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Abstract Mobile agent-based network routing is a new technique for routing in
large-scale networks. An analysis of the searching activity and population growth
of mobile agents is important for improving performance in agent-driven networks.
In this paper, we describe a general execution model of mobile agents for network
routing and classify it into two cases. For each case, we analyze the population dis-
tribution of mobile agents (the distribution of mobile agents running in the network)
and the probability of success (the probability that an agent can find its destination).
We also perform extensive experiments for various network topologies to validate
our analytical results. Both theoretical and experimental results show that the popu-
lation distribution and the probability of success of mobile agents can be controlled
by locally adjusting relevant parameters, such as the number of agents generated per
request, the number of jumps each mobile agent can move, etc. Our results reveal
new theoretical insights into the statistical behaviors of mobile agents and provide
useful tools for effectively managing mobile agents in large networks.
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1 Introduction

Many network routing techniques have been developed to deal with the enormous
amount of data available on the Internet. These techniques have created exciting op-
portunities for both business and science [7, 26, 27, 34]. The deployment of mo-
bile agents, which are small decision-making programs capable of migrating au-
tonomously from node to node in a computer network, is an important representative
of these new techniques and is an effective way to reduce network load and latency
[25]. In [29], Milojicic described that mobile agents are autonomous, adaptive, re-
active, mobile, cooperative, interactive, and delegated software entities. The appli-
cation of mobile agents in network routing has attracted significant attention [9, 30,
40]. Successful examples of mobile agent applications can be found in [23, 24]. The
use of mobile agents in applications ranging from electronic commerce to distributed
computation has also been studied extensively [5, 6, 14, 17, 22, 28, 36].

Routing is a key factor for network performance. It is the process of moving a
packet of data from source to destination. As searching for the optimal path in a sta-
tionary network is already a difficult problem, the searching for the optimal path in a
dynamic network or mobile network will be much more difficult. Mobile agent-based
routing algorithm is a promising option for use in these environments [11]. In a mo-
bile agent-based routing algorithm [13, 18], a number of mobile agents are generated
and dispatched to the network once the server receives a request. These agents roam
around the network and gather relevant information. Once an agent accomplishes its
task, the collected information is sent back to the server. Since little communication is
needed between the agents and the server during the process of searching, the burden
on the network generated by mobile agents is very light.

In order to conserve network resources and achieve a good probability of suc-
cess, it is desirable to dispatch a small number of mobile agents. In a mobile agent-
based routing algorithm for large-scale networks, mobile agents will be generated
frequently. If there are too many agents running in the network, they will consume
too many network resources, thus affecting the network performance and ultimately
blocking the entire network; on the other hand, if there are too few agents running in
the network, there is no guarantee that the destination will be found quickly. There-
fore, for network management, it is necessary to analyze both the population growth
of mobile agents and the probability of success. Furthermore, the probability of suc-
cess directly affects the searching process, but existing studies pay little attention to
this probability.

In this paper, considering the fact that the neighborhood information of a host
node is readily available (e.g., it is built in the routing table in TCP/IP), we propose
a general agent-based routing model, in which a mobile agent knows information
not only about its host node, but also about the neighboring nodes of its host node.
Since the connectivity of different nodes may change dynamically over time, the
agents have to dynamically adapt themselves to the environment, which increases
the difficulty for theoretical analysis. We further classify the model into two cases,
namely settleable and nonsettleable (to the host node), and analyze the population
distribution of mobile agents and the probability of success for each case. Both our
theoretical and experimental results show that we can control the number of mobile



362 W. Qu et al.

agents and the probability of success by tuning the number of agents generated per
request and the number of jumps each mobile agent can make. The main contributions
of this paper are summarized as follows:

• A general and more practical agent-based routing model is described and is further
classified into settleable and nonsettleable cases.

• An analysis on population growth of mobile agents is presented, providing a useful
tool to reduce computational resource consumption by adjusting the number of
agents to be generated at individual nodes.

• The probability of success is analyzed, which serves as an important measure for
monitoring network performance.

• Extensive experiments validating our analysis have been performed and compared
with previous work.

The rest of this paper is organized as follows: Sect. 2 provides a general view on
related work. Section 3 presents a general agent-based routing model, introduces the
notations used in this paper, and gives some basic assumptions in our model. Sec-
tion 4 and Sect. 5 present mathematical analysis on the population distribution and
the probability of success for both cases. Section 6 describes our simulation studies,
and Sect. 7 concludes our paper.

2 Related work

With the exploitation of the Internet, mobile agent technology has attracted an in-
creasing attention. In [40], the authors used a system net, agent nets, and a connector
net to model the environment, agents, and the connector, respectively. They also pre-
sented a case study of modeling and analyzing an information retrieval system with
mobile agents. In [9], an overview of the security issues of mobile agents was given
and a state-of-the-art survey of mobile agent-based secure electronic transactions was
presented. In [30], the authors identified two important properties (i.e., nonblocking
and exactly-once) for fault-tolerant mobile agent execution and proposed that fault-
tolerant mobile agent execution could be modeled as a sequence of agreement prob-
lems.

Routing is a key feature of the Internet because it enables messages to pass from
one computer to another and eventually reach the target machine[38]. Existing rout-
ing algorithms can be broadly classified into two classes: static or dynamic. In static
routing, packets are sent to the destination following a predetermined path, without
considering the current network state. Static routing is appropriate for small networks
and some dedicated links. In a large distributed network with irregular topology, rout-
ing decisions can only be made on the basis of local and approximate information
about the current and the future network states. Dynamic routing can discover the
changes of network states, automatically adjust its routing tables, and inform other
routers of the changes.

Routing Information Protocol (RIP) is a popular dynamic routing protocol for
small private networks [33]. With RIP, routers periodically exchange entire routing
tables. Open Shortest Path First (OSPF) is now the most important protocol on large
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networks that provide Internet service [33]. With OSPF, routers send routing infor-
mation to all nodes by calculating the shortest path to each node based on a topology
of the Internet constructed by each node. Each router sends that portion of the routing
table that describes the state of its own links. Both RIP and OSPF choose the path
with minimum cost (generally the shortest path) between the pair of nodes. In [12,
32], the authors studied the behavior of routers and announced that specific routers
are the cause of bottlenecks in the Internet. This is because the path with minimum
cost could congest, in spite of other paths, possibly expensive, but less congested.
In [20], the authors provided necessary and sufficient conditions for deadlock-free
unicast and multicast routing with the path-based routing model in interconnection
networks.

