
Towards Efficient Discovery of Frequent Patterns with
Relative Support

R. Uday Kiran and Masaru Kitsuregawa
Institute of Industrial Science,

University of Tokyo, Japan.
Email: uday rage@tkl.iis.utokyo.ac.jp and kitsure@tkl.iis.utokyo.ac.jp.

ABSTRACT
Frequent patterns are an important class of regularities that exist
in a database. Although there exists no universally acceptable best
measure to assess the interestingness of a pattern, relative support
is emerging as a popular measure to discover frequent patterns in-
volving both frequent and rare items. An Apriori-like algorithm
known as Relative Support Apriori (RSA) has been discussed in the
literature to discover the patterns. It has been observed that mining
frequent patterns with RSA is a computationally expensive process
because the discovered patterns do not satisfy the anti-monotonic
property. Moreover, RSA also suffers from the performance prob-
lems involving generation of the huge number of candidate patterns
and multiple scans on the database. This paper makes an effort
to discover frequent patterns effectively with the relative support
measure. To reduce the computational cost, we theoretically show
that the patterns discovered with the relative support measure sat-
isfy the convertible anti-monotonic property. Using this property,
a pattern-growth algorithm known as Relative Support Frequent
Pattern-growth (RSFP-growth) has been proposed to discover the
patterns. Experimental results on both synthetic and real-world
datasets show that the proposed RSFP-growth algorithm is signifi-
cantly better than the RSA algorithm.

1. INTRODUCTION
Frequent pattern mining is an important knowledge discovery

technique in data mining. In the basic model of frequent patterns
[3], a pattern (or an itemset) is considered frequent if it satisfies the
user-defined minimum support (minsup) constraint. The minsup
constraint controls the minimum number of transactions a pattern
must cover in a database. Since only a single minsup constraint
is used for the entire dataset, the model implicitly assumes that all
items in a database have uniform frequencies. However, this is of-
ten not the case in many real-world databases. In many real-world
applications, some items appear very frequently in the data, while
others rarely appear. It has to be noted that considering an item
in a database as either frequent or rare is a subjective issue which
depends on the user and/or application requirements. If the items’
frequencies in a database vary widely, we encounter the following

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The 18th International Conference on Management of Data (COMAD),
14th16th Dec, 2012 at Pune, India.
Copyright c⃝2012 Computer Society of India (CSI).

issues:

i. If minsup is set too high, we will miss those patterns that
involve rare items.

ii. In order to find the frequent patterns that involve both fre-
quent and rare items, we have to set low minsup. However,
this may cause combinatorial explosion, producing too many
frequent patterns, because those frequent items will combine
with one another in all possible ways and many of them can
be meaningless depending upon the user and/or application
requirements.

This dilemma is called the rare item problem [19]. One cannot
ignore the knowledge pertaining to rare items. It is because such
knowledge has been found useful in many real-world applications,
such as detecting oil spills in satellite images [11] and improving
the performance of recommender systems [5].

To confront the rare item problem in applications, numerous al-
ternative measures have been discussed in the literature [4, 13, 18,
20, 21]. Unlike the support measure, these measures assess the in-
terestingness of a pattern with respect to the frequencies of items
within it. Each measure has a selection bias that justifies the signif-
icance of a knowledge pattern. As a result, there exists no univer-
sally acceptable best measure to judge the interestingness of a pat-
tern for any given dataset or application. Researchers are making
efforts to suggest a right measure depending upon the user and/or
application requirements [17, 18, 20].

Yun et al. [21] have introduced the relative support measure and
showed that it can discover the frequent patterns involving signif-
icant rare items effectively. A significant rare item represents an
item that appears less frequently in the database (or having sup-
port less than the user-defined minsup threshold) but appears as-
sociated with the frequently occurring items in high proportion to
its frequency. An Apriori-like algorithm known as Relative Sup-
port Apriori (RSA) algorithm has also been introduced to discover
the patterns. We have observed that RSA is a computationally ex-
pensive algorithm because the patterns discovered with the relative
support measure do not satisfy the anti-monotonic property. More-
over, RSA also suffers from the performance problems involving
generation of the huge number of candidate patterns and multiple
scans on the database.

This paper makes an effort to discover frequent patterns effi-
ciently using the relative support and support measures. The con-
tributions are as follows.

• The paper theoretically investigates the relative support mea-
sure and shows that the discovered patterns satisfy a property
known as the convertible anti-monotonic property [15].

• Using the convertible anti-monotonic property and prior knowl-
edge regarding the FP-growth construction and mining tech-
nique, we redefine the frequent pattern with a novel concept
known as the conditional minimum support.

