
Modeling I/O Interference in Data Intensive Map-Reduce Applications

Sven Groot
Institute of Industrial Science

The University of Tokyo
Tokyo, Japan

Email: sgroot@tkl.iis.u-tokyo.ac.jp

Abstract—Map-Reduce is a popular framework for very
large-scale data mining and processing. Recently, some works
have attempted to model the behavior of Map-Reduce, but
these existing models ignore the non-linearity of disk I/O
performance under contention, which is a critical aspect of
estimating the performance of data intensive applications.
Understanding I/O interference between tasks running on the
same node is critical in optimizing task scheduling for improved
resource utilization. In this paper, we present a model to
estimate the I/O behavior of Map-Reduce applications that
can be used to achieve these goals.

Keywords-Map-Reduce; cloud computing; data intensive

I. INTRODUCTION

Map-Reduce [1] continues to be a very popular platform
for large-scale data processing. Hadoop [2] provides the
most popular implementation, and is frequently used in
cloud environments.

In order to analyze and improve workload management
decisions in Map-Reduce, it is necessary to have a model
of the behavior of jobs and tasks. When dealing with data
intensive applications I/O costs and I/O contention will be
important factors. Modern servers typically have many CPU
cores, and Hadoop must run several simultaneous tasks
on a single node to exploit these CPUs. These tasks will
often experience a bottleneck when competing for the same
limited I/O resources such as disks.

Servers typically have more CPU cores than disks, and
the behavior of disks is very different from other resources
such as CPUs and memory. They are also often the slowest
component in the system, with a very large potential impact
on the performance of an application.

Map-Reduce considers only data locality when scheduling
tasks, but scheduling many I/O intensive tasks on a single
node can have adverse affects on performance due to inter-
ference. By understanding the effects of I/O interference we
can make better decisions about how many tasks to schedule
on a node and how to mix tasks from different workloads,
leading to better resource utilization. This can then improve
execution time or reduce the number of resources necessary
for a particular workload.

In this paper, we propose a cost model for Map-Reduce
that is able to predict the effect of task scheduling decisions
on I/O performance. In the following sections, we will

investigate existing work in modeling Map-Reduce, describe
our model approach, and evaluate it using a data intensive
workload.

II. RELATED WORK

Much of the work in modeling Map-Reduce is still very
recent, and typically it is limited in scope depending on what
the authors intended to use the model for.

Huai et al [3] propose a model that generalizes Map-
Reduce and similar frameworks such as Dryad [4] into
a matrix-based representation of the data flow, but which
currently does not consider performance. Verma et al [5]
propose a model to estimate job completion time based on
the observed task completion times measured previously.
Jindal et al [6] use a simple model that considers only
reading of input data.

The model proposed by Herodotou et al [7], described
fully in [8], is to our knowledge the most usable and detailed
model currently available. It accurately models the data-flow
between tasks and task phases, but its cost model does not
distinguish between CPU and I/O costs.

III. MODELING MAP-REDUCE

Modeling the behavior of Map-Reduce is made difficult
by the presence of I/O contention. Figure 1 shows what
happens to tasks when the number of task slots (the number
of tasks a single node can run in parallel) is increased. With
only a single task slot, each task is the same length (in
this example the tasks all process the same amount of data).

map1 map2 map3 map4 map5 map6

map1

map2

map3

map4

map6

map7

map5

map8

map9

map10

1 slot:

4 slots:

Elapsed time (seconds)

Figure 1. Actual time line of TeraSort map task execution using 1 and 4
map slots on a system with 8 CPUs.



Init

Map

CollectRead

Sort Spill

Sort Spill Merge Shutdown

RR

WW

WW WWRR

RR RR

WW

HDFS read Local read

Local writeWW HDFS write

RR Remote/local read

(a) Map task

Init

Shuffle

Merge

Merge

Reduce

WriteRead

Shutdown

WW

WWRR

WWRR

RR WW

RR

(b) Reduce task

Figure 2. Phases of map and reduce tasks.

When the number of slots is increased to four, the execution
time for each task increases due to I/O contention and large
variation between the tasks appears because not every task
is affected equally by the interference.

Existing models [7][8] that do not consider I/O interfer-
ence are unable to predict the increase in task time, and
would therefore give the impression that any workload scales
linearly on a single node. This means it is not possible to
make meaningful decisions about the number of slots or task
placement based on these models.

Accurately predicting interference is very difficult due
to the many variables involved, including the behavior of
the file system, page cache, I/O scheduler, and hardware.
The large amount of variation between the tasks also makes
it as good as impossible to predict individual task times.
However, in order to analyze the effects of task scheduling
decisions it is sufficient to know the average effect of the
interference, which is possible to predict.

A. Map and Reduce Task Structure

In order to reason about I/O interference, we must con-
sider how and when map and reduce tasks perform I/O.
Processing of the tasks consists of several distinct phases
which all have their own CPU and I/O usage characteristics.
These phases are shown in Figure 2, a breakdown which is
similar to the one used by Herodotou et al [8].

For each phase, it is indicated whether they perform read
or write I/O to the distributed file system, or to local or
remote disks.