Real ants are capable of finding the shortest path from a food source to the
nest based only on local information [4, 13, 16, 19]. Inspired from the research
on ants, Caro and Dorigo [10, 11] firstly proposed mobile agent-based routing
algorithm in 1998. In a mobile agent-based routing algorithm, a group of mo-
bile agents build paths between pair of nodes, exploring the network concurrently
and exchanging data to update routing tables. In [10, 11], the authors conducted
many experiments to compare the performance of the mobile agent-based routing
algorithm with both static and adaptive state-of the-art routing algorithms, such
as RIP and OSPF. The experimental results showed that the mobile agent-based
routing algorithm is very encouraging over real and artificial IP datagram net-
works.

Although the efficiency of applying the mobile agent technique has been demon-
strated and reported in the literature, the mathematical modeling and analysis of mo-
bile agents’ behaviors are still in its infancy. In [7], Brewington et al. formulated a
method of mobile agent planning, which is analogous to the traveling salesman prob-
lem [15] to decide the sequence of nodes to be visited by minimizing the total execu-
tion time until the desired information is found. In [21], several statistical analysis of
mobile agents were proposed, including dwell time on nodes, average life-span, and
the reports arrival process. Theoretical analysis on the execution time and the number
of agents can also be found in [1–3, 35].

In [35], an ant-like routing model was studied and the number of mobile agents
was estimated. In [31], a smaller upper bound on the number of mobile agents was
provided based on the same model, and for the first time the probability of success
was considered. Mobile agents in the model were assumed to be blind; they could
only know information about the node they were in and know nothing about the sur-
rounding nodes. Under this assumption, the action of mobile agents for each step
static, which reduced the analytical difficulty. However, it also resulted in a low prob-
ability of success. To improve the search efficiency, in the model proposed in this
paper, mobile agents know information not only about their host nodes, but also
about the neighboring nodes of their host nodes. We analyze both the population
distribution and the probability of success of mobile agents. Comparison between the
proposed model and the one in [31] is provided in Sect. 6.
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3 A general mobile agent-based routing model

In our model, mobile agents are the medium for carrying routing information. The
behavior of agents corresponds to the transport of routing information among nodes.
For a large network, suppose that agents can be generated from every node in the
network, and each node in the network provides to mobile agents an execution en-
vironment. Routing table on each node only details its neighboring nodes. A node
which generates mobile agents is called the server of these agents. At any time, re-
quests may be keyed in the network. Once a request for sending a packet is received
from a server, the server will generate a number of mobile agents. Each agent car-
ries the addresses of its server, its destination, the previous node it jumped from, and
some control information for routings such as life-span limit and hop counter. All
these data can be contained in several lines of Java code, thus the size of a mobile
agent is very small, resulting in great reduction on network load and latency. These
agents will then move out from the server and roam in the network. Once an agent
reaches a node, it will search for the destination in the set of neighboring nodes of the
host node. If the agent finds its destination, it will go back to the server along the path
searched, update the routing tables on the nodes along the path, and submit its report
about the searched path to the server. Otherwise, it will select a neighboring node and
move on. To eliminate unnecessary searching in the network, a life-span limit is as-
signed to each agent. An agent will die if it cannot find its destination in its life-span
limit. Moreover, if an agent cannot return to its server in two times the life-span limit
(e.g., its return route is interrupted due to a link/node failure), the agent also will die.
When a certain number of those agents have come back, the server selects the optimal
path by certain criterion and sends the packet to the destination along the new path.
At the same time, the server updates its routing table by the information of the new
path. In this paper, we classify the model into the following two cases:

• Settleable case: If the host node is not the agent’s destination, the agent can either
stay in the host node or move to a neighboring node.

• Nonsettleable case: An agent will not die unless it finds its destination or it is out
of its life-span limit. If an agent cannot find its destination on the host node, it must
jump out from the host node and go on searching.

As we know, the topology of a network can be decided uniquely by its connectivity
matrix. Assume that there are n nodes in the network, matrix C = (c1, c2, . . . , cn) =
(cij )n×n is the connectivity matrix which describes the connectivity of the network,
i.e., if there is a direct link between node i and node j (i �= j ), then cij = cji =
1; otherwise, cij = cji = 0. Let dj = ‖cj‖1 = ∑n

i=1 |cij |, σ1 = max1≤j≤n dj , σn =
min1≤j≤n dj . Clearly, D = diag(d1, d2, . . . , dn) is a diagonal matrix. It is easy to see
that dj is the number of neighboring nodes of the j -th node, i.e., the degree of the
j -th node, and ‖C‖1 = max1≤j≤n ‖cj‖1 = σ1. For the small network shown in Fig. 1,
we have n = 5, σ1 = 3, and σ5 = 2. Matrices C and D are as follows:

C =

⎛

⎜
⎜
⎜
⎝

0 1 1 0 0
1 0 0 1 1
1 0 0 1 1
0 1 1 0 0
0 1 1 0 0

⎞

⎟
⎟
⎟
⎠

, D =

⎛

⎜
⎜
⎜
⎝

2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 2

⎞

⎟
⎟
⎟
⎠

.
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Fig. 1 An example of a small
network

There are also some assumptions convenient for our analysis:

1. There are n nodes in the network, and each node has the same probability of 1/n to
be the destination. The assumption of uniform probability of 1/n has been widely
applied in the open literature [10, 11, 39].

2. The expected number of requests received from a server once is m. Once a request
arrives, k agents are created and sent out into the network.

