tract the dictionary-based features in the exper-
iments using KC and KNBC. Because BCCWJ
adopts word segmentation criteria and a POS tag
set different from those of the other two corpora,
a different dictionary, UniDic version 1.3.125, was
used in the experiment using BCCWJ.

4http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?NLPresources
5http://www.tokuteicorpus.jp/dist
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KC KNBC BCCWJ
Time #Cand. F1 Size Time #Cand. F1 Size Time #Cand. F1 Size

Pruning (K=5) 20 22 212 †97.25 356 1.2 1.3 137 †92.72 235 25 26 163 †97.33 276
Pruning (K=10) 31 32 400 97.92 88.9 2.0 2.1 250 93.48 235 43 44 301 †98.08 69.0
Pruning (K=20) 62 63 702 97.94 88.9 3.6 3.8 413 93.42 235 88 90 516 98.18 69.0
Pipeline 1.8 2.6 30.4 97.94 60.8 0.12 0.18 24.8 93.92 99.2 2.3 3.1 23.3 98.10 46.6

Table 4: Comparison of the reranking systems with the different lattice generation algorithms. Best-
performing results in each metric are highlighted in bold font.

Training Development Testing
KC 30,608 4028 3764
KNBC 3453 385 348
BCCWJ 47,547 6144 5741

Table 3: The number of sentences included in the
three data sets.

5.2 Lattice generation algorithms

Two types of rerankers were implemented: one
uses the pruning-based lattice generation algo-
rithm, and the other uses the pipeline algorithm.
All the rerankers were trained in the same manner
as described in Section 4.

Although Jiang et al. (2008) fixed pruning
threshold K as 20, K ∈ {5, 10, 20} was tested
to examine the effect of this parameter. As a re-
sult, three rerankers that use the pruning-based al-
gorithm were thus created.

The pruning-based algorithm uses a character-
based model6 to obtain top-k edges (Figure 1 line
11). Although Jiang et al. (2008) proposed sev-
eral features to train this model, they are simplis-
tic compared with those used in the pipeline al-
gorithm (i.e., Table 1 and 2). To make the com-
parison as fair as possible, the feature listed in
Table 1 and BIES encoding were used (c.f., Sec-
tion 4.2) were used. The features listed in Ta-
ble 2 were not used, because they are not usable
in a character-based model. It is considered that
this feature set is comparable with that used by
the pipeline algorithm, because the reranker using
the pruning-based algorithm achieved comparable
F1-score with the one using the pipeline algorithm
when K is large (see Section 5.4).

5.3 Hyperparameter tuning

Hyperparameter k of the pruning-based al-
gorithm was tuned with the development
data. The tuning was done by searching over
{1, 2, 4, 8, 16, . . . , 256} and selecting k that gen-

6Not detailed this model in this paper; refer to (Jiang et
al., 2008) for details.

erated the lattice with the fewest edges amongst
those covering at least θ% of the correct edges.

Since the pipeline algorithm also has hy-
perparameters (α, β), the hyperparameters were
tuned in a similar manner by performing
a grid search over {1, 2, 4, 8, 16, . . . , 256} ×
{1, 2, 4, 8, 16, . . . , 256}.

The value of θ was set as 99, 97, and 99 for the
three data sets, respectively. A smaller value of θ
was used for KNBC because over 99% coverage
could not be achieved in this data set.

5.4 Results

Table 4 summarizes the time in seconds spent on
lattice generation, overall processing time spent on
reranking, average number of candidates per sen-
tence (see below), word-level F1- score in the joint
task, and average lattice size per sentence, where
lattice size refers to the number of edges in a lat-
tice.

As for the pruning-based algorithm, the number
of candidates refers to the number of words to be
considered (Figure 1 line 6). As for the pipeline
algorithm, it refers to the size of word set W (Fig-
ure 2). This number serves as an estimation of the
computational cost. Notice that it corresponds to
the time consumed by the two outer loops in Fig-
ure 1 or by the outer loop in Figure 2.

The symbol † is used to represent that the differ-
ence in F1-score from the best-performing system
is statistically significant (p < 0.01). Bootstrap re-
sampling with 1,000 samples was used to test the
statistical significance.

5.4.1 Runtime

Table 4 reveals that the reranking system using the
pruning-based algorithm consumes the vast ma-
jority of the time for lattice generation. In other
words, the pruning-based algorithm is not efficient
enough. This inefficiency was not pointed out in
previous studies, e.g., (Zhang and Clark, 2010;
Sun, 2011).
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The results in Table 4 also demonstrate that the
reranker using the pipeline algorithm is an order
of magnitude faster than the pruning-based algo-
rithms. It is significantly faster than even the case
that K = 5. This result indicates the importance
of using an efficient lattice generation algorithm in
the reranking system.

Table 4 also indicates that the number of the
candidates roughly correlates with the actual com-
putation time spent on lattice generation. This
correlation confirms that the speed-up is achieved
mainly by reducing the number of word candidates
to be considered.

5.4.2 F1-score

F1-score of the reranking systems was investigated
next. The pipeline algorithm achieved compara-
ble or higher F1-score than the pruning-based al-
gorithm. This result shows that the speed-up does
not come at the cost of accuracy.

