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Abstract. Similar sentences extraction is an essential issue for many
applications, such as natural language processing, Web page retrieval,
question-answer model, and so forth. Although there are many studies
exploring on this issue, most of them focus on how to improve the effec-
tiveness aspect. In this paper, we address the efficiency issue, i.e., for a
given sentence collection, how to efficiently discover the top-k semantic
similar sentences to a query. The issue is very important for real appli-
cations because the data becomes huge and the existing state-of-the-art
strategies cannot satisfy the users’ performance requirement. We propose
efficient strategies to tackle the problem based on a general framework.
Extensive experimental evaluations demonstrate that the efficiency of
our proposal outperforms the state-of-the-art approach.
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1 Introduction

Searching semantic similar sentences is an essential issue because it is the basis of
many applications, such as snippet extraction, image retrieval, question-answer
model, document retrieval, and so forth [18,3,11,2,13]. From a given sentence col-
lection, this kind of queries ask for those sentences which are most semantically
similar to a given one.

The problem can be solved as follows: we firstly measure the similarity score
between the query and each sentence in the data collection using the state-of-
the-art techniques [7,10,12,14,15], then sort them with regard to the score and
finally return the top-k ones. Almost all the previous studies focus on improving
the effectiveness aspect (i.e., precision) and the datasets conducted are small.
However, when the size of the data collection increases, the scale of the problem
will dramatically increase and the state-of-the-art techniques will be impractical.
As far as we know, this paper is the first study that aims to address the effi-
ciency issue in the literature. Moreover, most of the previous strategies applied
the threshold-based method [7,10,15] that a threshold is set to filter out those
dissimilar sentences. However, this threshold is difficult for users to determine.
For real applications (e.g., Google), users may prefer the top-k results.

There are mainly four kinds of techniques to measure the similarity between
sentences: (1) knowledge-based strategy [15,12]; (2) corpus-based strategy [7];
(3) syntax based strategy [10,7]; and (4) hybrid strategy [7,10]. All of these
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works, however, is time consuming when testing the candidates for top-k simi-
lar sentences extraction. To tackle this issue, we introduce efficient strategies to
evaluate as few candidates as possible. Moreover, we aim to progressively out-
put the top-k results, i.e., the top-1 result should be output almost instantly,
then the top-2 and more results will be obtained as the execution time becomes
longer. This satisfies the requirement of the real applications [5]. As such, these
issues are the challenges of the paper, which have not been studied before. Our
contributions of this paper are listed as follows:

We propose to tackle the efficiency issue for searching top-k semantic similar
sentences, which is different from previous works that focus on the effectiveness
aspect. Based on the most comprehensive work [7], we introduce the optimiza-
tion techniques and improve the efficiency. For each similarity measurement, we
introduce a corresponding strategy to minimize the number of candidates to
be evaluated. A rank aggregation method is introduced to progressively obtain
the top-k results when assembling the features. We conduct experiments and
evaluate the performance of the proposed strategies. The results show that the
proposed strategies outperform the state-of-the-art method.

2 Problem Statement

The issue we aim to tackle is to extract the top-k similar sentences to a query.
Formally, for a query sentence Q, finding a set of k sentences P in a given
sentence collection S which are most similar to Q, i.e., ∀p ∈ P and ∀r ∈ (S−P )
will yield sim(Q, p) ≥ sim(Q, r).

To measure the similarity sim(Q,P ) between two sentences, we apply the
state-of-the-art strategies by assembling multiple similarity metric features to-
gether [10,7]. Because we focus on tackling the efficiency issue in this paper,
several representative features are selected based on the framework in [7]. Note
that a sentence is composed of a set of words and therefore, the similarity score
between two sentences is the overall scores of all the word pairs whose com-
ponents belong to each sentence, respectively [7]. As such, we introduce the
representative word similarity in the next section.