B. CPU and I/O Cost Model for Phases

Not every phase has the same amount of I/O or does the
same amount of CPU processing, which means that they
will show different interference effects. Figure 3 shows the
breakdown into phases of the average execution time of a
map task—from the experiment described in Section IV—
as the number of task slots is increased. The execution time

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

Execution time (s)

M
a

p
 t

a
sk

 s
lo

ts

Read Map

Collect Sort

Spill Merge

Figure 3. Breakdown of TeraSort map task execution time by phase. The
initialization and shutdown phases are omitted for clarity.

of those phases that perform heavy I/O, particularly read
and merge, increases significantly due to interference, while
those phases that perform no I/O such as collect or sort
remain the same. Also note that the spill phase remains
relatively static despite the fact that it performs write I/O;
this is because write I/O is cached, so most of the costs are
incurred not by the spill phase itself but by other phases and
later tasks.

Because the phases show different levels of I/O and CPU
usage, we must consider the costs of each phase separately.
Phases that are interleaved, such as the read/map/collect
cycle in map tasks and the read/reduce/write cycle in reduce
tasks, are considered as one due to how the CPU and I/O
costs of these phases interact.

We split the costs of each phase into three components:
CPU cost, read I/O cost, and write I/O cost. These costs are
expressed per byte. The CPU cost for each phase is measured
for a specific workload, and is currently assumed to be fixed
for that workload. We also assume that CPU costs are not
subject to interference, which holds as long as the number
of task slots does not exceed the number of CPU cores. In
practice there may be cache or memory contention, but this
is minor compared to I/O contention and is not considered
in this model.

The basic I/O costs are taken from the raw read and write
throughput of the disks involved, which is sufficient because
Map-Reduce performs only sequential I/O. To estimate in-
terference, we first assume that bandwidth is divided evenly
among tasks, and additional interference based on disk seek
overhead and other factors is expressed by a hardware-
dependent function.

Because the OS kernel—as well as the storage sys-
tem hardware—perform asynchronous I/O and read-ahead
caching, the CPU costs of a phase can overlap with the
I/O costs. Therefore, we estimate the overall execution time
of a phase as the maximum of the CPU or the I/O time:
Tphase = ((Sread + Swrite) · Ccpu) ∨ (Nslots · (Sread ·
Rio + Swrite · Wio)) + fi. Here, Tphase is the execution
time of the phase, Sread and Swrite are the size of the
data being read and written in bytes, Ccpu is the CPU cost
per byte, Nslots is the number of map or reduce task slots,



Rio and Wio are the read and write I/O costs per byte, and
fi is a function estimating the hardware-specific additional
interference. This formula is used for all phases; since not all
phases perform read or write I/O, some terms may evaluate
to zero.

This calculation uses the assumption that when there are
N slots, there are always N total instances of the same phase
running at the same time. In reality this is not necessarily
true due to the variation shown in Figure 1, which means that
e.g. the map phase of one task can overlap with the merge
phase of another. In addition, write caching means the cost
of writes is not necessarily incurred by the phase that does
the writing. However, these factors only move interference
costs over the lifetime of the job; they don’t change the
overall interference. This means the formula we use gives a
good indication of the average costs of each phase.

C. Intermediate Data Fragmentation

Reduce tasks read data that has been written by map tasks
or merge phases of the same reduce task. This data was
written by multiple simultaneous writers under heavy system
load, which causes high levels of file fragmentation with a
severe adverse effect on the I/O performance when reading
these files. Because of this, we calculate the read I/O cost
for the shuffle and read phases as Nslots

F ·Rio, were F is
the factor by which fragmentation reduces performance. F
is calculated by solving Nslots

F = Nslots
Rfio

Rio
where Nslots

is set to the maximum value that will be used and Rfio is
the I/O cost for reading a fragmented file written using that
number of slots. Improving our understanding of the effect
of fragmentation is still a work in progress.

D. Task and Overall Execution Time

In order to calculate the average task time, we simply sum
the time of all the individual phases except initialization and
shutdown. This is the work time of the task.

At this point, we must separately consider the shutdown
phase. The shutdown phase waits for a background thread
which checks whether it needs to exit every three seconds,
starting from the end of the initialization phase. To account
for this, the time of a task is estimated by rounding up the
work time to the nearest multiple of three, and then adding
the initialization phase time.

The time that a task occupies a slot may be higher than its
execution time, because a new task cannot be scheduled until
the next heartbeat. For this reason, the task time is rounded
up to the nearest multiple of the heartbeat interval (3 by
default). Hadoop allows for sending out-of-band heartbeats
when tasks are finished; when this is enabled the task times
do not need to be rounded.

Finally, we estimate the overall execution time for the
map or reduce stage by multiplying the slot time by the
expected number of waves, which is Ntasks

Nslots
; we assume the

interference for the final wave is proportional to the number

System
CPU 2x quad-core Xeon E5530 2.4GHz
Memory 24GB

Storage
Controller JCS VCRVAX-4F RAID
HBA QLogic QLE2462 (4Gb/s fiber channel)
Disks 10x Hitachi HDS721010CLA332
Volume RAID6 (7.2TB)
Read throughput 380MB/s
Write throughput 150MB/s

Table I
EXPERIMENTAL SETUP

of tasks in that wave. This overall prediction can be used as
an indication for the scalability of a job.