• Using the conditional minimum support, an FP-growth-like
algorithm known as Relative Support Frequent Pattern-growth
(RSFP-growth) has been proposed in this paper. Pei et al.
[15] have theoretically shown that the search space for a pattern-
growth algorithm discovering interesting patterns satisfying
the convertible anti-monotonic property is same as the search
space of a pattern-growth algorithm discovering interesting
patterns satisfying the anti-monotonic property. Therefore,
it can be said that the RSFP-growth algorithm reduces the
computational cost of mining the patterns effectively.

• Experimental results on various datasets show that the RSFP-
growth algorithm is runtime efficient and scalable than the
RSA algorithm.

The rest of this paper is organized as follows. Section 2 dis-
cusses previous works on mining frequent patterns. Section 3 in-
troduces the model of frequent patterns using the relative support
and support measures. Section 4 discusses the performance issues
of RSA algorithm, describes the basic idea and introduces the pro-
posed RSFP-growth algorithm. Experimental evaluations of RSA
and RSFP-growth algorithms are presented in Section 5. Finally,
Section 6 concludes with future research directions.

2. RELATED WORK
Since the usage of single minimum support (minsup) framework

to discover frequent patterns involving both frequent and rare items
suffers from the dilemma known as the rare item problem, researchers
have made efforts to discover frequent patterns with multiple minsups
framework [7, 8, 9, 10, 12, 16], or other interestingness measures
[4, 13, 18, 20, 21], or constraints [14].

In the multiple minsups framework, the user specifies a minsup-
like constraint, called minimum item support, for every item in the
database. Next, the minsup for a pattern is represented with the
minimum item supports of the items within it. An open research
problem of this framework is the methodology to determine the
minimum item supports of all the items in a database.

Researchers have also introduced numerous alternative measures
to discover frequent patterns. Examples includes all-confidence,
any-confidence, bond [13], li f t and χ2 [4]. Each measure has its
own selection bias that justifies the significance of knowledge pat-
tern. Thus, there exists no universally acceptable best measure to
judge the interestingness of a pattern for any given application. In
other words, selecting a right measure to discover frequent patterns
involving both frequent and rare items is an important research is-
sue. Researchers are making efforts to suggest a right algorithm
depending upon the user and/or application requirements [17, 18,
20].

Yun et al. [21] have introduced the relative support measure to
discover the frequent patterns involving significant rare items. An
Apriori-like algorithm known as RSA has also been proposed to
discover the complete set of patterns with the relative support and
support measures [21]. The pattern model used in RSA requires
three user-specified thresholds: first support (s1), second support
(s2) such that s1 > s2 and minimum relative support (minRsup).
The s1 and s2 thresholds are used to classify the items into either
frequent or rare items. That is, items having support no less than
s1 are classified as frequent items and the items having support
in between s1 and s2 are classified as significant rare items. If a

pattern contains only frequent items, its support has to satisfy s1 to
be a frequent pattern. If an pattern contains rare items, its support
must satisfy s2 and its relative support must satisfy minRsup to be
a frequent pattern. In many real-world applications, it is often dif-
ficult for the user to classify the items into either frequent or rare
items. Therefore, a simplified approach is discover frequent item-
sets using only s2 and minRsup thresholds. In this paper, we use
this approach to discover the frequent patterns. The performance
issues of RSA algorithm and our efforts to address them are dis-
cussed in later parts of this paper.

3. THE FREQUENT PATTERN MODEL US
ING RELATIVE SUPPORT

The frequent pattern model using the relative support measure is
as follows [21]:

Let I = {i1, i2, · · · , in} be a set of items, and DB be a database that
consists of a set of transactions. Each transaction T contains a set of
items such that T ⊆ I. Each transaction is associated with an iden-
tifier, called T ID. Let X ⊆ I be a set of items, referred as an itemset
or a pattern. A pattern that contains k items is a k-pattern. A trans-
action T is said to contain X if and only if X ⊆ T . The frequency (or
support count) of a pattern X in DB, denoted as f (X), is the number
of transactions in DB containing X . The support of X , denoted as

S(X), is the ratio of its frequency to the DB size, i.e., S(X) =
f (X)

|DB|
.

The relative support of a pattern X , denoted as Rsup(X), is the ra-
tio of its support to the minimum support of an item (or 1-pattern)

within it. That is, Rsup(X) =
S(X)

min(S(i j)|∀i j ∈ X)
. The pattern

X is frequent if its support and relative support are no less than
the user-defined minimum support (minsup) and minimum relative
support (minRsup) thresholds. That is, X is said to be frequent if

S(X) ≥ minsup

and (1)
Rsup(X) ≥ minRsup.