2.1 Similarity Measurement Strategies

String-Based Similarity. String similarity measures the difference of syntax
between strings. An intuitive idea is that two strings are similar to each other if
they have enough common subsequences (i.e., LCS [6]). We focus on three rep-
resentative string similarity measurement strategies, i.e., NLCS, NMCLCS1 and
NMCLCSn1 which are denoted as SimNLCS, SimNMCLCS1 and SimNMCLCSn

[7]. The following are the formulas:

SimStringStrategy(wi, wj) =
length(StringStrategy)2

length(wi)length(wj)
(1)

1 NLCS: Normalized Longest Common Substring, NMCLCS1: Normalized Maximal
Consecutive LCS starting at character 1, NMCLCSn: Normalized Maximal Consec-
utive LCS starting at any character n [7].
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query sentence: 

(SOC-PMI)
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S1
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Sean is living with a host family in Tokyo now.

He is always playing online games after shool.

My impression of Japan is Sumo, Mount Fuji, Sushi, etc.

It is the best web hosting companies in 2011.

It is the higest cost-effective web hosting service in Nihon.
Lunch of this cafe doesn’t cost you much.
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Fig. 1. The implementation of the top-k similar sentences searching framework

Here StringStrategy are NLCS, MCLCS1 and MCLCSn.

Corpus-Based Similarity. Corpus-based similarity measurement is to recog-
nize the degree of similarity between words using large corpora [9]. There are
several kinds of strategies: PMI [16], LSA [8], HAL [1], chi-square, and so forth.
In this paper, we use SOC-PMI (Second Order Co-occurrence PMI) [7] which
employs PMI while taking into account important neighbors in the context win-
dows of the two words. The intuitive idea is that the neighbors have abundant
semantic context and should be considered. PMI [16] is defined as follows:

fpmi(wi, wj) = log2
f(wi, wj)×m

f(wi)f(wj)
(2)

where f(wi) is the frequency of the word wi in the corpus, and m is the size of
the corpus. Eq. 2 is used to calculate the similarities between words, and then
high PMI scores are aggregated to obtain the final SOC-PMI score [7].

2.2 A General Framework

To measure the overall similarity between two sentences, a general framework
is presented by incorporating the main similarity features. As far as we know,
[7] is the most comprehensive approach which incorporates several represen-
tative similarity metrics (i.e., string similarity and semantic similarity2). The
string similarity is further composed of three different measurement, i.e., NLCS,
NMCLCS1 and NMCLCSn. Fig. 1 illustrates the general framework for search-
ing the top-k similar sentences. Due to lack of large labeled data, the existing
state-of-the-art assembling techniques commonly set the weight values arbitrarily

2 The common word order similarity is neglected here because [7] has demonstrated
that it has no influence on the overall score.
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[7,10,12,14]. We apply the same strategy (i.e., weightstring=weightsemantic=1/2,
weightNLCS=weightNMCLCS1=weightNMCLCSn=1/3). While obtaining opti-
mal values of these weights is certainly an interesting issue, it is out of the scope
of this paper. It is very time consuming to test every candidate especially when
the data collection is large. Therefore, efficient strategies on searching top-k se-
mantic similar sentences are necessary.

3 Proposed Approaches

We propose efficient strategies for extracting the top-k similar sentences. The
key idea is that by building appropriate index in the preprocessing, we only need
to test a small part of candidates in the whole data collection.

3.1 Optimization on String-Based Similarity

We employ NLCS, NMCLCS1, NMCLCSn as our string-based similarity fea-
tures [7].

• NLCS
The basic idea for improving the efficiency of similar word extraction, is to test
as few candidates as possible. To address this issue, in the preprocessing we
need to built an effective index which facilitates the candidate test process. A
well known technique is n-gram (or q-gram [17]) model, which is utilized in our
framework. Moreover, because our purpose is to search the top-k similar words,
we can further improve the efficiency based on the property of the similarity.

