
J Intell Inf Syst
DOI 10.1007/s10844-013-0237-8

QUBIC: An adaptive approach to query-based
recommendation

Lin Li · Luo Zhong · Zhenglu Yang ·
Masaru Kitsuregawa

Received: 26 December 2011 / Revised: 31 January 2013 / Accepted: 31 January 2013
© Springer Science+Business Media New York 2013

Abstract Search engine users often encounter the difficulty of phrasing the pre-
cise query that could lead to satisfactory search results. Query recommendation
is considered an effective assistant in enhancing keyword-based queries in search
engines and Web search software. In this paper, we present a Query-URL Bipartite
based query reCommendation approach, called QUBiC. It utilizes the connectivity
of a query-URL bipartite graph to recommend related queries and can significantly
improve the accuracy and effectiveness of personalized query recommendation sys-
tems comparing with the conventional pairwise similarity based approach. The main
contribution of the QUBiC approach is its three-phase framework for personalized
query recommendations. The first phase is the preparation of queries and their
search results returned by a search engine, which generates a historical query-
URL bipartite collection. The second phase is the discovery of similar queries by
extracting a query affinity graph from the bipartite graph, instead of operating on the

The work was done when Lin Li was a Ph.D. student at Kitsuregawa Lab., University of Tokyo,
Japan.

This research was undertaken as part of Project 61003130 funded by National Natural Science
Foundation of China and and Project 2011CDB254 founded by Ministry of Education of China.

L. Li (B) · L. Zhong
School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
e-mail: cathylilin@whut.edu.cn

L. Zhong
e-mail: zhongluo@whut.edu.cn

Z. Yang · M. Kitsuregawa
Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Z. Yang
e-mail: yangzl@tkl.iis.u-tokyo.ac.jp

M. Kitsuregawa
e-mail: kitsure@tkl.iis.u-tokyo.ac.jp

J Intell Inf Syst

original bipartite graph directly using biclique-based approach or graph clustering.
The query affinity graph consists of only queries as its vertices and its edges are
weighted according to a query-URL vector based similarity (dissimilarity) measure.
The third phase is the ranking of similar queries. We devise a novel rank mechanism
for ordering the related queries based on the merging distances of a hierarchical
agglomerative clustering (HAC). By utilizing the query affinity graph and the HAC-
based ranking, we are able to capture the propagation of similarity from query to
query by inducing an implicit topical relatedness between queries. Furthermore, the
flexibility of the HAC strategy makes it possible for users to interactively participate
in the query recommendation process, and helps to bridge the gap between the
determinacy of actual similarity values and the indeterminacy of users’ information
needs, allowing the lists of related queries to be changed from user to user and
query to query, thus adaptively recommending related queries on demand. Our
experimental evaluation results show that the QUBiC approach is highly efficient
and more effective compared to the conventional query recommendation systems,
yielding about 13.3 % as the most improvement in terms of precision.

Keywords HAC strategy · Monotonicity · Bipartite graph · Query recommendation

1 Introduction

Web search engines today provide simple and yet friendly user interfaces which allow
users to pose queries simply in terms of keywords. Keyword search is much more
popular than SQL queries for Web information access. The main limitation with
keyword-based search is two-fold. First, some keywords have different meanings in
different context, such as mouse trap, Jaguar, Java and so on. Thus, it is hard for
search engines to return high quality results when only a couple of keywords are
used in defining users’ queries (Jansen et al. 1998). This is because search engines
primarily rely on the matching of the query terms to the document terms in the
desired documents to determine which Web pages will be returned given a keyword-
based query. Furthermore, users often fail to choose proper terms that best express
their information needs. Ambiguous keywords used in Web queries and the limited
ability of users to precisely express what they want to search in a few keywords have
been widely recognized as a challenging obstacle in improving search quality.

Query recommendation Commercial search engines give suggestions on the queries
input by users, thus assisting them in rephrasing their query formulation to improve
search quality, such as Related search terms in Google and Search Assist in Yahoo!.
These services supplied by Google and Yahoo! highlight the importance of query
recommendation which is considered an effective assistant in enhancing keyword-
based queries in search engines and Web search software.

The main process of query recommendation consists of two steps: (1) finding
the terms from queries or documents that are most similar to the current query,
and (2) ranking similar terms and utilizing the ranked similar terms to reformulate
the current query, such as appending terms to the existing list of terms in the
query, replacing some terms in the query and so on. Existing query recommendation
techniques differ from one another in terms of the methods they use to find similar

J Intell Inf Syst

terms and the techniques they use to rank the similar terms. Finding candidate terms
from documents is widely used in query expansion techniques (Collins-Thompson
and Callan 2005; Cui et al. 2003; Qixia and Maosong 2011). However, some terms are
difficult to be suggested because of their high document frequencies, e.g., “good”,
“delicious” and so on. If these terms appeared in some past queries, we can easily
suggest them to users by using the whole query. Terms in related queries can also be
an effective source for query recommendation. Recent researches are following this
direction of utilizing a set of past search queries which embodies the collaborative
knowledge of users (Aris et al. 2010; Baeza-Yates et al. 2007; Glance 2001; Wen et al.
2002; Xiaohui et al. 2011). Related search terms in Google is based on the assumption
that sometimes the best search terms for what a user is looking for are related to the
ones the user actually entered. It is intuitive to think that previous queries having
common terms with the current query to be the similar queries and these queries are
naturally recommended.

Web users, however, typically submit very short queries to search engines (Jansen
et al. 1998), the very small term overlap between queries cannot accurately estimate
their relatedness. For example, queries phrased in the same list of keywords may be
meant for different results by different users. Furthermore, queries can be phrased
with different terms but are meant for the same information need. As a concrete
example, we take two queries, “IRS (Internal Revenue Service) form” and “file
taxes online”. Although they have no terms in common, both of them concern the
application of filing taxes. The relatedness between the two queries can be induced
from the overlap of the two lists of search results (URLs) returned. Thus, the query
result-vectors are often a better similarity metric compared to query term-vectors
(Raghavan and Sever 1995).

Utilization of Query-URL bipartite graph From the search result pages we usually
can get two kinds of feature spaces, i.e, content-sensitive (e.g., nouns) and content-
ignorant (e.g., URLs) which can be used to enrich the expressions of search queries.
Then, the relatedness between search queries can be estimated on their enriched
expressions, e.g., the overlap of their feature spaces. Researches (Baeza-Yates et al.
2007; Wen et al. 2002; Li et al. 2010) show that the URL feature space produces lower
precision scores than the noun feature space which, however, is not applicable, at
least in principle, in settings including: non-text pages like multimedia (image) files,
Usenet archives, sites with registration requirement, and dynamic pages returned in
response to a submitted query and so forth. It is crucial to improve the quality of the
URL (content-ignorant) feature space since it is generally available in all types of
Web pages. The problem of the URL feature space is that even though two queries
share no common URLs in their search result pages, they may be related since Web
pages with different URLs may be semantically related. In this paper, we propose an
approach to solve this problem.

To utilize the query result-vectors, one obvious approach is to represent queries
and their result URLs as a bipartite graph with edges connecting queries on one
side of the graph to the corresponding URLs of search results returned by a search
engine on the other side of the graph. It is clear that related queries can be found
by examining the collection of queries and URLs in the query-URL bipartite graph.
Queries that are more strongly connected to each other are considered more similar
(related).

J Intell Inf Syst

Different approaches can be used for finding a collection of similar queries.
From a graph theoretical viewpoint, extracting the collection of most related queries
and URLs can be approximated by the problem of partitioning a bipartite graph
(Beeferman and Berger 2000; Zha et al. 2001) and then finding the maximum
biclique, one of the well-known NP complete problems in the literature (Dawande
et al. 2001). The problem of partitioning a bipartite graph can also be addressed by
clustering techniques (Baeza-Yates et al. 2007; Wen et al. 2002; Hansen and Shriver
2001). Both bicliques and clusters are groups of related queries. Queries in different
groups are regarded as unrelated, or at least much less related than queries in a same
group. After finding groups of similar queries, the next challenge is, given a query,
how to devise a ranking mechanism to order the related queries in a group, and
making query-based recommendations.

Scope of this paper This paper presents a Query-URL Bipartite based approach
to query reCommendation, called QUBiC. The QUBiC system fulfills two tasks:
(1) finding groups of related queries, and (2) ranking queries in the same group as
an input query by proceeding in three phases. The first phase is the preparation of
queries and their search results returned by a search engine for constructing a query-
URL bipartite graph. A query is represented in terms of the corresponding set of
URLs returned by the search engine in responding to the query, instead of the set of
terms used in the query keyword list, thus realizing query result-vectors.

On the second phase, we generate query affinity graph based the similarity
measure between pairs of queries. We use query-URL vector model to measure
similarity between queries, instead of using query-term vector model. We argue that
the query-URL vector better represents the meaning of a query, given the frequency
and the amount of Web queries either phrased in the same list of keywords but meant
for different results by different users, or phrased with different terms but meant
for the same information need. Connected components can be extracted from the
query affinity graph and each connected component is a group of related queries,
thus completing the first task of the QUBiC system.

In the third phase, we discuss that it is insufficient that the naïve approach directly
uses the similarity scores of pairs of queries computed in the second phase. Such
naïve approach is widely adopted in the literature of mining related or similar
items (e.g., queries, pages, etc.) (Baeza-Yates et al. 2007; Glance 2001; Wen et al.
2002; Calado et al. 2006; Otsuka and Kitsuregawa 2006). We propose to utilize the
monotonicity of the merging distances of a hierarchical agglomerative clustering
(HAC). By using HAC-based algorithms we can globally capture the diffusive
transition of similarity on each connected component to rank queries. Furthermore,
instead of fixing the degree of similarity of queries based on their query-URL vector
similarity, the QUBiC system adaptively controls the output of different lists of
related queries in terms of the level of users’ satisfaction.

Contribution of this paper In a summary, the contribution of this paper is listed as
follows.

1. We generate query affinity graph (QAG) based the similarity measure between
pairs of queries. Traditional naïve approaches just find related queries which
have a edge connected with the target query in QAG, i.e., adjacent nodes.
Our proposed approach tries to get its related queries from adjacent nodes and

J Intell Inf Syst

un-adjacent nodes as long as they are reachable from the target query following
a path.

2. A novel tree distance based ranking is proposed for query recommendation
by making use of the dendrogram of clustering to reflect the global similarity
through QAG.

3. We give empirical evidence as to how different HAC strategies affect the quality
of recommendation and use the flexibility of the α-F HAC strategy to allow users
to interactively participate in the query recommendation process.