3. The life-span limit of agents is set to be d .

4 Population distribution

As we mentioned in Sects. 1 and 2, mobile agents are frequently generated and dis-
patched to the network. If the number of agents generated per request is small, there
is no guarantee that the destination will be found quickly. On the other hand, if there
are too many agents running in the network, they will introduce too much compu-
tational overhead; the host nodes will eventually become very busy and indirectly
block the network traffic. Therefore, analysis of the number of mobile agents running
in the network and on each node is another important task. Since mobile agents will
search for their destinations node by node in the network, the agents in one node can
be divided into two parts, as shown in Fig. 2.

We claim that the population distribution of mobile agents running in the network
at time t can be expressed as follows:

−→p (t) = k−→r (t − 1) + kA−→r (t − 2)

+ B−→p (t − 1) − Bdk−→r (t − d − 1). (1)

where

−→p (t) =
⎡

⎢
⎣

p1(t)

p2(t)

· · ·
pn(t)

⎤

⎥
⎦ , −→r (t) =

⎡

⎢
⎣

r1(t)

r2(t)

· · ·
rn(t)

⎤

⎥
⎦ ,

pj (t) is the number of mobile agents running on the j -th node, while rj (t) indicates
the number of requests received by the j -th node at time t and rj (t) = 0 when t < 0.
k is the number of mobile agents generated per request, d is the life-span limit of
mobile agents. A = (aji) and B = (bji) are n × n coefficient matrices with elements

aji =

⎧
⎪⎨

⎪⎩

Pr(1){i → j}
−Pr(2){i → j} if j ∈ NB(i)

0 otherwise

(2)
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Fig. 2 Mobile agents in node j

can be divided into two parts:
Part 1—those generated by
node j , Part 2—those migrated
from j ’s neighboring nodes

and

bji =
{

Pr(2){i → j} if j ∈ NB(i)

0 otherwise.
(3)

NB(i) is the set of node i’s neighboring nodes. Pr(l){i → j} (l = 1,2) is the proba-
bility that a mobile agent in the l-th part at node i will select the j -th node to move
to when j ∈ NB(i).

From (1), we can see that the population distribution of mobile agents can be
modeled as a stochastic process. In the following, we explain the validity of (1)
in detail. It is easy to see that the number of mobile agents newly generated at
time t (part 1 in Fig. 2) equals to k · rj (t − 1). Denote the number of agents
in node j at time t that come from the i-th node by pji(t), then the number
of mobile agents in part 2 equals to

∑
i∈NB(j) pji(t). Therefore, the total num-

ber of mobile agents running on the j -th node at time t , denoted by pj (t), satis-
fies

pj (t) = k · rj (t − 1) +
∑

i∈NB(j)

pji(t). (4)

The analysis of pji(t) is much more complex. To simplify the analysis, we first
consider the situation that mobile agents have an infinite life-span. Regarding to the
population distribution of mobile agents with infinite life-span in the network, we
have the following lemma.

Lemma 1 The number of mobile agents with infinite life-span running on the j -th
node with infinite life-span satisfies

−→p (t) = k−→r (t − 1) + kA−→r (t − 2) + B−→p (t − 1). (5)

Proof It is no surprise that each neighboring node of the i-th node has the same
possibility to be selected by mobile agents in the i-th node since each direction
is equally likely to link with the destination. Thus, the average number of mobile
agents that traverse from the i-th node to the j -th node at time t , denoted by pji(t),

equals to
∑2

l=1 p
(l)
i (t − 1)Pr(l){i → j}, where p

(l)
i (t − 1) (l = 1,2) is the num-

ber of mobile agents belong to the l-th part on the i-th node at time t − 1 (see
Fig. 2). Thus, the number of mobile agents on the j -th node with infinite life-span
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satisfies

pj (t) = krj (t − 1) +
∑

i∈NB(j)

2∑

l=1

p
(l)
i (t − 1)Pr(l){i → j}.

Since p
(1)
i (t −1) equals to kri(t −2), and p

(2)
i (t −1) equals to pi(t −1)−kri(t −2),

we have

pj (t) = krj (t − 1) +
∑

i∈NB(j)

[
kri(t − 2)Pr(1){i → j}

+ (pi(t − 1) − kri(t − 2))Pr(2){i → j}
]

= krj (t − 1) +
∑

i∈NB(j)

[
Pr(2){i → j}pi(t − 1)

+
(

Pr(1){i → j} − Pr(2){i → j}
)

kri(t − 2)
]
.

Let [·]j denotes the j -th entry of a vector. From (2) and (3), we have

∑

i∈NB(j)

Pr2{i → j}pi(t − 1)

=
∑

i

Pr2{i → j}pi(t − 1)

=
∑

i

bji · pi(t − 1) = [B−→p (t − 1)]j ,

and

∑

i∈NB(j)

(
Pr(1){i → j} − Pr(2){i → j}

)
kri(t − 2)

=
∑

i

(
Pr(1){i → j} − Pr(2){i → j}

)
kri(t − 2)

=
∑

i

aji · ri(t − 2) = [A−→r (t − 2)]j .

Therefore, we have

−→p (t) = k−→r (t − 1) + kA−→r (t − 2) + B−→p (t − 1).

�

Lemma 2 Suppose that the distribution of mobile agents generated at t = 0 in the
network is −→p (0), then the population distribution of these agents at time t is Bt−→p (0).
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Proof Since we only consider the distribution of mobile agents that generated at t = 0
and do not pay attention to other agents, −→r (t) in (5) equals to 0. Therefore,

−→p (t) = B · −→p (t − 1) = Bt−→p (0).

�

From Lemma 2, it is straightforward that at time d , the distribution of mobile
agents that are generated at time t = 0 is Bd−→p (0). Since these agents will die at time
d , they should be removed from the distribution in (5). Thus, based on Lemmas 2
and 3, the population distribution of mobile agents with life-span limit at time t can
be expressed as (1).