From Eq. 1 we know that NLCS is based on two factors: (1) length of LCS;
(2) length of the candidate wi (length of the query is not important because we
cannot know it in the preprocessing). The similarity increases when length(LCS)
increases or length(wi) decreases. Therefore we have the following lemma.

Lemma 1 (Lower Bound of Gram Length). Let P be the top-k similar
word to the query Q so far. Q and P have the NLCS score as τtop−k. We denote
the set R be the untested words and the gram set G be the untested grams. If
∀g ∈ G and ∀r ∈ R, |gr| < |Q| · τtop−k, then the top-k similar words w.r.t. string
similarity score have been found.

Proof (Sketch of Proof). (Proof by Contradiction) Assume there is one candidate
word r with gram |gr| < |Q|·τtop−k in R and it is ranked in the top-k list. Then we

have Sim(Q, r) ≥ τtop−k,
|gr |2
|Q||r| ≥ τtop−k, |gr|2 ≥ |Q|·|r|·τtop−k, |gr| ≥ |Q|·τtop−k,

which contradicts the assumption. ��
This lemma tells us that we can sort the grams in descending order of their
lengths in the index. Moreover, for each gram, we sort all the corresponding
words (which include this gram) in ascending order of their lengths. To search
the top-k similar words, we start from the word list which has the longest gram.
In the list, we first test shorter words and then the longer ones.



274 Y. Gu et al.

• NMCLCS1

This similarity measures the maximal common consecutive prefix substrings of
two strings. Similar to NLCS, from Eq. 1, we can see that NMCLCS1 is de-
termined by two factors: length of NMCLCS1 and length of candidate word.
NMCLCS1 increases when the length of NMCLCS1 increases or the length of
the candidate decreases. Therefore, we can build a gram index that all the grams
are in descending order of their lengths. For each gram, the related words are
in ascending order of their lengths. The difference for indices between NLCS
and NMCLCS1 is that the grams for the latter are only a part of the former
(i.e., start at the beginning of each string). The lower bound used to terminate
is |Q| · τtop−k. The computation of τtop−k is based on Eq. 1. The algorithm of
searching top-k similar words for NMCLCS1 is very similar to that for NLCS.
We need to modify the index strategy in the algorithm.

• NMCLCSn
NMCLCSn measures the maximal common consecutive substring which can
starts at any position n. The index for NMCLCSn is similar to that for NMCLCS1.
The only difference is the strategy for decomposing words into grams. NMCLCSn
parses words into grams which can start at any positions. The lower bound used
to terminate is |Q| · τtop−k, where τtop−k is calculated by Eq. 1. The algorithm
for NMCLCSn is similar to that for the above mentioned string similarities, with
modification according to the definition of NMCLCSn.

3.2 Optimization on Corpus-Based Similarity

We apply SOC-PMI [7] as the corpus-based similarity evaluator. SOC-PMI lin-
early aggregates the top large PMI values (i.e., Eq. 2) of each pair words with
their neighbors. We introduce an efficient technique [19].

Lemma 2 (Upper Bound of Word Frequency). Let Q be the query word
and P be the top-k similar word so far. Q and P have the similarity score τtop−k.
If ∀r ∈ R, f(r) > m

2top−k , the top-k similar words have been found. Here R is the
remaining untested words and m is the size of the corpus.

Based on this lemma, we sort all the candidates in ascending order of their
frequencies in the preprocessing and measure the similarity while querying one
by one. When we find the current frequency of candidate word is large than

m
2top−k , we can terminate the process and avoid to test the remaining candidates.