The remainder of this paper is organized as follows. We discuss the related work
in Section 2. An overview of our approach is presented in Section 3. We describe
the three phases of the QUBiC adaptive approach for query recommendation in
Sections 4, 5, and 6. An extensive experimental evaluation on the effectiveness of the
QUBiC approach is reported in Section 7. The conclusion of the paper is in Section 8.

2 Related work

Finding related queries for query recommendation has become an important topic,
motivated by several research challenges including query clustering, query expan-
sion, and different graph partitionings. A considerable amount of research has
focused on the three aspects. We summarize a small part of these researches.

2.1 Query clustering

Clustering queries submitted to search engines appears to be less explored than clus-
tering Web pages or documents. The idea of exploiting the collaborative knowledge
of users, embodied as a set of past search queries, was proposed early (Glance 2001;
Raghavan and Sever 1995; Wen et al. 2002; Fitzpatrick and Dent 1997). Glance
(2001) introduced a software agent that collects queries from previous users, and
determined the query similarity based on the Web pages returned by queries, and not
the actual terms in the queries themselves. The goal of Raghavan and Sever (1995)
was to accelerate the formation of optimal queries from past queries. Fitzpatrick
and Dent (1997) improved the effectiveness of a user-supplied query by identifying
key terms from potentially relevant documents from past queries. Treating the top
ranked documents as a special case of relevance feedback is a variation of the original
work on local feedback (Xu and Croft 1996). Wen et al. (2002) proposed to cluster
similar queries to recommend URLs to frequently asked queries of a search engine.
They combined similarities based on query contents and user clicks, and regarded
user clicks as an implicit relevance feedback instead of using the top ranked Web
pages. Hansen and Shriver (2001) distilled search-related navigation information
from proxy logs to cluster queries. The data they relied on differed from those used
in the above other studies.

Different from the utilization of clustering in these studies, we make use of the
monotonicity of the HAC strategies to adaptively output the ordered list of related
queries. In addition, we examine three URL-based similarity measures analytically
and empirically to provide better understanding of the propagation of similarity from
query to query by inducing an implicit topical relatedness between queries.

J Intell Inf Syst

2.2 Query expansion

We design a query recommendation system which suggest related queries to help
users refine their original queries, while query expansion is also an alternative to
revise users’ queries. The conventional research efforts on query expansion are
classified into three categories according to the information sources they use to find
relevant terms for query expansion: (1) corpus-based statistics analysis (Voorhees
1994), (2) relevance feedback based recommendation (Salton and Buckley 1990),
and (3) local context based recommendation (Buckley et al. 1994; Xu and Croft
2000). In addition, some researches combined multiple sources of knowledge on term
associations (Collins-Thompson and Callan 2005; Vuong and Tru 2010; Chirita et al.
2007; Sun et al. 2006).

Others used Web logs to bridge the term gap between user-centric query space
and author-centric Web page space (Cui et al. 2003; Yunlong et al. 2011; Zhu and
Gruenwald 2005). Most query expansion techniques suggest terms used extracted
from Web pages. However, some terms are difficult to be suggested because of their
high document frequencies. We think that if these terms appear in some past queries,
we recommend them to users by using the full term list of a query. Therefore, terms
in related queries can also be an effective source of expansion terms. Yunlong et al.
(2011) proposed a Two-Stage SimRank (called TSS in this paper) algorithm based
on SimRank (Jeh and Widom 2002) and some clustering algorithms to compute
the similarity among queries, and then use it to discover relevant terms for query
expansion. Further experiments on query expansion using related queries would be
an interesting topic in our future work.

2.3 Graph theory

The query-URL relationship can be represented by a bipartite graph as modelled in
Section 4. Finding biclique is a natural way of collecting the most related queries and
URLs. A well known problem related to biclique is the maximum clique, which is one
of the most widely studied NP-complete problems in the literature (Dawande et al.
2001). On the other hand, graph partitioning is an alternative for grouping (Zha et al.
2001; Rege et al. 2006) which is done by cutting the set of vertices into disjoint sets.
Beeferman and Berger (2000) viewed the click-through data as a bipartite graph,
and utilized an iterative, agglomerative clustering algorithm to the vertices of the
graph for clustering queries and URLs, respectively. Their method just extracted
connected components from the entire graph and used f requency to measure the
similarity between queries. The limitation of this method is the weakness of selecting
queries from the most frequently occurred connected component that contains the
input query (keyword list). However, the selected queries may not be the best query
recommendation, as the frequency is not always the best descriptor of relatedness
because it does not discern the individual targeted queries.

Our QUBiC approach can be regarded as a combination of traditional clustering
strategy and graph analysis, which makes use of the dendrogram of clustering to
reflect the global similarity through a similarity graph and propose a novel tree
distance based ranking for query recommendation. SimRank (Jeh and Widom 2002)
measured the object-to-object relationship by recursively scoring the similarity of
their related objects. Sun et al. (2005) employed random walk with restarts and graph

J Intell Inf Syst

partitioning to solve two problems, neighborhood formation and anomaly detection.
These studies reflect the global similarity since they work by iteratively transmitting
weights through the whole graph. However, they supplied all the users with the
same list of related queries in response to an input query. Namely, they ignored
the subjectivity of similarity, especially the users’ diverse needs. Our approach can
adaptively output the recommendation list of related queries according to users’
needs.

3 QUBIC system overview

The QUBiC system is designed to implement an adaptive approach to query rec-
ommendation based on query-URL bipartite graph. Figure 1 shows a sketch of the
QUBiC system architecture. As illustrated in the rightmost three boxes in Fig. 1, the
proposed query recommendation approach consists of query-based recommendation
preparation to build the query-URL bipartite graph (First Phase), generating query
affinity graph to discovery groups of similar queries (Second Phase), and the ranking
of similar queries by taking into account both the propagation of the similarity and
the subjectivity of the similarity (Third Phase).

Because the queries other users previously entered may be related to the infor-
mation need of current user, finding related queries will give hints to an individual
user. In the first phase, for each query in a set of past queries, we retrieve the top N
search results from a search engine to represent this query (the parameter N will be
studied in experiment part). The query-URL bipartite graph is built by creating edges
between a query and its corresponding search results, as shown in Fig. 2. Although

Past

Queries
Constructing Query-URL Bipartite Graph

Generating Query Affinity Graph (QAG)

Extracting Connected Components

Designing HAC-based Ranking

Outputting Recommendations

Not Found

Found

A Ranked List of Recommended Queries

Selecting a HAC Strategy and Hop

Keyword Query

Third Phase:

HAC-based Query Ranking and

Recommendation

Second Phase:

Generating Query Affinity Graph

Retrieving Search Results of Queries

First Phase:

Query-based Recommendation Preparation

Web

Pages

Fig. 1 QUBiC architecture

J Intell Inf Syst

Fig. 2 Query-URL bipartite
graph

q1

q2

q3

u2

u3

u1

Q UE

q4

q5

u4

u5

it is intuitive to represent queries by their terms, we have argued that this approach
fails to handle several typical cases in Web queries, for example, queries using the
same keyword list but meant for different set of results by different users and queries
with different terms but for the same information needs.

The second phase generates query affinity graph (QAG) and extracts connected
components from QAG, thus forming groups of similar queries. Instead of using
graph-theoretical approach of finding maximum biclique on the bipartite graph built
in the first phase, we construct a query affinity graph (QAG) using a query-URL
based dissimilarity (similarity) measure. A system defined parameter δ is introduced
to control the level of query similarity to be considered, thus reducing the set
of candidate queries in QAG for considering most relevant ones. Last, connected
components are extracted from QAG. Each connected component is regarded as a
group of queries with high relevance or similarity in terms of their query-URL vector
similarity measure.

In the third phase, given an input query, we need to rank queries in the same group
as the input query, to produce the best adaptive query recommendation. The naïve
approach to ranking similar queries is to use the query-URL vector based similarity
scores, which fails to properly capture the propagation of similarity in the query
affinity graph and the subjectivity of similarity from users’ requirements. We gen-
eralize the concept of relatedness in the sense that given the an input query in QAG,
its related queries include adjacent nodes and un-adjacent nodes as long as they are
reachable from the given query following a path in QAG. The monotonic merging
operations of hierarchical agglomerative clustering (HAC) strategies generate the
dendrogram (also called cluster tree) for displaying the cluster membership between
data points. Based on this kind of tree structure, we argue that a tree distance based
ranking can better address the problem of similarity propagation. Moreover, the
flexibility of a HAC strategy allows the lists of related queries to be changed from
user to user and query to query, thus adaptively recommending related queries on
demand.

The general work flow of our system with the three phases consists of initialization
and recommendation processings. Because we have a collection of queries, the

J Intell Inf Syst

system initialization processing only needs to apply the first and second phases
to these queries and obtain groups of related queries. In the recommendation
processing, a user inputs a keyword query to our system. If the input query can be
found in one of these groups of related queries, the third phase ranks each query in
this group and generates a recommendation list. If the input query cannot be found,
the whole three phases are executed one by one. Thus, additional cost is incurred. We
need to add this new query and its search results to the original query-URL bipartite
graph, re-compute the similarity (dissimilarity) scores between the input query with
all the queries in the query collection, and update the query affinity graph. We will
discuss some optimization techniques to reduce the updating cost, especially when
updating the query affinity graph in Section 5.

We can see that our system returns a list of recommended queries. In real
applications, we expect the system to return informational web pages as results using
the recommended queries, as shown in the rightmost part of Fig. 1. In our published
paper (Li et al. 2011), we address the Web search problem on aggregating search
results of related queries to improve the retrieval quality. Given an initial query and
the suggested related queries, we concurrently processes their search result lists from
an existing search engine and then forms a single list aggregated by all the retrieved
lists. Some experimental results are reported in the last paragraph of Section 7.

4 First phase: query-based recommendation preparation

Web search engines are useful to find alternative information sources for more
accurate representation of a query than query-term vectors. Given a query, a Web
search engine will return relevant Web pages (search results) according to its own
rank mechanism. Many advanced Web searching techniques have been developed
and used in commercial Web search engines, e.g., Google and Yahoo!, which can
retrieve search results with high relevance to an input query, but also high page
quality like Pagerank (Page et al. 1998) and HITS (Kleinberg 1999). Therefore,
we are interested in the top search results in a retrieved list after submitting a
query to a search engine. From these returned search results, usually we can extract
their contents and their URLs to enrich the query. The content of a Web page,
however, is not applicable, at least in principle, in settings including: non-text pages
like multimedia (image) files, Usenet archives, sites with registration requirement,
dynamic pages returned in response to a submitted query and so forth. In this paper
we study the utilization of the URLs of returned search results to represent a query
since URLs are generally available in all types of Web pages.