In particular, take expectation on both side of (1) and denote the average number
of requests received from a node at any time by r , then when t ≤ d , the population
distribution of mobile agents satisfies

−→p (t) = kr(I + A)−→e + B−→p (t − 1)

=
t−1∑

i=0

Bikr(I + A)−→e + Bt−→p (0),
(6)

where −→e = (1, . . . ,1)T . Here, we still use the notation −→p (t) as E[−→p (t)]. When
t > d , the population distribution of mobile agents satisfies

−→p (t) = (I + A)kr−→e + B−→p (t − 1) − Bdkr−→e

=
t−d−1∑

i=0

Bikr(I + A)−→e −
t−d−1∑

j=0

BjkrBd−→e + Bt−d−→p (d)

=
t−d−1∑

i=0

Bikr(I + A)−→e −
t−d−1∑

j=0

BjkrBd−→e

+ Bt−d

[
d−1∑

l=0

Blkr(I + A)−→e + Bd−→p (0)

]

=
t−1∑

i=0

Bikr(I + A)−→e + Bt−→p (0) −
t−1∑

j=d

Bj kr−→e .

Thus, the population distribution of mobile agents in (1) can be described as follows

−→p (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑t−1
i=0 Bikr(I + A)−→e
+ Bt−→p (0), 0 ≤ t ≤ d;

∑t−1
i=0 Bikr(I + A)−→e
+ Bt−→p (0) −∑t−1

j=d Bj kr−→e , t > d .

(7)
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4.1 Settleable case

As shown in Fig. 2, mobile agents in the i-th node can be subdivided into two parts:
those newly generated in the i-th node and those migrated from its neighboring nodes.
If an agent is newly generated, it can find its destination at birth with probability (di +
1)/n. Otherwise, the agent will select a neighboring node with probability 1/(di +1).
Therefore, we have

Pr(1){i → j} = 1

di + 1

(

1 − di + 1

n

)

.

For those agents came from neighboring nodes, since the i-th node and the node they
came from have been checked, their chance of finding their destination has the prob-
ability (di − 1)/n. If they cannot find their destination, they will select a neighboring
node with probability 1/di . Therefore, we have

Pr(2){i → j} = 1

di

(

1 − di − 1

n

)

.

Substituting these two parameters into (1), the corresponding matrix A and B can
be expressed as A = C(D + I )−1 − (1 + 1

n
)CD−1 and B = (1 + 1

n
)CD−1 + C/n,

respectively.

Lemma 3 If there are ‖−→p (0)‖1 = δ agents initially in the network (at time 0), then
the total number of the survival agents running in the network at time t , is less than
δ(1 − σn−1

n
)t .

Proof From the definition of matrix B , it is easy to see that

‖B‖1 = max

∣
∣
∣
∣1 − di − 1

n

∣
∣
∣
∣= 1 − σn − 1

n
.

Therefore, from Lemma 2, we have
∑

1≤j≤n

pj (t) = ‖−→p (t)‖1 = ‖Bt−→p (0)‖1

≤ (‖B‖1)
t ‖−→p (0)‖1.

�

Theorem 1 If −→p (0) = 0, the total number of agents running in the network at any
time is no more than α(σ1, σn, d)nkr where α(σ1, σn, d) = nσ1−σ1−1

(σ1+1)(σn−1)
[1 − (1 −

σn−1
n

)d ].
Proof According to (7), when 0 ≤ t ≤ d , the total number of mobile agents in the
network can be estimated as follows

n∑

j=1

pj (t) = ‖−→p (t)‖1 =
∥
∥
∥
∥
∥

t−1∑

i=0

Bikr(I + A)−→e
∥
∥
∥
∥
∥

1
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≤ nkr · ‖I + A‖1 ·
t−1∑

i=0

(‖B‖1)
i .

From the definitions of matrices A and B , it is easy to see that ‖I + A‖1 = 1 − 1
n

−
1

σ1+1 and ‖B‖1 = 1 − σn−1
n

. Substitute these two values into the above expression,
we have

n∑

j=1

pj (t) ≤ (nσ1 − σ1 − 1)nkr

(σ1 + 1)(σn − 1)

[

1−
(

1 − σn − 1

n

)t
]

= α(σ1, σn, t)nkr,

where α(σ1, σn, t) = nσ1−σ1−1
(σ1+1)(σn−1)

[1 − (1 − σn−1
n

)t ].1 When t ≥ d , from (7), we have

−→p (t) =
d−1∑

i=0

Bikr(I + A)−→e +
t−1∑

i=d

BikrA−→e .

Due to the fact that

aji = 1

di + 1

(

1 − di + 1

n

)

− 1

di

(

1 − di − 1

n

)

< 0

when j ∈ NB(i) and aji = 0 otherwise, we have

‖−→p (t)‖1 ≤
∥
∥
∥
∥
∥

d−1∑

i=0

Bikr(I + A)−→e
∥
∥
∥
∥
∥

1

≤ nkr · ‖I + A‖1 ·
d−1∑

i=0

(‖B‖1)
i

≤ α(σ1, σn, d)nkr.

�

For the number of agents running on each node, we have the following theorem.

Theorem 2 The number of agents running on the j -th node, denoted by pj (t), is no

more than
ndj kr

(σn−1)2+1
.

Proof See Appendix. �

We now estimate the number of agents in each link by the following theorem.

1α(σ1, σn, t)is analyzed in Sect. 6.



Statistical behaviors of mobile agents in network routing 371

Theorem 3 The number of agents moving out from the j -th node to each of its neigh-
boring nodes at time t , denoted by fj (t), satisfies:

fj (t) =
(

1 − dj − 1

n

)
pj (t)

dj

≤ n − σn

n − σn + σ 2
n

kr. (8)

Proof This theorem is proved by induction as follows. Based on (7), we have

pj (0) = 0,

pj (1) = kr,

...

pj (t) = kr +
∑

i∈NB(j)

(

1 − di − 1

n

)
pi(t − 1)

di

.

Then by the definition of fj (t), we have:

fj (0) = 0,

fj (1) = 1

dj

(

1 − dj − 1

n

)

kr ≤ n − σn + 1

σn(σn − 1)
kr.