Reduce tasks may be started while the map tasks of the
same job are still running, in which case they will be able to
shuffle and merge some of the data in the background. While
this can cause additional interference for the map tasks and
increased waiting in the reduce tasks, it reduces the time
spent in the reducers after the map tasks finish. The overall
job time estimated by the averages is therefore still a good
indication of performance.

IV. EVALUATION

A. Experimental Environment

For our experiments, we used the setup described in
Table I. This system uses a RAID array with both DFS
blocks and intermediate data stored on the same volume.
We have chosen to use the RAID array because it provides
more predictable performance for multiple streams and is
less dependent on the behavior of the Linux I/O scheduler.

On this system, for reads, we estimate fi = 0.1Nslots

based on an observed approximately 100ms read-ahead start-
up cost for each stream, and for writes fi = 0. The
fragmentation factor was determined to be F = 1.75.

We configured a Hadoop cluster with a single slave
node, which allowed us to focus on the costs of local I/O.
Expanding the model for multiple nodes and non-local I/O
is still a work in progress.

We evaluated the accuracy of our model using the
TeraSort benchmark [9], using a 16GB data set with a
256MB split size. There are 32 map tasks and 8 reduce
tasks. We measured baseline times using 1 slot, and then
varied the number of slots between 1 and 8 to see if
the model could correctly predict the effect of the inter-
ference. In order to evaluate reduce tasks separately, we
set mapred.reduce.slowstart.completed.maps to 1.0 so that
reduce tasks would not start until the map tasks had all
finished. Out-of-band heartbeats were enabled. All other
settings were left at their defaults.

B. Results

The map stage results are shown in Figure 4(a). We
compared the prediction against the actual execution time



0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Map task slots

Prediction (no interference)

Prediction

Actual

(a) Map tasks

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Reduce task slots

Prediction (no interference)

Prediction

Actual

(b) Reduce tasks

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Map/reduce task slots

Prediction (no interference)

Prediction

Actual (slowstart=1.0)

Actual (slowstart=0.05)

(c) Job overall

Figure 4. Predicted vs. actual execution times.

and a prediction that does not take interference into account.
The prediction closely matches the actual execution time, but
shows minor anomalies for the 2, 7 and 8 slots cases; these
are caused by a small change getting exaggerated by the
rounding. Most importantly, the prediction correctly captures
the actual trend allowing us to predict how this workload
will scale when per-node parallelism is changed for the map
stage. When interference is not considered the prediction is
far too optimistic, indicating the importance of considering
the effects of I/O interference in the model.

The reduce stage results are shown in Figure 4(b). The
interference prediction over-estimates the execution time to a
larger degree than for map tasks, particularly for three slots,
which is primarily due to caching; some of the intermediate
data is still cached when it is read by the shuffle or reduce
phases. When the number of slots increases, the amount of
data per wave becomes big enough for caching to be less
effective.

Figure 4(c) gives the overall time for the entire job with
mapred.reduce.slowstart.completed.maps set to either 1.0 or

its default value so reduce tasks start before all map tasks
have finished. As the figure shows, this does not affect the
accuracy of the prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown the complexity of modeling
Map-Reduce when I/O interference is included. Existing
models make simplifying assumptions regarding the pres-
ence (or lack of) I/O contention, which we believe are not
realistic for data intensive workloads. CPU and I/O costs
show very different scaling behavior when multiple tasks
are competing for the same resources, and these costs must
therefore be treated separately in the models.

We have introduced an analytical model for estimating
I/O interference in Map-Reduce, which is able to predict
the performance scalability of a job, which can help with
making and analyzing scheduling decisions for a workload.

The model shown here is still a work in progress. We will
extend it to deal with non-local I/O in a cluster with multiple
nodes, which includes non-local map tasks, shuffling data
from remote nodes, and output data replication.

It is our intention that this model can be used to better un-
derstand workload management decisions and help optimize
resource usage with mixed workloads which are common in
multi-tenant cloud systems.

VI. ACKNOWLEDGEMENT

This research is partially supported by the project ”R&D
on reliable and power-saving network control technologies
for cloud computing” of the Ministry of Internal Affairs and
Communications.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] Apache, “Hadoop Core.” [Online]. Available: http://hadoop.
apache.org/core

[3] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang, “DOT: a
matrix model for analyzing, optimizing and deploying software
for big data analytics in distributed systems,” in Proc. ACM
SOCC, 2011.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72,
2007.

[5] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA:
automatic resource inference and allocation for mapreduce
environments,” in Proc. ACM ICAC, 2011.

[6] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich, “Trojan data
layouts: right shoes for a running elephant,” in Proceedings
of the 2nd ACM Symposium on Cloud Computing, 2011.

[7] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics,”
in Proc. ACM SOCC, 2011.

[8] H. Herodotou, “Hadoop performance models,” Duke
University, Tech. Rep., 2010. [Online]. Available:
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf

[9] “TeraSort.” [Online]. Available: http://sortbenchmark.org