Now a query is associated with the URLs of the retrieved search results. In
the query-based recommendation preparation of our QUBiC system, the query-
URL relationship can be intuitively represented as a bipartite graph. A bipartite
graph, also called a bigraph, is a special graph from which the set of vertices can
be decomposed into two disjoint sets such that no two vertices within the same set
are adjacent. In the mathematical definition, a simple undirected graph G: = (Q ∪ U ,
E) is called bipartite if Q and U are disjoint sets, where Q and U are the vertex set
and E is the edge set of the graph. This graph is used as our original model where
Q is a set of queries, the U is a set of URLs, as shown in Fig. 2. An edge e connects
a query q and an URL u, if the URL u is returned by a search engine on the query

J Intell Inf Syst

Table 1 First phase—query-based recommendation preparation

Input: a set of queries
Output: query-URL bipartite graph

1. Submit each query to a search engine (e.g., Google) and get the O(|Q|)
top N search results returned;

2. Extract the URLs of all the search results O(|U |)
3. If a query q appears with an URL u in the set of its search results, place an edge O(|EBG|)

in the bipartite graph (BG) between the corresponding vertices in Q and U;

q. In the context of QUBiC, we propose to recommend queries based on the inter-
relationship of their corresponding URLs. As a by-product, related Web pages could
be mined as well by applying the proposed algorithm on the side of the URLs with a
relatively small modification.

The pseudo code of this phase is listed in Table 1. The run time cost of this phase is
mainly dependent on the first step since search results have to be downloaded from
a search engine. Downloading time is the average time cost of the response speed
of a search engine and the network delay. The whole first phase can be done as a
preparation for the next two phases. Even if an input query is not in the current query
set, we only need add the query as a node to Q and the URLs of its search results to
U . The total number of added edges is the number of returned search results.

5 Second phase: generating query affinity graph

In this section we describe the design of the generating query affinity phase of
QUBiC, which applies a URL-based similarity (dissimilarity) measure for all pairs
of queries. The pseudo code of this phase algorithm is listed in Table 2.

5.1 URL-vector based similarity measures

As discussed in the first phase, the query q in Q is represented by the list of URLs
returned as search results. Furthermore, let wq,u be the weighted value associated
to the query-URL pair (q, u). wq,u is 0 if u is not included in the list of URLs
returned by a search engine in response to the query q, otherwise wq,u is 1 in an
unweighted strategy. wq,u can also be in the range [0,1], determined by different
weighting strategies in different similarity (dissimilarity) measures. Therefore, the
query q is denoted by wq,u1 , wq,u2 , · · · , wq,u|U | dissimilarity where |U | is the number of
URLs in U . Using the notations described above, we define the different similarity

Table 2 Second phase—generating query affinity graph

Input: query-URL bipartite graph
Output: connected components

4. Compute the dissimilarity scores between each pair of queries O(|Q|2)
according to one of five similarity measures;

5. Link every pair of queries with a weighted edge if their dissimilarity O(|EQAG|)
score is smaller than δ, thus producing the query affinity graph (QAG).

6. Extract connected components from QAG; O(|Q| + |EQAG|)

J Intell Inf Syst

measures between queries. Although they are called similarity measures, they, in
fact, can be used as dissimilarity scores by a simple transformation. We use similarity
and dissimilarity interchangeably to conveniently describe our problem in different
contexts. In this paper we discuss three dissimilarity functions that utilize the URL-
bipartite graph to compute the distances between two queries, quite different from
the term-based traditional measures.

All the three dissimilarity functions rely on the overlap of the search result URLs
of two queries with unweighting or weighting function on each URL. We can utilize
the different path levels of a URL to get the overlap. Generally, using the full URL
of a search result will result in smaller overlap and higher precision than using its
hostname. We experimentally calculated the overlap of hostnames of top 10 search
results between queries and about 80 % of the pairs of queries had no common
hostnames (details in Section 7.2). The situation is even worse when using the full
URL. We can increase the number of top search results to get larger overlap of full
URLs, but it will degrade the precision of measuring the query-to-query dissimilarity
(similarity) since the top search results are better dictators of a query than the
bottom ones. Therefore, we use the hostname of a URL to represent a search result,
instead of its full path. From now the denotation U RL means hostname if no specific
explanation.

(1) Jaccard similarity

Jaccard similarity is an intuitive and popular measure, defined as

Jaccard(qi, q j) = |P(qi) ∩ P(q j)|
|P(qi) ∪ P(q j)| . (1)

Here qi and q j are queries, P(qi) and P(q j) are the two sets of URLs returned by
a search engine in response to the two queries qi and q j respectively. The value of
the defined dissimilarity between two queries lies in the range [0, 1]: 1 if they return
exactly the same URLs, and 0 if they have no URLs in common.

For example, if P(q1) = {u1, u3, u4} and P(q2) = {u1, u2}, the Jaccard similarity be-
tween q1 and q2 is 0.25. We use d(qi, q j) = 1 − Jaccard(qi, q j) as Jaccard dissimilarity
for the clustering computation in the third phase of our system. This definition is an
unweighted strategy for URLs which only count the number of commmon URLs
shared by two queries. To consider the frequency of u that occurs in a query and
the number of queries containing u in their results, we propose the following two
different weighting methods.

(2) L1 norm

Specifically, the weighting function for each URL is defined as:

wq,u ≡ p(u|q) = n(u|q)
∑

u∈U n(u|q)
, (2)

where n(u|q) is the number of occurrences of the URL u in the query q. For example,
if a URL (hostname) occurs five times in the search results of a query, this measure
thinks that this website can be more informative to represent the query than other
websites with lower frequency. Each query has its own URL (hostname) distribution
because of different search results.

J Intell Inf Syst

In document clustering, a natural measure of similarity of two documents is the
similarity between their word conditional distributions. Roughly speaking, docu-
ments with similar conditional word distributions would belong to the same cluster.
This idea was first introduced in Pereira et al. (1993) and was called “distributional
clustering”. Similarly, we would like to recommend related queries with similar
conditional URL distributions. L1 norm (or the variational dissimilarity) is common
to measure the distancedissimilarity between distributions, defined as

L1(p(u|qi), p(u|q j)) ≡
∑

u∈U |p(u|qi) − p(u|q j)|
∑

u∈U p(u|qi) + ∑
u∈U p(u|q j)

. (3)

We also have experimentally evaluated Ward and Jensen-Shannon (JS) diver-
gence (Lin 1991) measures which showed no better performance than L1 norm on
average. Therefore, we only discuss the L1 norm in this paper. However, popular
sites like news websites or spam websites may be returned within the search results
of a query, which will be noisy irrespective of the content of the query. If two
queries both retrieve such sites, some relatedness between them will be deduced,
even though they may be completely unrelated. In the following we put forward a
URL-based cosine similarity which scales down the coordinates of hostnames that
occur in many result lists of queries.

(3) Cosine similarity

Similar to the traditional tf*idf weighing method,1 a URL-vector based wq,u is
defined as:

wq,u = (1 + ln(1 + ln(n(q, u)))) ∗ ln(1 + |Q|)/mu , (4)

where n(q, u) is the number of times the URL u occurs in the query q, |Q| is the total
number of queries in the query set, and mu is the number of queries containing u.
The similarity of each pair of query vectors is calculated using the following cosine
formula:

Cosine(qi, q j) =
∑|U |

u=1 wqi,u ∗ wq j,u
√

∑|U |
u=1

(
wqi,u

)2
√∑|U |

u=1

(
wq j,u

)2
. (5)

d(qi, q j) = 1 − Cosine(qi, q j) is the dissimilarity between qi and q j. Intuitively, more
frequent URLs (hostnames) are more likely to be better indicators for a query ((2)
in L1 norm); while URLs (hostnames) with higher query frequency might be less
informative to represent a distinct query, such as the homepages of popular news
websites, link directory and so on.

In L1 norm and Cosine, u is weighted based on its occurrences in a query and its
query frequency. For each q and u, wq,u can easily be valued by the rank of u for q.
Using the rank values of URLs will take into account the ordering of search results
when computing similarity scores. Our current implementation weight methods do
not yet consider the rank values of search results. We will discuss this problem further
in Section 6.3.

1http://en.wikipedia.org/wiki/Tf*idf

http://en.wikipedia.org/wiki/Tf*idf

J Intell Inf Syst

5.2 Generating query affinity graph

For each pair of queries, we add an edge in the query affinity graph (QAG) with the
queries in Q as the nodes if their result URL sets have at least one common URL (see
Fig. 3 for an example). Then, we compute a dissimilarity (similarity) score for each
pair of queries in QAG using one of the above three measures. The edge between two
queries is weighted by the dissimilarity score (Step 5). In QUBiC system, we use the
system dissimilarity threshold δ (e.g., δ = 0.85) to remove the edges between queries
whose dissimilarity scores are larger than δ when extracting connected components
(step 8). This helps to keep the overall data within a reasonable size. The extraction
of connected components from an undirected graph is calculated in Step 6. On the
basic initialization of the disjoint-sets structure (Cormen et al. 1990), each node in
QAG is in its own set. The connected components are calculated based on the edges
in QAG, so update the disjoint-sets structure when each edge is added into the
graph. Readers can refer to Cormen et al. (1990) for detail. The time complexity for
calculating the connected components is only slightly larger than O(|Q| + |EQAG|)
where |Q| is the number of queries and |EQAG| is number of edges in the QAG.

Now we can see that in Fig. 3 queries are connected by weighted edges. The related
queries of the query q2 are q1 and q4, which are adjacent nodes to q2 in the query
affinity graph. The similarity score between un-adjacent nodes (e.g., q2 and q3) is
zero, which, however, does not mean the two queries are definitely unrelated. We
think that the ranking of similar queries for query recommendation should take into
account the similarity propagation in the sense that similarity scores may propagate
from query to query, exhibiting implicit relatedness between un-adjacent nodes in
QAG (e.g., q2 is related to q3 via q1 in our running example.). Therefore, based on
the QAG, two queries are related if there are paths from one to another. Under this
definition, we generalize the concept of relatedness.

5.3 Optimization of similarity computation and update of query affinity graph

The first and second steps are used in the system initialization process and in the
recommendation process when an input query is not in our query collection. Given
that the query-URL bipartite graph is stored in our system, should we have to
compute similarities for all pairs of queries that will count a quadratic number of
values in the initialization process? Moreover, additional cost is incurred in the

Fig. 3 An example of query
affinity graph

0.5

0.6

0.7

0.8

q1

q2

q3

q4

J Intell Inf Syst

recommendation process when the input query is new to our system, since this new
query and its search results have to update the original query-URL bipartite graph
and the query affinity graph. As we discussed in Section 4, the cost of updating the
query-URL bipartite graph is acceptable. Should we compute similarity scores for all
the stored queries with a new query to update the query affinity graph?