We call the frequent pattern containing only one item as frequent
item. We now illustrate the frequent pattern model using the trans-
actional database shown in Table 1.

Table 1: Transactional database.

TID Items TID Items
1 a, b 11 a, b
2 a, b, e 12 a, c, f
3 c, d 13 a, b, e
4 e, f 14 b, e, f, g
5 c, d 15 c, d
6 a, c 16 a, b
7 a, b 17 c, d
8 e, f 18 a, c
9 c, d, g 19 a, b
10 a, b 20 c, d, f

EXAMPLE 1. The transactional database shown in Table 1 has
20 transactions. The set of items I = {a,b,c,d,e, f ,g}. The set of
items ‘a’ and ‘b’, i.e., {a, b} is a pattern. It is a 2-pattern. For sim-
plicity, we write this pattern as “ab”. It occurs in 8 transactions
(tids of 1,2,7,10,11,13,16 and 19). Therefore, the support count

of “ab,” i.e., f (ab)= 8. The support of ab, i.e., S(ab)= 0.4
(
=

8
20

)
.

The relative support of ab, i.e., Rsup(ab)= 0.88
(
=

0.4
min(0.6,0.45)

)
.

If the user-specified minsup = 0.3 and minRsup = 0.65, then ab
is a frequent pattern because S(ab) ≥ minsup and Rsup(ab) ≥
minRsup.

It can be observed that the relative support measure assess the
interestingness of a pattern with respect to the minimal support of
an item within it. Thus, it can effectively discover all those frequent
patterns that contain rare items occurring together with other items
in high proportions of their frequencies.

The problem definition is as follows. Given the transactional
database (DB), and the user-defined minimum support (minsup)
and minimum relative support (minRsup) thresholds, discover the
complete set of frequent patterns in a database that satisfy both
minsup and minRsup thresholds.

4. PROPOSED APPROACH
In this section, we first discuss the performance problems of RSA

algorithm. Subsequently, we introduce the basic idea and proposed
RSFP-growth algorithm.

4.1 Performance problems of RSA algorithm
The relative support measure can effectively confront the rare

item problem while mining frequent patterns involving both fre-
quent and rare items. However, the RSA algorithm has the follow-
ing issues.

• The RSA is a computationally expensive algorithm because
the frequent patterns discovered with the relative support
measure do not satisfy the anti-monotic property. That is,
although a pattern satisfies the user-defined minRsup thresh-
old, all its non-empty subsets may not have satisfied the minRsup
threshold.

• It also suffers from the same performance problems as the
Apriori algorithm, which includes generating huge number
of candidate patterns and multiple scans on the database.

4.2 Basic Idea
The space of items in a database gives rise to a subset lattice. The

itemset lattice is a conceptualization of the search space when min-
ing frequent (or user-interest based) patterns. Reducing this search
space is an important research issue in pattern mining. The popular
techniques to reduce the search space involve the usage of anti-
monotonic property, monotonic property, or succinct property (see
Definition 1). If a constraint does not satisfy any of these proper-
ties, then it is said that mining patterns with it is a computationally
expensive process as the mining algorithm has to search the entire
lattice space, i.e., 2I itemsets.

DEFINITION 1. (Anti-monotone, Monotone and Succinct Con-
straints.) A constraint Ca is anti-monotone if and only if whenever
a pattern S violates Ca, so does any superset of S. A constraint Cm
is monotone if and only if whenever a pattern S satisfies Cm, so does
any superset of S. Succinctness is defined in steps, as follows

• A pattern X ⊆ I is a succinct set, if it can be expressed as
σp(I) for some selection predicate p, where σ is the selection
operator.

• SP ⊆ 2I is a succinct powerset, if there is a fixed number of
succinct sets I1, I2, · · · , Ik ⊆ I, such that SP can be expressed
in terms of the strict powersets of I1, · · · , Ik using union and
minus.

• Finally, a constraint Cs is succinct provided SATCs(I) is a
succinct powerset.

Pei et al. [15] have investigated the concept of convertible con-
straints, and showed that some of the constraints which do not sat-
isfy any of these properties when items in a database are consid-
ered as an unordered set can satisfy these properties if items in a
database are considered as an ordered set. These properties are
known as the convertible anti-monotonic and convertible mono-
tonic properties. All the constraints or measures discussed in the
literature do not satisfy either of these two properties. Therefore,
identifying whether a constraint satisfies the convertible anti-monotonic
property, convertible monotonic property, or neither of these two
properties is a research problem in pattern mining.