It is crucial for the pruning-based algorithm
to select an appropriate threshold value, K. If
the value is too small, F1-score will significantly
drop. In case that K = 5, F1-score was sta-
tistically significantly worse than that attained by
the best-performing system for all three data sets
(p < 0.01). On the other hand, an excessively
large value (K = 20) does not contribute to the
increase of F1-score so much, while it consider-
ably degrades the speed.

5.4.3 Lattice size

Table 4 shows that the pipeline algorithm usually
generates smaller lattices than the pruning-based
algorithm. This is because the pruning-based al-
gorithm has no mechanisms to prune nodes (Jiang
et al., 2008). To be more specific, the pruning-
based algorithm always produces n + 1 nodes for
a sentence with n characters; hence, the lattice size
is prone to grow large. The pipeline algorithm is,
on the other hand, free from such a problem.

The coverage of the correct edges as the func-
tion of the average lattice size was investigated
as follows (Figure 2). For the pruning-based
algorithm, which has only one hyperparameter,
k, the graph was drawn by changing k over
{1, 2, 4, 8, 16}. Note that the graph for K = 10 is
omitted, because almost the same lattices are gen-
erated for K = 10 and K = 20. For the pipeline
algorithm, α = 32 is fixed and β is changed
over {1, 2, 4, 8, 16} to draw the two-dimensional
graphs. It is clear that the lattice generated by

KC KNBC BCCWJ
JUMAN †95.37 93.85 N/A
MeCab †95.45 †91.60 †96.31
Kytea †96.95 †90.91 †97.10
Our reranker 97.94 93.92 98.10

Table 5: Comparison of F1-score with that
achieved by the existing software.

the pipeline algorithm generally achieves higher
coverage, while having a smaller number of edges
than the pruning-based algorithm.

As discussed in Section 3.3, the size of word set
|W | is linear in the sentence length. This analy-
sis empirically justified as follows. The number of
words is illustrated in Figure 3 as a function of sen-
tence length. The three graphs in the figure clearly
illustrate that the number of words grows linearly
with increasing sentence length.

6 Comparison with Existing Software

As an additional experiment, the proposed
pipeline-algorithm-based reranking system was
compared with three software tools popular in
Japanese NLP: JUMAN, MeCab (Kudo et al.,
2004), and Kytea (Neubig et al., 2011).

Table 5 compares the F1-score of the proposed
system with that attained by the three tools. Boot-
strap resampling with 1,000 samples was used for
the statistical significance test. The symbol † indi-
cates that the F1-score is significantly lower than
that achieved by the proposed system (p < 0.01).
It is clear that the proposed system outperforms
the existing tools in the case of two of the three
data sets, while performing comparably with JU-
MAN in the case of KNBC. Note that JUMAN is
a rule-based system and is not applicable to BC-
CWJ because of the discrepancy in the definition
of the segmentation criteria and POS tag set.

The speeds of the algorithms were also investi-
gated. The proposed system processed 1400 sen-
tences in a second, while JUMAN, MeCab, and
Kytea processed 2100, 29000, and 3200 sentences,
respectively. This result demonstrates that the
proposed reranking system using the pipeline al-
gorithm successfully achieved speed close to the
two of the three tools, while keeping considerably
higher F1-score.

7 Related Work

Several methods, other than the pruning-based al-
gorithm (Jiang et al., 2008), have been developed
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Figure 2: Coverage as the function of average lattice size (left: KC; middle: KNBC; right: BCCWJ).
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Figure 3: Number of words as a function of sentence length (left: KC; middle: KNBC; right: BCCWJ).

for lattice generation. However, they are depen-
dent on an external dictionary and have limitations
in handling OOV words. For example, Kudo et al.
(2004) built a lattice based on dictionary-lookup.
While efficient, such a method is prone to remove
OOV words from a lattice and degrade accuracy
(Uchimoto et al., 2001). Other researchers (Nak-
agawa and Uchimoto, 2007; Kruengkrai et al.,
2009) used a word-character hybrid model, which
combines dictionary-lookup and character-based
modeling of OOV words. This method still has
difficulty in using word-level information of OOV
words.

The techniques utilized by the pipelined lattice
generation algorithm have also been used else-
where (Sassano, 2002; Peng et al., 2004; Shi and
Wang, 2007; Neubig et al., 2011; Wang et al.,
2011). However, the present study is the first to
investigate the effectiveness of such a technique in
the context of lattice reranking. Empirical studies
similar to the ones made in this study are not found
in the other work.

Zhang and Clark (2008) and Zhang and Clark
(2010) proposed a fast decoding algorithm for
joint word segmentation and POS tagging. The
present study is largely complementary with
theirs, since it did not investigate to improve de-
coding algorithm. Their algorithm should be use-
ful for the decoding of our reranker especially
when dynamic programming is not effective; for
example, nonlocal features are used.

8 Conclusion

The effectiveness of the lattice generation algo-
rithms used in joint word segmentation and POS
tagging was investigated. While lattice generation
has not been paid much attention to in previous
studies, the present study demonstrated that the
design of a lattice generation algorithm has a sig-
nificant impact on the performance of a reranking
system. It was showed that the simple pipeline al-
gorithm outperforms the pruning-based algorithm.
We hope that the pipeline algorithm serves as a
simple but effective building block of future re-
searches.
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