We introduce an optimization technique to reduce the cost of updating the query
affinity graph, especially similarity computation. Recall that we are interested in pairs
of queries whose similarity is above a specified threshold, a high quality collection.
The recent work Bayardo et al. (2007) addressed this scalability issue without relying
on approximation methods or extensive parameter tuning, and described different
monotone minimum constraints for different similarity measures before computing
the similarity scores. Here we use Jaccard measure as an example to explain their
basic idea. For simplicity, let δ′ =1-δ. We set up the query affinity graph using pairs
of queries whose similarity is above δ′. The following inequalities are established:

Jaccard =
∣
∣P

(
qi

) ∩ P
(
q j

)∣
∣

∣
∣
(
P
(
qi

)∣
∣ + ∣

∣P
(
q j

)∣
∣ − ∣

∣P
(
qi

) ∩ P
(
q j

)∣
∣

≤
∣
∣P

(
qi

)∣
∣

∣
∣
(
P
(
qi

)∣
∣ + ∣

∣P
(
q j

)∣
∣ − ∣

∣P
(
qi

) ∩ P
(
q j

)∣
∣

≤
∣
∣P

(
qi

)∣
∣

∣
∣
(
P
(
qi

)∣
∣ + ∣

∣P
(
q j

)∣
∣ − ∣

∣
(
P
(
qi

)∣
∣

≤
∣
∣P

(
qi

)∣
∣

∣
∣P

(
q j

)∣
∣

≤ δ′ .

The above equation tells us if the |P(qi)|/|P(q j)| ≤ δ′, their similarity score does
not need to be stored to reduce the amount of candidate pairs. Therefore, we can
sort queries in the decreasing order of |P(q)| to save on computation time. This
preprocessing means that if |P(qi)|/|P(q j)| ≤ δ′ is met, the queries qi to last query
with the smallest number of search results can be skipped without doing similarity
computation with q j, thus accelerating our approach. Based on the similar idea,
Bayardo et al. (2007) described how to get constraints for Cosine, Dice, and other
popular measures in details (L1 norm can be regarded as a kind of Dice measure).
Therefore, we can sort our data set according to particular criteria such as vector size
(e.g., |P(q)|) to improve the system computation performance.

6 Third phase: HAC-based query ranking and recommendation

The primary task of the third phase is to rank queries in the same group as an input
query. We first discuss the design of our ranking methods and then describe how to
adaptively output a recommendation list of related queries.

6.1 Our HAC-based ranking methods

Our ranking methods are HAC-based, and their respective clustering results (i.e.,
dendrograms) can estimate the relatedness between queries. Our idea is based on
the hierarchical structure of the dendrogram. Hierarchy is more informative than

J Intell Inf Syst

the unstructured set clusters in flat clustering algorithms like k-means and EM. As
we know, HAC treats each query as a singleton group at the beginning, and then
merges pairs of groups iteratively until all groups have been merged into a single
group structured as a hierarchy that contains all queries. Furthermore, HAC has
an interesting property that distance measures associated with successive merge
operations can be monotonic. If d1, d2, · · · , dk (the definition will be expressed soon)
are successive combination distances of an HAC strategy, then d1 ≤ d2 ≤ · · · ≤ dk

must hold.
Urged by the monotonic property, the pair of queries that has the shortest distance

will be merged first. At each remaining step, the next closest pair of queries (or
groups) should be merged. The sequence of merge operations scores the relevance
of two queries and then such relevance is encoded as a dendrogram (a cluster tree)
where edges are weighted by combination distance. We make use of this kind of tree
structure to produce an ordered list of related queries for a specific query and the tree
distance based ranking can better address the problem of similarity propagation.

The monotonic property is desirable in our context. However, not all HAC
algorithms are monotonic. Lance and Williams (1966, 1967) proved that single-
linkage and complete-linkage strategies are monotonic by definition. Moreover, they
introduced a generalized recurrent formula including all special cases, defined as:

dhk = α1dhi + α2dhj + βdij + γ
∣
∣dhi − dhj

∣
∣ , (6)

where the parameters α1, α2, β, and γ determine the nature of the strategy. (h), (i),
and (j) are three groups, containing nh, ni, n j elements respectively with inter-group
distances already defined as dhi, dhj, dij. They further assume that the smallest of
all distances still to be considered dij, so that (i) and (j) fuse to form a new group
(k), with nk (= ni + n j) elements. The strategy is necessarily monotonic so long as
α1 + α2 + β ≥ 1 and γ = 0.

Previous work usually utilized HAC strategies to find clusters, while our approach
designs a rank mechanism based on the clustering result (i.e., dendrogram) of HAC
strategies. No much experience can be learned from previous work. Therefore, we
adopt three popular monotonic HAC strategies for empirical study and propose
another flexible HAC strategy for adaptive outputting recommendation lists. All the
following HAC strategies can be derived from (6).

(1) Single-linkage strategy (SL):

The single-linkage strategy merges the two clusters with the smallest minimum
pairwise distance, defined as:

dhk = MIN
[
d(qh, qk)

]

= 1

2
dhi + 1

2
dhj + 0dij − 1

2

∣
∣dhi − dhj

∣
∣ ,

where although γ <> 0 does not satisfy the monotonicity constraint, the single-
linkage strategy is monotonic by definition Lance and Williams (1966, 1967). How-
ever, in the single-linkage clustering, the similarity of two clusters is the similarity
of their most similar members. This criterion is local Manning et al. (2008). We pay
attention solely to the area where the two clusters come closest to each other. Other,
more distant parts of the cluster and the clusters’ overall structure are not taken
into account. Therefore, it is easily affected by outliers and a chain of points can

J Intell Inf Syst

be extended for long distances without regard to the overall shape of the emerging
cluster. This effect is called chaining. Since its merge criterion is strictly local, other
strategies are studied for comparison.

An alternative monotonic clustering is the complete-linkage strategy which is the
opposite of the single linkage strategy, but unsuitable for our problem. For example,
in Fig. 3 there are d(q1, q2) = 0.5, d(q1, q3) = 0.6, and d(q2, q3) = 1. In the complete-
linkage strategy, q2 and q3 will not be in the same group until all the queries are
clustered into a single group. But it is apparent that q3 is a candidate of related
queries to q2 since there is a path from q2, to q3 via q1.

(2) Weighted-average strategy (WA):

In the weighted-average strategy, the distance between two clusters is the average
distance between all possible pairs of nodes in the two clusters. Its definition is given
as follow:

dhk =
∑

qh∈nh

∑
qk∈nk

d(qh, qk)

2

=
∑

qh∈nh

∑
qi∈ni

d(qh, qi) + ∑
qh∈nh

∑
q j∈n j

d(qh, q j)

2

= 1

2
dhi + 1

2
dhj + 0dij + 0|dhi − dhj| ,

where

αi + α j + β = 1

2
+ 1

2
+ 0 = 1 and γ = 0 ,

satisfies the constraint of monotonicity. Since the distance between clusters is
calculated as a simple arithmetic average, the weighted-average strategy is compu-
tationally easy. When there are unequal numbers of elements in the clusters, the
original distances of pairs of queries do not contribute equally to the intermediate
calculations, and the final result is therefore said to be weighted. An obvious
weakness is that the number of elements in each cluster are not taken into account.

(3) Group-average strategy (GA):

Similar to the weighted-average strategy, the group-average clustering also considers
the distance between two clusters, defined as (nk = ni + n j):

dhk =
∑

qh∈nh

∑
qk∈nk

d(qh, qk)

nhnk

=
∑

qh∈nh

∑
qi∈ni

d(qh, qi) + ∑
qh∈nh

∑
q j∈n j

d(qh, q j)

nh(ni + n j)

= nhni

nh(ni + n j)
×

(∑
qh∈nh

∑
qi∈ni

d(qh, qi)

nhni

)

+ nhn j

nh(ni + n j)

(∑
qh∈nh

∑
q j∈n j

d(qh, q j)

nhn j

)

J Intell Inf Syst

= ni

ni + n j
dhi + n j

ni + n j
dhj

= ni

ni + n j
dhi + n j

ni + n j
dhj + 0dij + 0|dhi − dhj| ,

where

αi + α j + β = ni

ni + n j
+ n j

ni + n j
+ 0 = 1 and γ = 0 ,

satisfies the constraint of monotonicity, thus holding the monotonic property.
The group-average strategy computes the average of distances between all pairs

of objects, where each pair is made up of one object from each group, but also
consider the size of each cluster. The calculation is slightly more complicated. As a
result, each distance contributes equally to the final result, which is therefore said
to be unweighted. Its dendrogram is a tree with intense clustering. Furthermore,
both weighted- and group- average strategies avoid the pitfalls of the single-link and
complete-link criteria, which equate cluster similarity with the similarity of a single
pair of queries. One weakness of the group-average strategy is that pairs from the
same cluster are not included in the average, i.e., dijwhen i and j are merged into a
cluster k.

(4) Flexible strategy (α-F):

We can also consider a HAC strategy including self-similarities. The flexible strategy
is defined as: dhk = αdhi + αdhj + (1 − 2α)dij, which was proposed by Lance and
Williams (1966, 1967) as a flexible and monotonic strategy. When α increases from
0 to 1, its hierarchy changes from an almost completely chained system into one
with increasingly intense clustering. A given set of queries may now, by varying
the parameters, be made to appear as sharp as a dendrogram a user may desire.
Simply speaking, when α is small, e.g., near to zero, the dendrogram of the α-F
strategy is similar to the single-linkage strategy while when α is large, e.g., near to
one, the dendrogram of α-F strategy is similar to the group-average strategy. If α =
0.5, α-F strategy becomes the weighted-average strategy. In experiments, we will
show its flexibility to change the dendrograms of clustering, thus producing adaptive
recommendation lists for users.

Parameters of the above four strategies in (6) are listed in Table 3. We will
give empirical evidence as to how different HAC strategies affect the quality of
recommendation and make use of the flexibility of the α-F strategy to allow users
to interactively participate in the query recommendation process by changing the
value of α.

Table 3 Parameters of
different HAC strategies

Strategies α1 α2 β γ

SL 1/2 1/2 0 −1/2
WA 1/2 1/2 0 0

GA
ni

ni + n j

n j

ni + n j
0 0

α-F α α 1 − 2α 0

J Intell Inf Syst

6.2 The design of our ranking and recommendation procedure

We provide a sketch of our QUBiC HAC-based ranking procedure in the format of
pseudo code in Table 4. After a HAC strategy is selected, our algorithm will utilize
its result to rank queries in the same group as an input query. Concretely, given n
candidate queries, we create an n × n distance matrix of candidate queries, and apply
the chosen HAC strategy on this matrix in three step process (Steps 7∼9) before
forming the recommendation list (Step 10).