To reduce the computational cost, we have investigated the na-
ture of relative support measure and found that it satisfies the con-
vertible anti-monotonic property if items are arranged in support
order. The correctness is based on Property 1 and Lemma 1 and is
shown in Theorem 1. Unlike the anti-monotonic property, the def-
inition of convertible anti-monotonic property varies with respect
to the measure(s) and the order in which items are to be arranged
to satisfy this property. Definition 2 defines the convertible anti-
monotonic property for the patterns discovered using the relative
support and support measures.

DEFINITION 2. (The convertible anti-monotonic property of
a frequent pattern.) If a sorted k-pattern, {i1, i2, · · · , ik}, k ≥ 2
and S(i1) ≥ S(i2) ≥ ·· · ≥ S(ik), is frequent, then all its non-empty
subsets containing the item having lowest support within it (i.e., ik)
will also be frequent. That is, if Rsup(X) ≥ minRsup and S(X) ≥
minsup, then ∀Y ⊆ X and ik ∈ Y , Rsup(Y)≥ minRsup and S(Y)≥
minsup.

EXAMPLE 2. In a transactional database, let xyz be a sorted
frequent 3-pattern such that S(x) ≥ S(y) ≥ S(z). Since xz ⊂ xyz, it
turns out that xz is a frequent pattern as Rsup(xz) ≥ Rsup(xyz) ≥
minRsup and S(xz) ≥ S(xyz) ≥ minsup. Similarly, yz is also a
frequent pattern because Rsup(yz) ≥ Rsup(xyz) ≥ minRsup and
S(yz) ≥ S(xyz) ≥ minsup). The 1-pattern z is also a frequent pat-
tern because S(z) ≥ S(xyz) ≥ minsup. Thus, in a sorted frequent
3-pattern xyz, all its non-empty subsets containing the item with
lowest frequency within it (i.e., z, xz and yz) are also frequent.
Please note that although xy ⊂ xyz, we cannot say Rsup(xyz) will
be less than or equal to Rsup(xy) because there exists a case where
S(xyz)
S(z)

̸≤ S(xy)
S(y)

.

Pei et al. [15] have also theoretically shown that the convertible
anti-monotonic property is same as the anti-monotonic property for
a pattern-growth algorithm. Therefore, initially, we have extended
the existing FP-growth [6] (or the CFG algorithm in [15]) to dis-
cover the complete set of frequent patterns using both support and
relative support measures. It involved the following two steps:

i. Compress the database into the FP-tree, which retains the
itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix
item (or suffix pattern), construct its conditional pattern base
consisting of the set of complete prefix paths in the FP-tree
co-occurring with the suffix item, then construct its condi-
tional FP-tree with all those items that have support and rela-
tive support no less than the respective minsup and minRsup
thresholds, and perform mining recursively on such a FP-
tree. The pattern-growth is achieved by the concatenation of

the suffix pattern with the interesting patterns generated from
the conditional FP-tree. The correctness of the algorithm is
shown in Lemma 3.

We have observed that such approach is not an effective way to
discover the complete set of frequent patterns as the every item in
the conditional pattern base of a suffix pattern has to go through two
checks, namely minsup and minRsup, to derive the corresponding
conditional FP-tree. To reduce these number of checks, we rede-
fine the frequent pattern using the notion of sorted set of items in
a pattern. Definition 3 provides the alternative definition of a fre-
quent pattern using the support and relative support measures. The
correctness is shown in Lemma 2.

DEFINITION 3. Given the user-specified minsup and minRsup
constraints, a sorted k-pattern X, S(i1) ≥ S(i2) ≥ ·· · ≥ S(ik), is
said to be frequent if

S(X) ≥ max(S(ik)×minRsup, minsup). (2)

EXAMPLE 3. Continuing with Example 1, the pattern ab is fre-
quent because

S(ab) ≥ minsup

and (3)
S(ab)

S(b) (= min(S(a),S(b)))
≥ minRsup

From Equation 3, it turns out that for the frequent pattern ab its
S(ab)≥ max(minRsup×S(b), minsup).

Using Definition 3 and the prior knowledge regarding the FP-tree
construction and mining technique, we introduce a novel concept
known as the conditional minimum support (Cminsup). It is defined
in Definition 4, and correctness is shown in Lemma 4.