3.3 Sentence Similarity Computation

We have introduced how to measure the similarity between words. Here we take
illustrate how to obtain the similarity between sentences. Let P =“Cheapest
online hosting in Japan.”, Q=“Domain is free to use for the first year”. After
removing all stop words and lemmatizing, we obtain P={cheap online hosting
Japan} and Q={domain free use year}. Through similarity measuring on each
combination of word pair for the sentences, we construct a similarity matrix
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(a)

(b) (c)

(d) (e)
0.4321

Fig. 2. Similarity measurement between two sentences

which is illustrated in Fig. 2 (a). Each element represents the overall similarity
score of the word pair, i.e., aggregation of string-based and corpus-based simi-
larities. To obtain the score between sentences, we first find the maximal-valued
element (i.e., representative word). Then the related row and column which
includes this element are removed. This process is recursively executed and fi-
nally all the similarities of the representative words have been extracted (i.e.,
Fig. 2 (b-e)). The similarity between sentences is computed as follows: S(P,Q) =
Σ

|min(|P |,|Q|)|
i=1 ρi(|P |+|Q|)

2|P |∗|Q| , where ρi is the value of the representative word of round

i. Therefore we have S(P,Q)= (0.7321+0.6302+0.4872+0.4321)(4+4)
2∗4∗4 =0.5704.

3.4 Assembling Similarity Features

We introduce an efficient assembling approach to hasten the process of searching
top-k similar sentences [4]. To illustrate the method, we use the concrete example
(i.e., Fig. 1) to explain, as shown in Fig. 3. In the first iteration, we obtain the
top-1 sentences with their scores in the features, i.e. S7: 0.4358 and S3: 0.8012.
Next the threshold is computed, i.e., 0.6185 (wA · SimAi + wB · SimBi , where
w is the weight value3). Because the overall scores of the two accessed sentences
are smaller than the threshold, no result is output in this round. In the second
iteration (i.e., testing on top-2 sentences in both lists), the threshold is computed
as 0.6024. Because the score of S3 is 0.6111 which is larger than the threshold, S3
can be output immediately. We can see that for this example, the performance
of obtaining the top-1 result is very efficient because we do not need to evaluate
many candidates. The remaining processes are executed in a similar way.

In addition to the abovementioned feature aggregation,we apply the threshold-
based strategy in assembling different string similarities (i.e., NLCS, NMCLCS1,
and NMCLCSn), and assembling words into sentence to obtain the top elements.

4 Experimental Evaluation

We conducted experiments using 16-core Intel(R) Xeon(R) E5530 server which
runs Debian 2.6.26-2. All the algorithms were written in C and compiled by
GNU gcc. The baseline is implemented based on the state-of-the-art [7].

3 The weights are set to 1/2, respectively, as explained in Section 2.
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Fig. 3. Efficient searching top-k semantic sentences framework
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Fig. 4. Effect on size of data collection
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Fig. 5. Effect of k-value

Effect of Size of Data Collection. The evaluated datasets come from BNC4

and MSC5. We randomly extracted 1k, 5k, 10k, 20k sentences from BNC and
divided MSC into different size, i.e.,10%, 20%, 50%, 100%, as our datasets. Fig. 4
shows the top-5 results under 10 randomly selected queries. We can see that our
proposal is much faster than the baseline for both datasets because the proposal
largely reduces the number of candidates tested. When the size of data collec-
tion increases, the query time of our proposal increases linearly and it scales well.

Effect of k. We randomly chose 10 queries from the collections. The size of BNC
was fixed to 5k and the whole MSC was used. From Fig. 5 we see the baseline
needs to access all candidates and the query time is the same for all situations.
For our proposal, the top-1 can be returned almost instantly. When k increases,
the query time increases because more candidates need to be evaluated.

4 http://www.natcorp.ox.ac.uk/
5 Microsoft Research Paraphrase Corpus. It contains 5800 pairs of sentences.

http://www.natcorp.ox.ac.uk/
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5 Conclusion

In this paper, we proposed to tackle the efficiency issue of searching top-k similar
sentences which has not been studied before. Several efficient strategies are in-
troduced to test as few candidates as possible in the process. The comprehensive
experiments demonstrates the efficiency of the proposed techniques.
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