First, we create an n-tuple P = (P1, · · · , Pn) index to compute for each cluster i
a nearest neighboring clustering Pi and each Pi for 1 ≤ i ≤ n satisfies the condition
that d(i, Pi) = min{d(i, j) : 1 ≤ i, j ≤ n, i �= j}. Second, we replace the two clusters i
and j by an agglomerated cluster k based on the chosen HAC method (see Step 9.4),
and update the matrix D by removing clusters i and j and add the new cluster k. This
process continues until no more merge is needed. Although the main weakness of
agglomerative clustering methods is that they do not scale well with time complexity
of at least O(n2), the complexity of the clustering and ranking process depends
on the number of candidate queries obtained in Step 8 which is smaller than the

Table 4 Phase 3—HAC-based query ranking and recommendation

Input: an HAC strategy chosen by a user and an input query iq
Output: a ranked list of related queries to the input query iq

7. If find the the connected component containing the query iq;
Else update the graph processing phase to reflect inclusion of iq.

8. Choose the H-hop neighbors of the input query as candidates of O(n2)
related queries, and store the distance matrix D(n × n and n ≤ Q)
of candidates (including iq).

9 Apply the selected HAC strategy on this matrix.
9.1 Initialize n-tuple P to identify a nearest neighbor of each cluster. O(n2)
9.2 For m=n downto 2 do

Begin Loop
9.3 Search D with P to identify a closest pair(i,j) of clusters; O(m)
9.4 Replace clusters i and j by an agglomerated cluster k; O(1)

dhk = α1 D[h][i] + α2 D[h][j] + β D[i][j] + γ |D[h][i] − D[h][j]|
9.5 Update D to reflect deletion of i and j and compute distances O(m)

between k and all remaining clusters(h);
9.6 Update P to reflect deletion of i and j and inclusion of k; O(m2)

End Loop
10. The successive merging operations of HAC naturally form an ordered list.
10.1 M[iq]: the first merging distance for the input query iq; O(n)
10.2 For cq = 1 to n (cq �= iq)

Being Loop
10.3 M[cq]: the first merging distance for the candidate query cq; O(n)
10.4 M[(iq, cq)]: the merging distance for the cluster that include cq and iq; O(n)
10.5 R[cq] = |M[iq] − M[(iq, cq)]| + |M[cq]− M[(iq, cq)]|; O(1)

End Loop
10.6 Quicksort R[n] BY ASCENT; O(n log n)
10.7 Return the top similar queries but delete the candidate queries whose O(n)

D[iq][cq] are smaller than 0.2;
13. If the user is unsatisfied with the list, selects another HAC strategy;

Go to 9.1; Else end this searching process.

J Intell Inf Syst

total number of queries and is typically dependent on the number of hops used in
traversing the query affinity graph.

If the users want more diverse queries and increase the number of hops, it will take
more time to traverse the affinity graph and to cluster and rank them. The process of
the HAC clustering is stored as an n by 2 matrix M which contains the combination
distances between merging clusters at the successive stages. Let n be the number
of candidates. Row i of the matrix describes the merging of clusters at the step i of
the clustering. If a number j in the row is negative, then the single page j is merged
at this stage. If j is positive, the merger is with the cluster formed at stage j of the
algorithm. We show that the successive merging operations of the HAC algorithm
naturally form an ordered list.

A HAC strategy builds a hierarchical structure (dendrogram) where an input
query is merged with a group(query) at a distance (M[iq]) in the first time (Step
10.1 in Table 4), and the first merging for a candidate query is at a distance (M[cq])
(Step 10.4). In addition, the input query (iq) and the candidate query (cq) will come
together at a combination distance (M[(iq, cq)]) (Step 10.5). Therefore, each of
the three steps Step 10.1, 10.4, and 10.5 requires O(n) searching the matrix. Then,
the distance score between the two queries is estimated to|M[iq] − M[(iq, cq)]| +
|M[cq] − M[(iq, cq)]| which ranks each candidate (Step 10.6).

We use a concrete example to explain how HAC-based ranking works. A cluster-
ing structure produced by our experiments is illustrated in Fig. 4 where “Height”, the
label of the vertical axis, means the combination distance at each merging operation.
As shown in Fig. 4, the dendrogram shows the relationships of queries arranged like
the branches of a tree. Computing the distance (similarity) of two queries in the
dendrogram can utilize the tree-distance based ranking mechanism which usually
counts the number of edges between two nodes in a tree. In our HAC dendrogram,
the edges are weighted by the combination distances of clustering, e.g., A, B, and C
edges in Fig. 4. Therefore, our HAC-based ranking computes the sum of weights
of edges between two queries (nodes). For example, given query 6 as the input

1 4

2

3 1
9

7

1
2

5 1
7

1
0

2
0 6

1
4

1
5 9 1
6 8 1
3 1
1

1
80
.5

1
.0

1
.5

2
.0

2
.5

H
ei

gh
t

A

C

B

M6,17

M17

M6,17

M6

Subsumer of query 17 and query 6 Edges weighted by combination distance

given the input query 6
Combination
Distance

|M17-M6,17|
|M6 -M6,17|

R(17)=|M6-M6,17| + |M17-M6,17|

Fig. 4 HAC-based ranking using tree distance

J Intell Inf Syst

query, the subsumber between query 6 and query 17 is marked as a dot in Fig. 4 and
this subsumber is produced at the combination distance M6,17. The sum of weights
of edges between query 17 and the subsumber is |M17 − M6,17| = |0.7 − 1.6| = 0.9
(leftmost) and the sum of weights of edges between query 6 and the subsumber is
|M6 − M6,17| = |1.0 − 1.6| = 0.6 (rightmost). Then, the distance between query 6 and
query 17 is |M17 − M6,17| + |M6 − M6,17| = 0.9 + 0.6 = 1.5, as shown in the top of
Fig. 4. We empirically show this HAC-based ranking is effective in Section 7.

A naïve ranking is simply based on the Jaccard, L1 or Cosine similarity measures.
Compared with our ranking methods, the naïve ranking only considers the similarity
between two nodes without similarity propagation. Give a simple example shown in
Fig. 5 which is the dendrograms of α-F strategy (α = 0.02 and 0.5) applied on Fig. 3.
The similarity scores of pairs of queries are sim(q1, q2) = 1 − 0.5 = 0.5, sim(b , c) =
0, sim(a, c) = 1 − 0.6 = 0.4, sim(d, a) = 1 − 0.7 = 0.3, and sim(d, b) = 1 − 0.8 = 0.2,
as illustrated in Fig. 3. In Fig. 5a the query q1 and the query q2 are merged in
the first combination under α = 0.02. The query q3 will be merged with q1(q2)

in the second combination, and then the query q4 will be merged in the third
combination. The ordering of related pages of the query q2 is q1, q3, and q4, despite
of sim(q2, q3) = 0 and sim(q2, q4) = 0.2. Therefore, the tree distance based ranking
naturally completes the similarity propagation from q3 to q2 via q1. Moreover, if the
user chooses α = 0.5 in Fig. 5b, the ordering list becomes q1, q4, and q3. Our HAC-
base ranking is able to not only capture the similarity propagation between queries,
but also adaptively output the ordering list of related queries. Users will be supplied
with more candidates of related queries. More experiments results are reported in
Section 7.

6.3 Discussions

As we discussed earlier, our similarity measure between queries is based on the
common URLs returned from submitting both queries to a search engine (e.g., the
number of common URLs in (1) and the weighted common URLs in (3) and (5)). If
these related queries are identical or give an identical result to the original query,
then they add no value to the query recommendation quality and effectiveness,

1 2

3

4

H
e

ig
h

t

1 2

4

3

0
.5

0
0

.5
5

0
.6

0
0

.6
5

0
.7

0

0
.5

0
.6

0
.7

0
.8

H
e

ig
h

t

q1

q2

q3

q4

q1

q2

q3

(a) (b)

q4

Fig. 5 a α = 0.02 and b α = 0.5 in (6)

J Intell Inf Syst

and thus cannot improve the level of satisfaction of the users. Naturally, we want
to suggest queries that achieve comparable search results. One way to approach
this goal is to remove the candidates whose distance scores are smaller than a
threshold.(e.g., in (1) in step 10.7, the value of 0.2 means that the overlap of
common URLs exceeds 80 %). This ensures that our approach does not try to
recommend more similar queries, but less-similar ones. From this viewpoint, query
recommendation is different from query clustering. The latter is to mine queries
which are more similar, but the former is to find less similar ones.

It is worth noting that in the first prototype of QUBiC we simply choose 0.2
as a filtering threshold, in real application, users can get more similar queries by
decreasing the value or obtain less similar ones by increasing it. The reason that
we did not apply such filtering in Step 5 of the second phase is because these
candidates can work as bridge to propagate similarity between queries during the
HAC clustering.

7 Experiments

In order to test the effectiveness of the QUBiC system for query recommendation,
several experiments are conducted. Firstly, we test the precision quality of query
recommendation to evaluate the number of related queries in a recommendation
list. Then, we introduce Entropy as an evaluation measure to reflect the quality of
individual lists in terms of homogeneity of related queries in a recommendation list.
In addition, Kappa statistics and T-test for statistical testing are done for validating
our manual evaluation. Finally, we also provide a case study to illustrate how our
system can adaptively output recommendation lists by utilizing the flexibility of the
HAC strategy.

7.1 Data sets

In the experiments, we used two data sets: QueryKDD and QueryTREC for evalu-
ation. The former is the 800 queries of KDD cup 2005 data set2 that are labelled by
three people. The latter is the “10k” stream of the Efficiency task topics of the 2006
TREC Terabyte Track3 (this task contains 6 topic streams: “all”: full 100k topics,
“stream-1” through “stream-4”: four concurrent streams, and “10k”: a small stream
for the comparative efficiency task). Given each query, the top 50 URLs of search
results were offered by Google API.4 We preprocessed the URLs and queries by
mapping their characters to lowercase and by chopping each retrieved URL into its
hostname.