DEFINITION 4. (The conditional minimum support of a suffix
pattern). Let i j be the initial suffix item (or 1-pattern) having sup-
port S(i j). Let minsup and minRsup be the user-defined minimum
support and minimum relative support thresholds. The conditional
minimum support of a suffix pattern α∋ i j, denoted as Cminsup(α),
is max(minRsup×S(i j), minsup).

Using the concept of conditional minimum support, we propose
a pattern-growth algorithm known as Relative Support Frequent
Pattern-growth (RSFP-growth), which is discussed in subsequent
subsection.

PROPERTY 1. (Apriori property.) If X and Y are the patterns
such that Y ⊂ X, then S(Y)≥ S(X).

LEMMA 1. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such
that S(i1)≥ S(i2)≥ ·· · ,S(ik). If Y ⊂ X and ik ∈Y , then Rsup(Y)≥
Rsup(X).

PROOF. The relative support of X , i.e.,
Rsup(X) =

S(X)
S(ik) (=min(S(i j)|∀i j∈X)

. The relative support of Y , i.e.,

Rsup(Y) = S(Y)
S(ik) (=min(S(i j)|∀i j∈X)

. Since Y ⊂ X , it turns out that

S(Y) ≥ S(X) (Property 1). Thus, Rsup(Y) ≥ Rsup(X) as S(Y)
S(ik)

≥
S(X)
S(ik)

.

THEOREM 1. If the relative support of pattern satisfies the user-
defined minRsup threshold, then all its non-subsets containing an
item having the lowest support within it also satisfy the minRsup
threshold.

PROOF. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such that
S(i1)≥ S(i2)≥ ·· · ≥ S(ik). If Rsup(X)≥ minRsup, then

S(X)

S(ik) (= min(S(i j)|∀i j ∈ X)
≥ minRsup. (4)

If Y is a pattern such that Y ⊂ X and ik ∈ Y , then based on Lemma
1 it turns out that Rsup(Y) ≥ Rsup(X) ≥ minRsup. Therefore, if
the relative support of a pattern satisfies the user-defined minRsup
threshold, then all its subsets containing an item with lowest sup-
port within it will also satisfy the minRsup threshold.

LEMMA 2. Let X = {i1, i2, · · · , ik}, 1≤ k ≤ n, be a pattern such
that S(i1) ≥ S(i2) ≥ ·· · ,S(ik). For the user-defined minsup and
minRsup constraints, the pattern X can be said frequent if and only
if S(X)≥ max(S(ik)×minRsup,minsup).

PROOF. From the definition of frequent pattern given in Equa-
tion 1, the pattern X can be said frequent if

S(X) ≥ minsup

and (5)
S(X)

min(S(i1),S(i2), · · · ,S(ik))
≥ minRsup.

Since min(S(i1),S(i2), · · · ,S(ik)) = S(ik), Equation 5 can be ex-
pressed as follows:

S(X) ≥ minsup

and (6)
S(X)

S(ik)
≥ minRsup.

Thus, X can be a frequent patten if and only if S(X)≥ max(S(ik)×
minRsup,minsup).

LEMMA 3. Let α be a suffix pattern in FP-tree. Let min item sup(α)
be the minimum support of an item in α, i.e., min item sup(α) =
min(S(i j)|∀i j ∈ α). Let B be α conditional pattern base, and β be
an item in B. Let S(β) be the support of β in the transactional
database. Let SB(β) be the conditional support of β, i.e., sup-
port of β in B, respectively. If α is frequent, SB(β) ≥ minsup and

SB(β)
min item sup(α)

≥ minRsup, then the pattern < α,β > is also a

frequent pattern.

PROOF. According to the definition of conditional pattern base
and FP-tree, each subset in B occurs under the condition of the
occurrence of α in the transactional database. If an item β ap-
pears in B for n times, it appearers with α in n times. Further,
min item sup(α) = min item sup(α∪β) as FP-tree is constructed
in support descending order of items. Thus, from the definition
of frequent pattern used in this model, if the SB(β) ≥ minsup and

SB(β)
min item sup(α)

≥ minRsup, the pattern < α,β > is therefore a

frequent pattern.

LEMMA 4. Let α be a suffix pattern in FP-tree that has resulted
from the initial suffix item i j . Let the Cminsup(α) be the Cminsup
of α. Let B be α conditional pattern base, and β be an item in B. Let
S(β) and SB(β) be the support of β in the transactional database
and in B, respectively. If α is frequent and SB(β) ≥ Cminsup, the
pattern < α,β > is therefore also frequent.