If the theorem holds for time t − 1, then at time t , we have

fj (t) ≤ 1

dj

(

1 − dj − 1

n

)[

kr +
∑

i∈NB(j)

fi(t − 1)

]

≤ 1

dj

(

1 − dj − 1

n

)[

kr +
∑

i∈NB(j)

n − σn + 1

σn(σn − 1)
kr

]

≤ 1

σn

(

1 − σn − 1

n

)

kr +
(

1 − σn − 1

n

)
n − σn + 1

σn(σn − 1)
kr

= kr

σn

[(

1 − σn − 1

n

)(

1 + n − σn + 1

σn − 1

)]

kr

= kr

σn

[
n − σn + 1

n
· n

σn − 1

]

= n − σn + 1

σn(σn − 1)
kr. �
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4.2 Nonsettleable case

In this case, the corresponding probabilities are

Pr(1){i → j} = 1

di

(

1 − di + 1

n

)

, (9)

Pr(2){i → j} = 1

di − 1

(

1 − di − 1

n

)

, (10)

and the corresponding coefficient matrix in (1) are A = C[(1 − 1
n
)D−1 − (D − I )−1]

(where aji ≤ 0) and B = C[(1 + 1
n
)(D − I )−1 − I

n
]. Furthermore, based on the defi-

nition of matrix 1-norm, we have ‖A‖1 = 1
n

+ 1
σn−1 , ‖A + I‖1 = 1 − 1

n
− 1

σ1−1 , and

‖B‖1 = 1 + 1
n

− σn

n
. Similar to that in settleable case, we have the following theorem.

Theorem 4 If −→p (0) = 0, the total number of mobile agents running in the network
is no more than β(σ1, σn, d)nkr where β(σ1, σn, d) = n(σ1−2)−(σ1−1)

(σ1−1)(σn−1)
[1 − (1 + 1

n
−

σn

n
)d ].2

Regarding to the number of agents running at one node, we have the following
theorem.

Theorem 5 The number of agents running on the j -th node is no more than kr +
ndj kr

(σn−1)2 .

Proof See Appendix. �

Regarding to the number of agents moving out from the j -th node at time t , fj (t),
we have the following theorem.

Theorem 6 The number of agents moving out from the j -th node at time t , denoted
by fj (t), satisfies:

fj (t) ≤ n − σn + 1

(σn − 1)2
kr. (11)

Proof By the definition of fj (t), we have

fj (t) = (1 − dj − 1

n
)
pj (t − 1)

dj − 1

=
(

1 − dj − 1

n

)
1

dj − 1

[

kr +
∑

i∈NB(j)

fi(t − 1)

]

2β(σ1, σn, t)is analyzed in Sect. 6.
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and fj (0) = 0 for j = 1, . . . , n. Then by induction, the theorem can be easily
proven. �

It can be seen that the number of agents in the settleable case is smaller than that in
the nonsettleable case, but with a lower probability of success. Therefore, each case
has its own strength and weakness. Thus, we can apply appropriate strategies for
these different cases to control the number of mobile agents running in the network
and improve network performance for differing application requirements and network
characteristics.

5 Probability of success

Analysis of the probability of success is important because the probability of success
directly affects the searching process, and influences the network performance as a
result. In this section, the probabilities of success for both single agent and multiple
agents are analyzed. Our results show that the probability of success is affected by the
connectivity of the network, the life-span limits, and the number of mobile agents.

In a mobile agent-based network routing model, a mobile agent will visit a se-
quence of nodes. The sequence of nodes between the server and the destination is
called the itinerary of the mobile agent. A static itinerary is entirely defined at the
server and does not change during the agent’s travels, whereas a dynamic itinerary is
subject to modification by the agent itself. In this context, the mobile agents traverse
the network with a dynamic itinerary. Suppose that the w-th node in the network
is the destination. The sequence of nodes in the itinerary of an agent is denoted by
J (0), J (1), . . . ,w or J (d), where J (0) denotes the server node and J (i) is the i-th node
visited by the agent.

Lemma 4 Let i → j indicates the event that an agent jumps from the i-th node to
the j -th node (in one jump), the probability of success that an agent can find its
destination at the t-th jump, denoted by p(t), satisfies

p(t) =
∑

l∈NB(J (t−1))

Pr
{
J (t−1) → l

} dl − 1

n

[

1 −
t−1∑

k=0

p(k)

]

, (12)

where NB(j) is the set of node j ’s neighboring nodes and node j itself, p(0) =
(dJ (0) + 1)/n, and 0 < t ≤ d .

Proof After being generated by the server, J (0), mobile agents move out from
the server and search for their destination in the network. The probability that an
agent can find its destination at birth, p(0), i.e., the probability that the destina-
tion is in NB(J (0)), equals to (dJ (0) + 1)/n. If the agent cannot find its destina-
tion in NB(J (0)), it will jump to one of the server’s neighboring node, J (1), and
continue searching. Since both J (0) and J (1) are not the destination, the proba-
bility that the agent can find its destination at the first jump equals to p(1) =∑

i∈NB(J (0))
di−1

n
Pr{J (0) → i}[1 − p(0)]. If the agent cannot find its destination in
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NB(J (1)), it will jump to a neighboring node, J (2), and continue searching. The
probability that an agent can find its destination at the second jump is p(2) =
∑

j∈NB(J (1))

dj −1
n

Pr{J (1) → j}[1 − p(0) − p(1)]. By recursion, it is easy to prove
that the probability, p(t), that an agent can find its destination at the t-th jump for
t ≥ 1 satisfies:

p(t) =
∑

l∈NB(J (t−1))

dl − 1

n
Pr{J (t−1) → l}

[

1 −
t−1∑

k=0

p(k)

]

.

�

It can be seen that the probability p(t) is relevant to the connectivity of the network
and the number of jumps. From Lemma 1, it is easy to estimate the probability of
success that an agent can find its destination in d jumps, denoted by P(d), by the
relationship

P(d) = p(0) +
d∑

t=1

p(t)

= dJ (0) + 1

n
+

d∑

t=1

∑

l∈NB(J (t−1))

(13)

× Pr{J (t−1) → l} · dl − 1

n

[

1 −
t−1∑

k=0

p(k)

]

.