Evaluation is not an easy job because there is not an objective test data set for
our problem at the current stage. The common solution is that we have to collect
users judgments manually. However, we should evaluate the effectiveness of three
similarity measures for each query, let alone parameter study in HAC algorithm

2http://www.acm.org/sigs/sigkdd/kddcup/index.php
3http://trec.nist.gov/data/terabyte06.html
4http://code.google.com/apis/soapsearch/

http://www.acm.org/sigs/sigkdd/kddcup/index.php
http://trec.nist.gov/data/terabyte06.html
http://code.google.com/apis/soapsearch/

J Intell Inf Syst

Table 5 Selection of the number of top search results on the QueryKDD data set

Top 10 Top 20 Top 30 Top 40 Top 50

0 272,301 (85 %) 241,310 (76 %) 207,593 (65 %) 177,225 (55 %) 147,111 (46 %)
1 34,936 (11 %) 58,553 (18 %) 79,903 (25 %) 94,533 (30 %) 105,327 (33 %)
≥2 1,823 (0.6 %) 9,196 (2.9 %) 21,564 (6.7 %) 37,301 (12 %) 56,622 (18 %)

selection and graph generation. Therefore, we conduct experiments on the above two
data sets. QueryKDD is for automatic evaluation which shows preliminary results in
parameter study. Then QueryTREC is for manual evaluation which further verify
the effectiveness of our proposed rank strategies.

7.2 Statistics about data sets

We did a preliminary analysis of the number of top URLs used in our scheme on the
QueryKDD data set, as shown in Table 5. The first column (#) represents the number
of common URLs between queries, and the first row (top 10∼top 50) represents the
number of pairs of queries whose total number reaches (X ∗ X − X)/2 (here X is
set to 800). From Table 5, we observed that about 85 % of the pairs of queries had
no common URLs in the top 10 of the search results, while in the top 50 search
results, the number of pairs of queries with no common URLs was reduced to 46 %.
The distance (similarity) measures discussed in Section 5 rely on the common URLs
shared by two queries. If the number of returned search results is too small to get
the URL overlap between two queries, we have to increase the number of returned
results. Therefore, in the following experiments we stored the top 50 of search results
for each query.

Tables 6 and 7 summarize the statistics of the query-URL bipartite graphs and
the affinity graphs of queries generated from our two data sets. Note that Table 6,
“Hostnames” means such URLs that the original URLs of search results are chopped
into their hostnames. Therefore, it is possible that there are duplicate hostnames in
the top 50 search results. “URLs” represents the original URLs of search results
without any additional processing.

In Table 7, the row “ALL” represents that the affinity graphs of queries are set
up with the threshold δ = 1 (Step 5 in Table 2). For each query, we sorted the
other queries in terms of distance scores. We found that the similarity scores of
the bottom queries (from 100th or 200th) are larger than 0.98 in QueryKDD or
0.85 in QueryTREC. Moreover, our task is not to find all the similar queries like
query clustering, but to recommend the more relevant ones. Therefore, the values
of the threshold dissimilarity δ for QueryKDD and QueryTREC are 0.98 and 0.85
respectively.

One observation from Table 7 is that the number of queries in the affinity graph
is smaller than that in Query-URL bipartite graph (695 vs. 800 and 9559 vs. 10,000)

Table 6 Query-URL bipartite graph using top 50 search results

Data set Queries Hostnames & edges URLs & edges

QueryKDD 800 26,206 with 39,599 39,509 with 39,624
QueryTREC 10,000 147,761 with 491,956 491,954 with 502,749

J Intell Inf Syst

Table 7 Affinity graph of
queries using top 50 search
results

Queries Edges Average number of
neighbors per query

QueryKDD data set
ALL 695 18,762 27
Jaccard 678 8,841 13
Cosine 683 9,511 14
L1 norm 684 10,149 15

QueryTREC data set
ALL 9559 1,751,148 183
Jaccard 1297 6,738 5
Cosine 2355 7,600 3
L1 norm 1275 3,156 2.5

because some queries are isolated. “By isolated” means that a query has no common
URLs with any other queries. The column “Neighbors/Query” gives the single hop
neighbors per query. To include more candidates during recommendation, users can
set H ≥ 2 hops from any input query (Step 8 in Table 4). With increasing the value of
H, the HAC clustering will become slowly. We computed the number of candidates
of each query according to different values of H. For QueryKDD dataset, when H =
4, the number of queries whose total number of candidates is larger than 700 is 702
(the total number of queries is 800); when H = 2, there is only one query whose
number of candidates reaches 571. For QueryTREC dataset, if H = 4, most of queries
have the number of candidates larger than 8,000; while H = 2, most of them have the
number of candidates smaller than 2,000. Therefore, for evaluation, we choose H =
3 to keep the overall data within a reasonable size.

We observed that the produced affinity graph is an unconnected graph which may
be subdivided into connected components. This fact encouraged us to extract such
connected components in advance (Step 6 in Table 2), thus reducing the computation
complexity in the HAC-based ranking phase.

7.3 Evaluation measures

7.3.1 Precision

The precision (P) at the top N queries of a recommendation list is defined as:

P@N = Related Queries
N

. (7)

The measure P@N means how many valuable answers our algorithm gives at
the top of recommendation lists. We set N = 10 in the following evaluations.
Query recommendation is a ranking problem. We can evaluate our system by other
evaluation measures like MAP and NDCG (Manning et al. 2008) which are also
used for ranking problems, especially in Web search. Because the length of a term-
based query is much shorter than that of a Web page, Web users can read the top ten
or twenty recommended queries much more quickly than they browse and click the
top Web pages one by one. In the evaluation of query recommendation, we are more
interested in the number of related queries in a recommendation list, i.e., Precision
than the order in which the queries are returned such as MAP, NDCG and so on.

J Intell Inf Syst

7.3.2 Entropy

In the queryKDD data set the manual categorization information of queries are
available. Each query is followed by its top five categories labeled by three human
experts. There may be fewer than five categories for some of the queries and these
categories come from 67 predefined categories. The category information assumes
that it is possible to perform a direct comparison of the recommendation output.
Our hypothesis is that an optimal recommendation output consists of queries with
the same class labels. We describe a quantitative evaluation measure based on
this criteria. An information entropy approach can evaluate the quality of a set of
clusters according to the original class labels of the data (Boley 1998). By replacing
cluster with ranking list, we compute the entropy of each ranking list of query
recommendation, defined as

Eri = −
∑

j

n(l j, ri)

n(ri)
log

n(l j, ri)

n(ri)
, (8)

where n(l j, ri) is the number of the related queries in the ranking list ri with a
predefined label l j and n(ri) = ∑

j n(l j, ri) is the number of the related queries in
the ranking list ri. The overall ranking list entropy Er is then given by a weighted sum
of individual cluster entropies by

Er = 1
∑

i n(ri)

∑

i

n(ri)Eri . (9)

The entropy of ranking lists reflects the quality of individual lists in terms of
homogeneity of related queries in a recommendation (a smaller value indicates a
higher homogeneity).

7.4 Results and discussions

As introduced in Section 1, usually the relatedness between the two queries is directly
estimated according to the overlap of the two lists of search results (URLs) returned.
This kind of methods is called naïve ranking where various measures based on the
overlap are used to compute the relatedness values. In this paper, we show the results
of three such measures, i.e., (1)–(3). The naïve ranking is our baseline which can
represent the main idea of the existing techniques in this direction.

7.4.1 Experiments on the QueryKDD data set

Precision For precision evaluation, if two queries share at least a same category, we
regard them as related queries. The experimental results averaged by three labellers
are shown in Fig. 6. The single-linkage strategy performs worst among all the HAC-
based rank mechanisms. It is even worse than the naïve ranking and the performance
is lowered by 3.9 %, 11.3 %, and 1.9 % for the three similarity measures. The reason
is that the single-linkage strategy is sensitive to outliers since it merges in each step
the two clusters whose two closest members have the smallest distance or the two
clusters with the smallest minimum pairwise distance. While the group-average and
weighted-average strategies got higher precision than that of the naive one under
all the three measures. The most improvement is about 13.3 % when using the

J Intell Inf Syst

Fig. 6 Precision@10 of
QueryKDD data set

Naïve
Single-

linkage

Group-

average

Weighted-

average

Jaccard 0.4015 0.3868 0.4549 0.4416

L1 0.3932 0.3489 0.4449 0.413

Cosine 0.4482 0.4397 0.4675 0.4575

P
re

ci
si

on
@

10

0.32
0.34
0.36
0.38

0.4
0.42
0.44
0.46
0.48

Jaccard measure and the group-average strategy. The two strategies are robust to
outliers because they consider the distance between one cluster and another cluster
to be equal to the average distance (or (6)) from any member of one cluster to
any member of the other cluster. Furthermore, the group-average strategy produces
higher precision scores than the weighted-average strategy because the former also
considers the size of clusters in its cluster processing.

Among the three similarity measures, The Cosine measure is the best one and the
L1 norm is worst, while the Jaccard measure shows better than the L1 norm. The
Jaccard measure simply computes the number of common URLs between queries,
thus assigning equal weights to all the URLs in a query. While the L1 measure weight
a URL by its frequency in the search result of a query. As we know, popular sites like
Google and Yahoo! may be returned within the search results of a query, which will
be noisy irrespective of the content of the query. Since the L1 norm may assign more
weights on these URLs, this weighting function hurts the precision in our context.
The other weakness of the Jaccard measure is that it does not distinguish between
two queries which have the same one URL and two queries which have the same
two URLs. The URL-vector based t f ∗ idf weighing method is more effective than
both of the Jaccard measure and the L1 norm since it assigns less weights on URLs
with higher query frequency that might be less informative to represent a distinct
query, and more weights on URLs with higher occurrences in a query. On average,
the group-average strategy with the Cosine measure is the winning combination in
terms of precision@10.

Entropy Entropy evaluation defined in (9) is illustrated in Fig. 7. With regard
to the overall performance, Fig. 7 shows that the group-average strategy with the
Cosine measure produced lowest entropy values among the three HAC-based rank
mechanism (smaller is better for entropy). But the HAC-based ranking methods
show higher entropy that the naïve ranking. Because the naive rank mechanism
directly uses the similarity measures, it has lower possibility to include noisy queries.
However, the HAC strategies try to get more relevant queries by similarity propaga-
tion at the same time they has higher risk to meet noisy queries. Therefore, the final
lists of the naïve one are purer than those of HAC strategies. According to precision,
entropy and robustness, the group-average strategy with the Cosine measure is the

J Intell Inf Syst

Fig. 7 Entropy of ranking lists
of QueryKDD data set

Naïve
Single-
linkage

Group-
average

Weighted-
average

Jaccard 0.2775 0.3169 0.3016 0.3261

L1 0.2907 0.3235 0.2988 0.3274

Cosine 0.2625 0.3002 0.2901 0.2832

0.24
0.25
0.26
0.27
0.28
0.29

0.3
0.31
0.32
0.33

E
nt

ro
py

optimal combination. These results prove that our QUBiC approach is effective in
query recommendation.