PROOF. From the mining procedure of FP-tree, the
min item sup(α) = S(i j). From Lemma 3, it turns out that if the

SB(β) ≥ minsup and
SB(β)
S(i j)

≥ minRsup, the pattern < α,β > is a

frequent pattern. In other words, < α,β > is a frequent pattern
if SB(β) ≥ max(minsup,- minRsup× S(i j)). From the definition
of conditional minimum support, it can be said that < α,β > is
a frequent if SB(β) ≥ Cminsup(α) (= max(minsup, minRsup×
S(i j))).

4.3 Relative Support Frequent Patterngrowth
The RSFP-growth algorithm uses pattern-growth technique and

the concept of conditional minimum support to discover frequent
patterns effectively using the relative support and support mea-
sures. Briefly, the RSFP-growth involves the following two steps:

i. Compress the database into the FP-tree, which retains the
itemset association information.

ii. Using each interesting item in the FP-tree as an initial suffix
item (or suffix pattern), measure the conditional minimum
support (Cminsup) and construct its conditional pattern base
consisting of the set of complete prefix paths in the FP-tree
co-occurring with the suffix item. Next, construct the con-
ditional FP-tree with all those items that have support no
less than the Cminsup threshold in the conditional pattern
base, and perform mining recursively on such a FP-tree us-
ing Cminsup. The pattern-growth is achieved by the con-
catenation of the suffix pattern with the interesting patterns
generated from the conditional FP-tree.

The working of RSFP-growth is shown in Algorithm 1 and de-
scribed as follows. The RSFP-growth algorithm accepts transac-
tional database, minsup and minRsup as its input parameters. An
FP-tree [6] is created using minsup threshold (line 1 in Algorithm
1). Next, the procedure RSFP-mine 1 is called to discovered fre-
quent patterns from FP-tree. The RSFP-mine 1 procedure selects
each item in the FP-tree as an initial suffix item (or pattern) and
calculates its Cminsup (line 2 in Procedure 2). Next, the condi-
tional pattern base and conditional FP-tree are generated for the
suffix item using Cminsup (lines 3 to 11 in Procedure 2)). Next,
the RSFP-mine k procedure is called to recursively mine frequent
patterns from the conditional FP-tree of suffix item.

We now explain the working of RSFP-growth algorithm using
the database shown in Table 1. Let the user-defined minsup and
minRsup thresholds be 3 and 0.65, respectively. Scan the database
and measure the support of items in a database. Prune the infre-
quent items (i.e., items having support less than minsup) and sort
the remaining items in the order of descending support. This re-
sulting set or list is denoted L. Thus, we have L = {{a : 11},{b :
9},{c : 9},{d : 6},{e : 5},{ f : 5}}.

An FP-tree is constructed as follows. First, create the root of the
tree, labeled with “null.” Scan database DB a second time. The
scan of the first transaction, “1:a,b,” which contains two items (a
and b in L order), leads to the construction of the first branch of the
tree with two nodes, ⟨a : 1⟩ and ⟨b : 1⟩, where a is linked as a child
of the root and b is linked to a. The second transaction, “2:a,b,e,”
would result in a branch where a is linked to root, b is linked to a
and e is linked to b. However, this branch would share a common
prefix, a and b, with the existing path for “1”. Therefore, we instead
increment the count of a and b by 1, and create a new node, ⟨e : 1⟩,
which is linked as the child of ⟨b : 2⟩. Similar process is repeated
for other transactions in the database. To facilitate tree traversal, an
item header table is built so that each item points to its occurrences
in the tree via a chain of node-links. The FP-tree obtained after
scanning all transactions of Table 1 is shown in Figure 1 with the
associated node-links.

{}null

a:11

b:8

e:2

c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

I S NL
a

b
c
d
e
f

11

9
9
6
5
5

Figure 1: FP-tree. The terms ‘I’, ‘S’ and ‘NL’ respectively denote
item, support and node-link.

Table 2: Mining frequent patterns.