From Lemma 4, it can be seen that p(t) is a decreasing function on t . Therefore,
based on (13), the increase of P(d) is slower when d becomes larger. Obviously, if
the increase of P(d) is too small, it is not necessary to go on searching. Thus, the
life-span limit of mobile agents, d , can be defined by a given threshold ε ≥ 0 such
that P(d) − P(d − 1) ≤ ε. Based on (12) and (13), we have the following theorem:

Theorem 7 The probability of success, Ps , that at least s agents from k agents can
find the destination in d jumps satisfies the following inequality:

�s

√
2πs

< Ps <
�s

√
2πs

· 1

1 − λ/(s + 1)
, (14)

where λ = kP (d) and � = λ
s
e1−λ/s .

Proof As we know, this probability satisfies binomial distribution, so we have

Ps =
k∑

i=s

Cs
kP (d)s[1 − P(d)]k−s .
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When k is big enough, this distribution can be approximated by Poisson distribution
as follows

Ps ≈
k∑

i=s

λse−λ

s! .

where λ = kP (d). Therefore, we have

e−λ λs

s! <

k∑

i=s

λse−λ

s!

= e−λ λs

s! ·
[

1 + λ

s + 1
+ λ2

(s + 1)(s + 2)

]

+ · · · + e−λ λs

s! ·
[

λk−s

(s + 1) · · ·k
]

≤ e−λ λs

s! ·
[

1 + λ

s + 1
+
(

λ

s + 1

)2]

+ · · · + e−λ λs

s! ·
[(

λ

s + 1

)k−s]

≤ e−λ λs

s! · 1

1 − λ/(s + 1)
.

Applying Stirling’s formula

n! ≈ √
2πnnne−nfor large n,

we have

�s

√
2πs

< Ps <
�s

√
2πs

1

1 − λ/(s + 1)
.

�

In particular, P1, the probability that at least one agent among k agents can find
the destination, is 1 − [1 − P(d)]k .

5.1 Settleable case

In the settleable case, both the host node and its neighboring nodes have the same
possibility to be selected since each direction is equally likely to connect with the
destination. Thus, the probability Pr{i → j} equals to 1/(di + 1) where j ∈ NB(i)

and di is the number of neighboring nodes of node i. Therefore, the probability p(t)

in Lemma 4 satisfies

p(t) =
∑

l∈NB(J (t−1))

dl − 1

n
· 1

dJ (t−1) + 1
·
[

1 −
t−1∑

k=0

p(k)

]

, (15)
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where p(0) = (dJ (0) + 1)/n and 0 < t ≤ d . In particular, when the average connec-
tivity of the network, denoted by θ , is available, we can further estimate p(t) based
on (15) as follows:

p(t) =
∑

l∈NB(J (t−1))

θ − 1

n(θ + 1)
·
[

1 −
t−1∑

k=0

p(k)

]

,

(16)

= θ(θ − 1)

n(θ + 1)
·
[

1 −
t−1∑

k=0

p(k)

]

,

p(t − 1) = θ(θ − 1)

n(θ + 1)
·
[

1 −
t−2∑

k=0

p(k)

]

, (17)

where θ = E[di]. Denote θ(θ − 1)/[n(θ + 1)] by a, then we have

p(t) − p(t − 1) = a · [−p(t − 1)]. (18)

Therefore,

p(t) = (1 − a)p(t − 1) = (1 − a)t−1p(1)

= a(1 − a)t−1
(

1 − θ + 1

n

)

,
(19)

since p(1) = a[1 − p(0)] and p(0) = (θ + 1)/n. Furthermore, the probability of
success, P(d), that an agent can find its destination in d jumps satisfies

P(d) =
d∑

t=0

p(t) = p(0) +
d∑

t=1

p(t)

= θ + 1

n
+

d∑

t=1

a(1 − a)t−1
(

1 − θ + 1

n

)

= θ + 1

n
+ a

(

1 − θ + 1

n

)
1−(1−a)d

a

= 1 −
(

1 − θ + 1

n

)

(1 − a)d .

(20)

5.2 Nonsettleable case

In the nonsettleable case, the probability Pr{J (t) → l} equals to 1/dJ (t) since all
neighboring nodes have the same possibility to be selected. Substituting this value
in (12), the probability of success that an agent can find its destination at the t-th
jump can be estimated as follows:

p(t) =
∑

l∈NB(J (t−1))

dl − 1

n · dJ (t−1)

[

1 −
t−1∑

k=0

p(k)

]

, (21)
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where p(0) = (dJ (0) + 1)/n and 0 < t ≤ d . Similar to the analysis for the settleable
case, when the average connectivity θ is available, the probability can be estimated
as follows

p(t) = b(1 − b)t−1
(

1 − θ + 1

n

)

, (22)

where b = (θ − 1)/n. The probability of success, P(d), that an agent can find its
destination in d jumps satisfies

P(d) = 1 − (1 − b)d
(

1 − θ + 1

n

)

. (23)

6 Simulation studies

In this section, we describe the simulation results for performance evaluation. We
have performed extensive simulation experiments to evaluate the performance of our
model and compare the results with those of existing models. The network topology
was randomly generated by the Tier program [8]. We have conducted experiments
for many topologies with different parameters and found that the performance of our
model was relatively insensitive to topology changes. Here, we list only the experi-
mental results for one topology of a network with 10,000 nodes and a small network
with 57 nodes (the Japanese backbone).

In Fig. 3, we plot α(σ1, σn, t) and β(σ1, σn, t) as functions on σ1 and σn, respec-
tively. It can be seen that both of them are increasing functions on σ1 and decreasing
functions on σn. β(σ1, σn, t) is greater than α(σ1, σn, t) as a function on the connec-
tivity of the network.

In Fig. 4, we plotted results of the number of mobile agents running on each node
for n = 10,000, r = 100, and k = 50. The figures on the upper row show the number

Fig. 3 The changes of α(σ1, σn, d) and β(σ1, σn, d)
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Fig. 4 Variations of pj (t) with n

of mobile agents running on a node at time t , pj (t), and the figures on the lower
row show the number of mobile agents running in the network at time t ,

∑n
j=1 pj (t).

The figures on the left column are for the number of mobile agents for the settleable
case, and the figures on the right column are for the number of mobile agents for the
nonsettleable case. In each graph, there are two curves, which indicate the following
two runs, respectively:

• Run 1: σ1 = 50, σn = 20;
• Run 2: σ1 = 200, σn = 20.