7.4.2 Experiments on the QueryTREC data set

The group-average strategy generally shows the best performance among all HAC
strategies according to the results of QueryKDD data set. Therefore, in the Query-
TREC, we compare the group-average strategy with the naïve ranking. Unlike the
QueryKDD data set, the QueryTREC data set does not supply us with the catego-
rization information. Thus, it is not feasible to use the entropy of rank lists as our
evaluation metric. Three human evaluators are invited to judge the performance of
our algorithm. After running our three-phase approach with group-average strategy,
we can recommend a list of related queries for each query. We then randomly
selected 30 queries as our test data. The three evaluators worked separately without
knowing how our algorithms work.

Kappa statistics After collecting users’ judgment results, we study the quality of
users. We want to know the variability of user’s ratings to measure user disagreement
which tell us how users classify individual subjects (queries) into the same category
(relevant or irrelevant) on the measurement scale. The judgments from different
users should largely reach a good agreement for a same test query.

Kappa statistics is one of the most common approaches (Siegel and Castellan
1988). Kappa can be thought of as the chance-corrected proportional agreement,
and possible values range from +1 (perfect agreement) via 0 (no agreement above
that expected by chance) to −1 (complete disagreement). Table 8 provides a rough
guide of what is a good agreement. We require the three evaluators to answer

Table 8 Kappa and strength
of agreement

Kappa Strength Kappa Strength

0.00 Poor 0.41–0.60 Moderate
0.01–0.20 Slight 0.61–0.80 Substantial
0.21–0.40 Fair 0.81–1.00 Almost perfect

J Intell Inf Syst

Table 9 Paired t-test results for statistically significant testing

Significance Jaccard L1 norm Cosine

Group-average vs. naïve YES YES YES

questionnaires that supply two recommended queries per test query.5 Because two
users are grouped as a pair to compute a Kappa value, the total number of test pairs
is 3 (C2

3 = 3). We collected the relevance judgment results of the nine test queries
and the average of all Kappa values is 0.421. This value is in the range [0.41,0.6], a
moderate agreement in general.

To sum up, in terms of the statements in Table 3, the agreement in our results is
moderate at 95 % confidence level. The number of the users is not very large, but
our Kappa statistics analysis shows that the quality of the users is satisfactory. Thus,
their judgments are reliable for evaluation.

T-test for statistical testing We will compare the performance of the naïve ranking
and the group-average strategy using each similarity measure. Since the number
of test queries is 30, a paired t-test for statistical testing is performed to verify
whether the improvements of the group-average strategy over the naïve ranking are
statistically signif icant or not.

Table 9 lists the results of t-test statistical analysis6 with a confidence level of 95 %.
In Table 9 Y ES means the mean difference of the percentage values of two feature
spaces is significant at the 95 % level. Since experimental results also tell us that the
group-average strategy produces higher precision scores than the naïve ranking, we
can say that the improvements of the group-average strategy over the naïve ranking
is statistically significant when the experiments are conducted on 30 test queries. In
the following, we will give how much precision scores they produce.

Precision Related Query in (7) is the number of manually tagged related queries.
Their averaged results are reported in Table 10. It is clear that the evaluation ap-
proach is somewhat subjective. However, the concept of similarity is also subjective
due to the various information needs of users. It is not easy to construct an objective
test data set for our problem at the current stage.

The evaluation results using precision measure are reported in Table 10. From
the experiment results of the QueryKDD data set, the Cosine measure achieves best
performances among all the three similarity measures because the Jaccard measure
overlooks the frequency information of URLs and the L1 measure cannot avoid the
side-effect of popular sites on the quality of query recommendation. In addition,
the group-average strategy still shows higher precision scores than the naïve ranking.
These results are consistent with the results of QueryKDD data set. We can conclude
that the Cosine measure using the conventional TFIDF term weights of documents
is effective to represent the queries in a URL-vector space model, and HAC-based
ranking is more effective for query recommendation than the naïve ranking.

5Thirty search queries * 2 recommended queries = 60 evaluated queries
6http://www.r-project.org/

http://www.r-project.org/

J Intell Inf Syst

Table 10 P@10 of
QueryTREC data set

Naïve Group-average

Jaccard 0.43 0.56
L1 norm 0.32 0.50
Cosine 0.64 0.73

Case study In our case study, we discuss the top ten related queries returned by the
Cosine measure for the query “state of wa department of social and health service
division of child support” (topic number = 8945 in the “10k” stream of the Efficiency
task topics of the 2006 TREC Terabyte Track). The affinity graph of this query is
shown in Fig. 8. A traditional method of finding related queries is to select queries
with higher similarity scores computed by a measure, such as Jaccard, Cosine, and so
forth. Such queries are only adjacent vertices of a targeted query (e.g., vertices 811,
6684, and 8036 in Fig. 8). As we have discussed, however, similarity propagates from
query to query. From the graph theoretical viewpoint, it means that related queries
refer to queries from which there are paths to the targeted query (e.g., vertices 1613,
4061, and 6604 in Fig. 8).

Our HAC strategy can identify unadjacent related queries through propagating
similarity over other related ones, as listed in Table 11. Moreover, in Fig. 9, as α

increases from 0.05 to 0.85 in the α-F strategy, the hierarchy changes from an almost
completely “chained” system to one with increasingly intense clustering. Using query
1 as the input query and query 5 in Fig. 9d as a concrete example, we know M[1] =
0.575, M[5] = 0.7, and M[(1, 5)] = 0.8. Then, the distance between query 1 and query
5 (R[5]) is 0.375 which may vary with hierarchical structures produced by different
values of α in the α-F strategies. We have listed the recommendation results for a
query in Table 11 using different HAC strategies.

Fig. 8 Affinity graph of the
query with the topic
number = 8945

8945

8036

6684

811

6604

1613

3414

5424

6939

5636

4161

4061

5535

4780

1538

5426

2380

2909

5928

230

J Intell Inf Syst

Table 11 Recommendation
lists of the query “8945”

Bold values show that even the
same queries are suggested by
adjusting alpha, but their
positions in suggestion
lists may different

Rank α = 0.05 α = 0.25 α = 0.45 α = 0.85

0 8945 : 1 8945 : 1 8945 : 1 8945 : 1
1 6684 : 4 6684 : 4 6684 : 4 6684 : 4
2 8036 : 2 8036 : 2 8036 : 2 8036 : 2
3 1613 : 17 1613 : 17 5424 : 10 5424 : 10
4 6604 : 5 6604 : 5 6604 : 5 230 : 20
5 5424 : 10 4161 : 12 1613 : 17 5928 : 6
6 811 : 19 5636 : 7 230 : 20 4161 : 12
7 6939 : 3 5426 : 9 5928 : 6 5636 : 7
8 5636 : 7 2380 : 16 4161 : 12 4780 : 11
9 4161 : 12 6939 : 3 4780 : 11 1538 : 18
10 5426 : 9 811 : 19 1538 : 18 811 : 19

It is obvious that the order in the list of related pages partly changes as well.
We represented this change in Table 11 where “8945 : 1” means that “8945” is the
topic number in QueryTREC data set and “1” is the query number in Fig. 9. In our
adaptive scheme, if a user inputs a query to retrieve web pages, our system will supply
her with a list of related queries from our data set. Then, the user can formulate
his/her query and do a new search, or she may also ask our system to produce a new
list of related queries by changing the value of α, e.g., adjusting a sidebar. As we
discussed in Section 6, when α is near to zero, the dendrogram of the α-F strategy is
similar to the single-linkage strategy; when α is near to one, its dendrogram is similar
to the group-average strategy. If α = 0.5, α-F strategy becomes the weighted-average
strategy. This can guide users how to adaptively get recommendation lists. The naïve

1 4
2 17

5 10
19 3 7

12
9 16

13
8 11 18

20
15 14

6

1 4
2

17
5

3 19
7 9 16

12 14 15
8 13
11

18
6

10
20

1 4
2

3 19
7

12
5 17

10 20 6
14 15 9 16
8 13 11 18

(d) Alpha=0.85

1 4
2

5 17
10

3 19
7

12
9 16

8 13 11 18
6

14 15
20

0.
55

0.
60

0.
65

0.
70

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
5

1.
0

1.
5

2.
0

2.
5

0.
5

0.
6

0.
7

0.
8

0.
9

H
ei

gh
t

(c) Alpha=0.45

(b) Alpha=0.25

H
ei

gh
t

H
ei

gh
t

H
ei

gh
t

(a) Alpha=0.05

Fig. 9 Effect of varying HAC strategies. Measure: Cosine; Height: the combination distance at each
merging

J Intell Inf Syst

Table 12 MAP at tops 5 and
10

Google Borda Copeland

Top 5 0.3423 0.3875 0.4021
Top 10 0.3659 0.4107 0.4268

ranking cannot supply users with such diverse lists of query recommendation due to
its locality and lack of effective similarity propagation.

Improving web search by utilizing recommended related queries In Web search,
with the aid of related query recommendation, search users can revise their initial
queries in several serial rounds in pursuit of finding needed Web pages. Here, we
aggregate search results of related queries to improve the retrieval quality. Given
an initial query and the recommended related queries, their search result lists are
concurrently processed from an existing search engine and then a single list is formed
by aggregating all the retrieved lists.

First, for each of the 30 test search queries, we select the top three recommended
queries given by our group-average ranking strategies. Second, the original 30 test
queries with their three recommended queries are send to Google search engine and
their top 40 search results are obtained. Third, two rank aggregation algorithms, i.e.,
Borda (1781) and Copeland (1951), are used to aggregate the search result lists of
each original test queries and its top three recommended queries. Then, we manually
judge whether the top 10 Web pages in each aggregated list are relevant or not to the
original test query. Finally, Mean Average Precision (MAP) (Manning et al. 2008) is
used for evaluation. Parameter selection and more discussions are in our paper (Li
et al. 2011). The experimental results of the 30 test queries are shown in Table 12.
Google is our baseline in which Google’s MAP score averaged by all the related
queries of each test query is calculated. It is shown in Table 12 that the two rank
aggregation algorithms produce higher MAP scores than the baseline at tops 5 and
10. For example, the improvements of the two rank aggregation algorithms at top 5
are 13.2 % and 17.47 %, respectively. At top 10, the improvements are 12.24 % and
16.64 %. The experiment results validate the effectiveness of utilizing recommended
related queries to achieve the search quality improvement.