SI Cmin- Conditional Conditional Frequent
sup Pattern Base FP-tree patterns

f 3 {{a,c : 1}, ⟨e : 3⟩ {e, f : 3}
{c,d : 1},
{e : 2},
{b,e : 1}}

e 3 {a,b : 2} - -
d 3 {c : 6} ⟨c : 6⟩ {c, d : 6}
c 3 {a : 3} - -
b 3 {ea : 8} ⟨a : 8⟩ {a, b : 8}

Mining frequent patterns using FP-tree of Figure 1 is shown in
Table 2 and detailed as follows. Consider the item f , which is the
last item in L, as a suffix item. The item f occurs in four branches
of the FP-tree of Figure 1. The Cminsup of ‘ f ’ is 3 (≃ max(3,5×
0.65). The paths containing f in FP-tree are ⟨a,c, f : 1⟩, ⟨c,d, f : 1⟩
⟨e, f : 2⟩ and ⟨b,e, f : 1⟩. Therefore, considering f as a suffix, its
corresponding four prefix paths are ⟨a,c : 1⟩, ⟨c,d : 1⟩, ⟨e : 2⟩ and
⟨b,e : 1⟩, which form its conditional pattern base. Its conditional
FP-tree contains only a single path, ⟨e : 3⟩. The items a, b, c and d
are not included in conditional FP-tree because their support of 1
is less than Cminsup. The concatenation of suffix pattern with the
item in conditional FP-tree generates the frequent pattern {e, f : 3}.
Similar process is repeated for the remaining other items in the FP-
tree to discover the complete set of frequent patterns.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of FP-growth, RSA

and RSFP-growth algorithms. We show that RSFP-growth is a bet-
ter algorithm to mine frequent patterns in different types of datasets.

The algorithms are written in GNU C++ and run with the Ubuntu
10.04 operating system on a 2.66 GHz machine with 1GB memory.
The runtime specifies the total execution time, i.e., CPU and I/Os.
The runtime is expressed in seconds. We pursued experiments on
synthetic (T10I4D100K) and real-world (BMS-WebView-1, Mush-
room and Kosarak) datasets. The datasets are available at Frequent
Itemset Mining repository [1]. The details of these datasets are
shown in Table 3.

5.1 Generation of Frequent Patterns
Figure 2(a), (b) and (c) respectively show the number of frequent

patterns generated in T 10I4D100k, BMS-WebView-1 and Mush-
room datasets with the basic model (denoted as BM) [2] and the

Table 3: Dataset Characteristics. The terms “Max.”, “Avg.” and “Tran.” are respectively used as the acronyms for “maximum”, “average”
and “transaction.“

Dataset Transa- Distinct Max. Avg. Type
ctions Items Trans. Trans.

Size Size
T 10I4D100k 100000 870 29 10.1 sparse
BMS-WebView-1 59602 4971 267 2.5 sparse
Mushroom 8124 119 23 23.0 dense
Kosarak 990002 41270 2498 8.1 sparse

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 4 6 8 10 12 14 16 18 20

F
re

q
u

e
n

t
p

a
tt

e
rn

s

α

BM

PM

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16 18 20

F
re

q
u

e
n

t
p

a
tt

e
rn

s

α
(a) T10I4D100K dataset (b) BMS-WebView-1 dataset (c) Mushroom dataset

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
re

q
u

e
n

t
It

e
m

s
e
ts

α

BM

PM

BM

PM

Figure 2: Frequent patterns generated in different databases at different minRsup values.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

R
u

n
ti

m
e
 (

s
)

α

FP-growth

RSFP-growth

RSA

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

R
u

n
ti

m
e
 (

s
)

α

FP-growth

RSFP-growth

RSA

(a) T10I4D100K dataset (b) BMS-WebView-1 dataset (c) Mushroom dataset

 0

 2

 4

 6

 8

 10

 12

 14

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
u

n
ti

m
e
 (

s
)

α

FP-growth

RSFP-growth
RSA

Figure 3: Runtime consumed by different algorithms in different databases at different minRsup values.

Algorithm 1 RSFP-growthAlgorithm (DB: database, minsup:
minimum support, minRsup: minimum relative support)

1: The FP-tree is constructed in the following steps:

i. Scan the transactional database D once. Collect F , the
set of frequent items, and their support counts. Sort F in
support descending order as L, the list of frequent items.

ii. Create the root of an FP-tree, and label it as “null.” For
each transaction t in D do the following. Select and sort
the frequent items in t according to the order of L. Let
the sorted frequent item list in t be [p|P], where p is
the first element and P is the remaining list. Call in-
sert tree([p|P],T), which is performed as follows. If
T has a child N such that N.item-name = p.item-name,
then increment N’s count by 1; else create a new node
N, and let its count be 1, its parent link be linked to T ,
and its node-link to the nodes with the same item-name
via the node-link structure. If P is non-empty, call in-
sert tree(P,N) recursively.