From the figures on the upper row we can see that pj (t) is a monotonically increas-
ing function on t . For both cases, pj (t) increases more quickly for large connectivity.
We can also see that pj (t) for the settleable case is less than that for the nonsettleable
case, which conforms to our analysis proposed previously for each case. From the
figures on the lower row we can see that

∑n
j=1 pj (t) is a monotonically increasing

function on t . It can also be seen that for a network which has larger connectivity, the
number of mobile agents is larger.

∑n
j=1 p(t) for settleable case is less than that for

nonsettleable case, which conforms to our analysis for each case. We also compare
the number of agents between settleable and nonsettleable cases in Table 1.

The experimental results for the probabilities of success are depicted in Fig. 5. The
figures in the upper row are for the probability of success that an agent can find its
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Table 1 The comparison of the number of agents between settleable case and nonsettleable case

d = 100 d = 500 d = 1000 d = 2000 d = 3000

Run 1 pj (t) settleable 4.0911e+005 9.5692e+005 1.0386e+006 1.0462e+006 1.0462e+006

nonsettleable 2.2431e+006 8.0491e+006 1.1175e+007 1.2849e+007 1.3099e+007
∑n

j=1 pj (t) settleable 4.2410e+009 1.5026e+010 2.0831e+010 2.3941e+010 2.4406e+010

nonsettleable 5.2550e+009 1.8618e+010 2.5812e+010 2.9666e+010 3.0241e+010

Run 2 pj (t) settleable 4.4737e+005 5.1502e+005 5.1504e+005 5.1504e+005 5.1504e+005

nonsettleable 4.4711e+006 1.6083e+007 2.2334e+007 2.2583e+007 2.6183e+007
∑n

j=1 pj (t) settleable 4.5343e+009 1.6065e+010 2.2272e+010 2.5597e+010 2.6094e+010

nonsettleable 5.6592e+009 2.005e+010 2.7798e+010 3.1948e+010 3.2568e+010

Fig. 5 Probabilities of success

destination at the t-th jump, p(t), and those in the lower row are for the probability
of success that an agent can find its destination in t jumps, P(t). The figures in the
left column are the probabilities of success in the settleable case, and those in the
right are for probabilities of success in the nonsettleable case. In each figure, there
are three curves, which indicate the following three runs, respectively:
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Table 2 The comparison of the probability of success between settleable case and nonsettleable case

t = 100 t = 200 t = 500 t = 1500 t = 2500

Run 1 p(t) settleable 0.0033 0.0012 6.4040e−005 3.3768e−009 1.7806e−013

nonsettleable 0.0037 0.0014 6.8403e−005 3.2669e−009 1.5603e−013

P(t) settleable 0.6067 0.8406 0.9727 0.9800 0.9800

nonsettleable 0.6340 0.8647 0.9932 1.0000 1.0000

Run 2 p(t) settleable 0.0027 0.0016 3.8908e−004 3.1528e−006 2.5548e−008

nonsettleable 0.0030 0.0018 4.2022e−004 3.0917e−006 2.2747e−008

P(t) settleable 0.3624 0.5984 0.8900 0.9793 0.9800

nonsettleable 0.3882 0.6257 0.9142 0.9994 1.0000

Run 3 p(t) settleable 0.0014 0.0011 6.5825e−004 1.0760e−004 1.7589e−005

nonsettleable 0.0016 0.0013 7.3400e−004 1.0958e−004 1.6361e−005

P(t) settleable 0.1459 0.2841 0.5758 0.9139 0.9692

nonsettleable 0.1734 0.3165 0.6137 0.9423 0.9914

• Run 1: n = 10,000, θ = 100;
• Run 2: n = 10,000, θ = 50;
• Run 3: n = 10,000, θ = 20.

From the figures in the upper row, we can see that p(t) is a monotonically decreas-
ing function of t and decreases more quickly for large θ . We can also see that p(t)

for the nonsettleable case is larger than that for the settleable case, which conforms
to the analysis presented previously for each case. From the figures on the lower row,
we can see that P(t) is a monotonically increasing function of t . It can also be seen
that for a network which has larger θ , a higher probability of success, P(t), can be
gained in a shorter time. P(t) for the nonsettleable case is larger than that for the
settleable case, which conforms to our analysis for each case. We also compare the
probability of success between settleable case and nonsettleable case in Table 2.

Figures 7 and 6 compare our model to the one proposed in [31] (“blind case” for
short). We use the proposed model for settleable case in the comparison since it is al-
most the same as the “blind case” except mobile agents’ ability to check neighboring
nodes’ information. We plotted results of the number of mobile agents running on
each node for n = 10,000, r = 100, and k = 50. The topologies are generated by the
Tier algorithm, which is wide accepted as reasonable. In Fig. 7, figures on the upper
row show the number of mobile agents running on a node at time t , pj (t), and the
figures on the lower row show the number of mobile agents running in the network
at time t ,

∑n
j=1 pj (t). The figures on the left column are for the number of mobile

agents for σ1 = 50, and the figures on the right column are for the number of mobile
agents for σ1 = 200. We can see that both pj (t) and

∑n
j=1 pj (t) are monotonically

increasing functions on t . For both cases, we can also see that pj (t) for the settleable
case is less than that for blind case. The reason is that mobile agents of settleable
case have a higher probability of success at each step, therefore, a higher death rate
on each node.

The experimental results for the probabilities of success are depicted in Fig. 6. The
figures in the left column are for the probability of success that an agent can find its
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Fig. 6 The probability of success

destination at the t-th jump, p(t), and those in the right column are for the probability
of success that an agent can find its destination in t jumps, P(t). The figures in the
first row are the probabilities of success for case Run 1:θ = 100, those in the second
row are for Run 2:θ = 50, and those in the third row are for Run 3:θ = 20, which are
described below:

It can be seen that p(t) is a monotonically decreasing function on t and decreases
more quickly for large θ . It can also be seen that p(t) for the settleable case is larger
than that for the blind case. This is because that mobile agents in the settleable case
can check more candidate nodes at each step, which illustrate the rationality of our
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Fig. 7 The population distribution

assumption. Figures on the right column show that P(t) is a monotonically increasing
function on t and P(t) for the settleable case is larger than that for the blind case.