8 Conclusions

We presented QBUiC, a query-URL bipartite graph based approach to query
recommendation. Our query recommendation system can adaptively recommend
related queries to a given query by analyzing the query-URL history, consisting of
three phases, i.e, preparation, graph generating, and HAC-based ranking phases.
In the first phase, a query-URL bipartite graph was build by retrieving search
results of queries from a search engine. In the second phase we generated the query
affinity graph using the query-URL vector based similarity measures, and extracted
connected components from the query affinity graph. In the third phase, we em-
ployed a selected HAC strategy to output recommendation lists of related queries.
Experimental results are very encouraging: many similar queries are grouped, which
enables users to pick up different recommendation lists of related queries through
the adjusting of the parameter α in the flexible strategy. Moreover, the group-average

J Intell Inf Syst

strategy based ranking with the Cosine measure shows the highest precision in two
data sets. These experimental results demonstrate the effectiveness of our approach.
Last, but not the least, we evaluated the effect of related queries on the quality of
Web information retrieval since the goal of query recommendation tries to help users
get their desired information by formulating better search queries.

Our research continues along several dimensions, including more comprehensive
user study in terms of usability and performance of our QUBiC system, considering
the effects of user click log information on recommendation quality, and so on.

References

Aris, A., Luca, B., Carlos, C., Aristides, G. (2010). An optimization framework for query recom-
mendation. In Proc. of the Third international conference on web search and web data mining
(WSDM’10) (pp. 161–170). New York: ACM.

Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M. (2007). Improving search engines by query cluster-
ing. JASIST, 58, 1793–1804.

Bayardo, R.J., Ma, Y., Srikant, R. (2007). Scaling up all pairs similarity search. In Proc. of the 16th
international conference on World Wide Web (WWW’07), Banf f, Alberta, Canada (pp. 131–140).
New York: ACM.

Beeferman, D., & Berger, A.L. (2000). Agglomerative clustering of a search engine query log.
In Proc. of the 6th ACM SIGKDD international conference on knowledge discovery and data
mining (KDD’00), Boston, MA, USA (pp. 407–416). New York: ACM.

Boley, D. (1998). Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2,
325–344.

Borda, J. (1781). Mémoire sur les élections au scrutin. Comptes rendus de l’Académie des sciences,
44, 42–51.

Buckley, C., Salton, G., Allan, J., Singhal, A. (1994). Automatic query expansion using SMART.
In Proc. of text retrieval conference (TREC’03) (pp. 69–80). Gaithersburg: National Institute of
Standards and Technology (NIST).

Calado, P., Cristo, M., Gonçalves, M.A., de Moura, E.S., Ribeiro-Neto, B.A., Ziviani, N. (2006).
Link-based similarity measures for the classification of web documents. JASIST, 57, 208–221.

Chirita, P.-A., Firan, C.S., Nejdl, W. (2007). Personalized query expansion for the web. In Proc. of
the 30th annual international ACM SIGIR conference on research and development in information
retrieval (SIGIR’07), Amsterdam, The Netherlands (pp. 7–14). New York: ACM.

Collins-Thompson, K., & Callan, J. (2005). Query expansion using random walk models. In Proc.
of the 14th ACM CIKM international conference on information and knowledge management
(CIKM’05), Bremen, Germany (pp. 704–711). New York: ACM.

Copeland, A. (1951). A reasonable social welfare function. In Seminar on Mathematics in Social
Sciences. University of Michigan.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (1990). Introduction to Algorithms. New York:
McGraw-Hill.

Cui, H., Wen, J.-R., Nie, J.-Y., Ma, W.-Y. (2003). Query expansion by mining user logs. IEEE
Transactions on Knowledge and Data Engineering, 15, 829–839.

Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S. (2001). On bipartite and multipartite
clique problems. Journal of Algorithms, 41, 388–403.

Fitzpatrick, L., & Dent, M. (1997). Automatic feedback using past queries: social searching? In Proc.
of the 20th annual international acm sigir conference on research and development in information
retrieval (SIGIR’97), Philadelphia, PA, USA (pp. 306–313). New York: ACM.

Glance, N.S. (2001). Community search assistant. In Proc. of the 9th international conference on
intelligent user interfaces (IUI’01), Santa Fe, NM, USA (pp. 91–96). New York: ACM.

Hansen, M., & Shriver, E. (2001). Using navigation data to improve ir functions in the context of web
search. In Proc. of the 10th ACM CIKM international conference on information and knowledge
management (CIKM’01), Atlanta, Georgia, USA (pp. 135–142). New York: ACM.

Jansen, B.J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information retrieval: a study
of user queries on the web. SIGIR Forum, 32, 5–17.

J Intell Inf Syst

Jeh, G., & Widom, J. (2002). Simrank: a measure of structural-context similarity. In Proc. of the 8th
ACM SIGKDD international conference on knowledge discovery and data mining (KDD’02),
Edmonton, Alberta, Canada (pp. 538–543). New York: ACM.

Kleinberg, J.M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46,
604–632.

Lance, G.N., & Williams, W.T. (1966). A generalized sorting strategy for computer classifications.
Nature, 212, 218.

Lance, G.N., & Williams, W.T. (1967). A general theory of classificatory sorting strategies: 1. Hier-
archical systems. Computer Journal, 9, 373–380.

Li, L., Otsuga, S., Kitsuregawa, M. (2010). Finding related search engine queries by web community
based query enrichment. World Wide Web, 13, 121–142.

Li, L., Xu, G., Zhang, Y., Kitsuregawa, M. (2011). Random walk based rank aggregation to improving
web search. Knowledge-Based Systems, 24, 943–951.

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Transactions on Informa-
tion Theory, 37, 145–151.

Manning, C.D., Raghavan, P., Schutze, H. (2008). Introduction to information retrieval. Cambridge:
Cambridge University Press.

Otsuka, S., & Kitsuregawa, M. (2006). Clustering of search engine keywords using access logs.
In Proc. of the 17th international conference on database and expert systems applications
(DEXA’06), Kraków, Poland (pp. 842–852). Berlin: Springer.

Page, L., Brin, S., Motwani, R., Winograd, T. (1998). The pagerank citation ranking: Bringing order
to the web. Technical report. Stanford Digital Library Technologies Project.

Pereira, F.C.N., Tishby, N., Lee, L. (1993). Distributional clustering of english words. In Proc. of the
30th annual meeting of the association for computational linguistics (ACL’93), Columbus, Ohio,
USA (pp. 183–190). Menlo Park: Association for Computational Linguistics.

Qixia, J., & Maosong, S. (2011). Fast query recommendation by search. In Proc. of the twenty-fifth
AAAI conference on artif icial intelligence (AAAI’11), San Francisco, California, USA (pp. 1192–
1197). Menlo Park: AAAI Press.

Raghavan, V.V., & Sever, H. (1995). On the reuse of past optimal queries. In Proc. of the 18th an-
nual international ACM SIGIR conference on research and development in information retrieval
(SIGIR’95), Seattle, Washington, USA (pp. 344–350). New York: ACM.

Rege, M., Dong, M., Fotouhi, F. (2006). Co-clustering documents and words using bipartite isoperi-
metric graph partitioning. In Proc. of the 6th IEEE international conference on data mining
(ICDM’06), Hong Kong, China (pp. 532–541). Los Alamitos: IEEE Computer Society.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. JASIS, 41,
288–297.

Siegel, S., & Castellan, N.J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New
York: McGraw-Hill.

Sun, J., Qu, H., Chakrabarti, D., Faloutsos, C. (2005). Neighborhood formation and anomaly de-
tection in bipartite graphs. In Proc. of the 5th IEEE international conference on data mining
(ICDM’05), Houston, Texas, USA (pp. 418–425). Los Alamitos: IEEE Computer Society.

Sun, R., Ong, C.-H., Chua, T.-S. (2006). Mining dependency relations for query expansion in passage
retrieval. In Proc. of the 29th annual international ACM SIGIR conference on research and
development in information retrieval (SIGIR’06), Seattle, Washington, USA (pp. 382–389). New
York: ACM.

Voorhees, E.M. (1994). Query expansion using lexical-semantic relations. In Proc. of the 17th an-
nual international ACM-SIGIR conference on research and development in information retrieval
(SIGIR’94), Dublin, Ireland (pp. 61–69). New York: ACM.

Vuong, N., & Tru, C. (2010). Ontology-Based query expansion with latently related named entities
for semantic text search. Advances in Intelligent Information and Database Systems, 283, 41–52.

Wen, J.-R., Nie, J.-Y., Zhang, H. (2002). Query clustering using user logs. ACM Transactions on
Information Systems, 20, 59–81.

Xiaohui, Y., Jiafeng, G., Xueqi, C. (2011). Context-aware query recommendation by learning high-
order relation in query logs. In Proc. of the 20th ACM conference on information and knowledge
management (CIKM’11), Glasgow, United Kingdom (pp. 2073–2076). New York: ACM.

Xu, J., & Croft, W.B. (1996). Query expansion using local and global document analysis. In Proc.
of the 19th annual international acm sigir conference on research and development in information
retrieval (SIGIR’96), Zurich, Switzerland (pp. 4–11). New York: ACM.

Xu, J., & Croft, W.B. (2000). Improving the effectiveness of information retrieval with local context
analysis. ACM Transactions on Information Systems, 18, 79–112.

J Intell Inf Syst

Yunlong, M., Hongfei, L., Yuan, L. (2011). Selecting related terms in query-logs using two-stage
SimRank. In Proc. of the 20th ACM conference on information and knowledge management
(CIKM’11), Glasgow, United Kingdom (pp. 1969–1972). New York: ACM.

Zha, H., He, X., Ding, C.H.Q., Gu, M., Simon, H.D. (2001). Bipartite graph partitioning and
data clustering. In Proc. of the 10th ACM CIKM international conference on information and
knowledge management (CIKM’01), Atlanta, Georgia, USA (pp. 25–32). New York: ACM.

Zhu, Y., & Gruenwald, L. (2005). Query expansion using web access log files. In Proc. of the 16th
international conference on database and expert systems applications (DEXA’05), Copenhagen,
Denmark (pp. 686–695). Berlin: Springer.

	QUBiC: An adaptive approach to query-based recommendation
	Abstract
	Introduction
	Related work
	Query clustering
	Query expansion
	Graph theory

	QUBiC system overview
	First phase: query-based recommendation preparation
	Second phase: generating query affinity graph
	URL-vector based similarity measures
	Generating query affinity graph
	Optimization of similarity computation and update of query affinity graph

	Third phase: HAC-based query ranking and recommendation
	Our HAC-based ranking methods
	The design of our ranking and recommendation procedure
	Discussions

	Experiments
	Data sets
	Statistics about data sets
	Evaluation measures
	Precision
	Entropy

	Results and discussions
	Experiments on the QueryKDD data set
	Experiments on the QueryTREC data set

	Conclusions
	References