We have also implemented some of our results on the Japanese backbone, NT-
TNET, as a small network scenario in the OMNeT++ simulator [37]. The network is
composed of 57 nodes and 162 bidirectional links. The topology is showed in Fig. 8.
The bandwidth is set to be 6 Mbits/sec for every link and the propagation delay is
from 2 to 5 milliseconds. The assigned link or node fault probability is null, local
buffers have a gigabyte of capacity and links are accessed through statistical multi-
plexing. The size of a mobile agent is set to be 24 bytes. In the simulation, 20 nodes in
the network are randomly selected as the sink nodes of requests and 20 destinations
are also randomly selected accordingly. The number of agents generated per request
is 5, and the life-span limit of a mobile agent is set to be 30 hops.

Figure 9 reports experimental results for the population distribution and probabil-
ity of success. The time length of the simulation has been set to 200 seconds. We
observed that after this time interval the behavior of the algorithm is already well
characterized. The left figure described the results for the population distribution.
Reported data are averaged over 10 trials. From the left figure, we can see that the
number of agents of nonsettleable case is lower than that of settleable case, which
coincides with our theoretical results. The right figure shows the results for probabil-
ity of success. Reported data are averaged over 50 trials. We observe the number of
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]

Fig. 8 NTT backbone network

Fig. 9 Simulation results for NTT backbone network

agents that find their destinations. The probability of success is calculated as the ratio
between the number of agents that have found its destination and the total number of
launched agents. From the right figure, we can see that the probability of success of
nonsettleable case is higher than that of settleable case as we verified previously.

7 Conclusion

In this paper, we described a general agent-based routing model in which the neigh-
borhood information of each node is known in the node’s routing table. We further
classify the model into settleable and nonsettleable cases according to whether an
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agent is allowed to remain in the current host node during the next step of searching.
For each case, we analyzed both the population distribution and the probability of
success of mobile agents. We also conducted extensive simulation studies to validate
our theoretical results. Both the theoretical and experimental results showed that the
behaviors of mobile agents can be characterized by the population of mobile agents
and the probability of success, and both these parameters can be controlled by tuning
the number of agents generated per request and the number of jumps each mobile
agent can make. Our results reveal new theoretical insights into the statistical behav-
iors of mobile agents and provide useful tools for effectively managing mobile agents
in large networks.

Acknowledgements This research is conducted as a program for the National Natural Science Founda-
tion of China (Grant No. 90718030).

Appendix: proof of Theorem 2 and Theorem 5

Assume that −→p (0) = 0, the number of mobile agents running on a node can be esti-
mated as follows based on (1) and the fact aji ≤ 0:

• When 0 ≤ t ≤ d ,

−→p (t) =
t−1∑

i=0

Bikr(I + A)−→e + Bt−→p (0)

≤
t−1∑

i=0

Bikr−→e = kr−→e + B−→p (t − 1).

• When t ≥ d ,

−→p (t) =
t−1∑

i=0

Bikr(I + A)−→e + Bt−→p (0) −
t−1∑

j=d

Bjkr−→e

=
d−1∑

i=0

Bikr(I + A)−→e + Bt−→p (0) +
t−1∑

j=0

Akr−→e

≤
d−1∑

i=0

Bikr−→e .

From the analysis, it is easy to see that

pj (t) ≤ kr +
∑

i∈NB(j)

Pr(2){i → j}pj (t − 1). (24)

In the following, we will present analysis on the number of mobile agents running on
a node for each case, respectively.



Statistical behaviors of mobile agents in network routing 385

Proof of Theorem 2

Proof Substitute the value of Pr(2){i → j} for settleable case in inequality (24), we
have

pj (t) ≤ kr +
∑

i∈NB(j)

1

di

(

1 − di − 1

n

)

pj (t − 1).

Since pj (0) = 0 and pj (t) = 1, we have

pj (t) ≤ (dj + 1)kr

−
[
σn − 1

n
− σn − 1

σn

(

1 − σn − 1

n

)]

dj kr

= (dj + 1)kr − μdjkr,

where μ = σn−1
n

+ σn−1
σn

(1 − σn−1
n

). If the following inequality is held,

pj (t) ≤ (dj + 1)kr −
[
σn − 1

n
− 1

σn

(

1 − σn − 1

n

)]

×
t−2∑

i=0

(

1 − σn − 1

n

)i

dj kr − μ

(

1 − σn − 1

n

)t−1

dj kr.

Then it can be easily proved that the inequality will also hold for t + 1. Therefore, we
have

pj (t) ≤ (dj + 1)kr − μ

(

1 − σn − 1

n

)t−1

dj kr

− σ 2
n − n − 1

nσn

t−2∑

i=0

(

1 − σn − 1

n

)i

dj kr

= (dj + 1)kr − σ 2
n − n − 1

σn(σn − 1)
dj kr

+
[
σ 2

n − n − 1

σn(σn − 1)
− μ

](

1 − σn − 1

n

)t−1

dj kr

= kr + ξdj kr + ζ

(

1 − σn − 1

n

)t−1

dj kr,

where ξ = n−σn+1
σn(σn−1)

and ζ = σ 2
n −n−1

σn(σn−1)
−μ = 2

σn
− n2+(σn−1)2

nσn(σn−1)
. Therefore, a convenient

upper bound of the number of mobile agents is as follows

pj (t) ≤
[

ndj

(σn − 1)2 + 1

]

kr. �
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Proof of Theorem 5

Proof Similar to that in the proof of Theorem 2, substitute the value of Pr(2){i → j}
for unsettleable case in inequality (24), we have

pj (t) ≤ kr +
∑

i∈NB(j)

1

di − 1

(

1 − di − 1

n

)

pj (t − 1).

By induction, it can be proved that

pj (t) ≤ kr + n

(σn − 1)2
dj kr

[

1 −
(

1 − σn − 1

n

)t]

≤ kr + n

(σn − 1)2
dj kr. �
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