2: The FP-tree is mined by calling RSFP-mine 1(Tree,null).

proposed model (denoted as PM) of frequent patterns. The minsup
thresholds set in T 10I4D100k, BMS-WebView-1 and Mushroom are
0.1%, 0.1% and 25%, respectively. The minRsup threshold in each
database is set as 1

α and varied α from 1 to 20. The thick lines
shows the number of frequent patterns discovered by FP-growth
(or basic model). It can be observed that increase in α value has
increased the number of frequent patterns in the proposed model.
The reason is due to the decrease in minRsup threshold with the in-
crease in α value. If minRsup = 0 (or α is set too large), then both
the models will generate same number of frequent patterns.

5.2 Runtime Comparison of FPgrowth, RSA
and RSFPgrowth Algorithms

Figure 3(a), (b) and (c) respectively show the runtime taken by
FP-growth, RSA and FP-growth algorithms in T 10I4D100k, BMS-
WebView-1 and Mushroom datasets. The minsup thresholds set in
T 10I4D100k, BMS-WebView-1 and Mushroom are 0.1%, 0.1% and
25%, respectively. The minRsup threshold in each database is set
as 1

α and varied α from 1 to 20. To compare RSA and RFP-growth
algorithms, the s1 and s2 thresholds of RSA algorithm are respec-
tively set to 100% and minsup of the database. The following ob-
servations can be drawn from these figures.

• Since the number of frequent patterns getting generated with
FP-growth remained constant, the runtime of FP-growth has
resulted in a straight line.

• Increase in α value has increased the runtime of both RSA
and RSFP-growth algorithms. The reason is due to the in-
crease of number of frequent patterns with increase in α value.

• The RSFP-growth algorithm has taken relatively less run-
time than the FP-growth algorithm at lower α (i.e., higher
minRsup values). It is because of the less number of frequent
patterns discovered by RSFP-growth.

• At higher α (i.e., at low minRsup), the FP-growth and RSFP-
growth algorithms have discovered almost same the number
of frequent patterns. However, the runtime of RSFP-growth
is slightly more than the FP-growth. It is because of the addi-
tional runtime was spent by RSFP-growth algorithm in calcu-
lating the conditional minimum support for each suffix item.

Procedure 2 RSFP-mine 1(Tree,α); Constructing the conditional
pattern base for frequent item or length-1 suffix pattern.

1: for each ai in the header of Tree do
2: Calculate Cminsup = max(minsup,S(ai)×minRsup).
3: Generate pattern β = α ∪ ai with support = ai.support.

{The term support represent support count.} {S(β) = S(ai)
in α-projected database}

4: Get a set Iβ of items to be included in β-projected database.
5: for each item in Iβ, compute its support in β-projected

database;
6: for each b j ∈ Iβ do
7: if S(βb j)<Cminsup then
8: delete b j from Iβ; {pruning based on conditional mini-

mum support}
9: end if

10: end for
11: construct β-conditional FP-tree with items in Iβ Treeβ.
12: if Treeβ ̸= /0 then
13: RSFP-mine k(Treeβ,Cminsup,β);
14: end if
15: end for

Procedure 3 RSFP-mine k(Tree,Cminsup,α); Constructing the
conditional pattern base for length-k, k > 1, suffix pattern.

1: for each ai in the header of Tree do
2: Generate pattern β = α∪ai with support = ai.support.
3: Get a set Iβ of items to be included in β-projected database.
4: for each item in Iβ, compute its support in β-projected

database;
5: for each b j ∈ Iβ do
6: if S(βb j)<Cminsup then
7: delete b j from Iβ; {pruning based on minimum sup-

port}
8: end if
9: end for

10: construct β-conditional FP-tree with items in Iβ Treeβ.
11: if Treeβ ̸= /0 then
12: RSFP-mine k(Treeβ,Cminsup,β);
13: end if
14: end for

Please note that the runtime of RSFP-growth can be much
higher than FP-growth if conditional minimum support is not
used.

• At any α value (i.e., irrespective of minRsup threshold), RSFP-
growth is better than the RSA algorithm. It is because of two
reasons: first, the search space of RSA was more than the
search space of RSFP-growth algorithm; second, RSA suf-
fered from the same performance problems as the Apriori
algorithm.

5.3 Scalability Test on RSA and RSFPgrowth
Algorithms

In this experiment, we evaluate the scalability performance of
RSA and RSFP-growth algorithms on runtime requirements by vary-
ing the number of transactions in a database. We use real-world
kosarak dataset for the scalability experiment, since it is a huge
sparse dataset. We divided the dataset into five portions of 0.2
million transactions in each part. Then we investigated the per-
formance of RSA and RSFP-growth algorithms after accumulating

 0

 50

 100

 150

 200

 2 4 6 8 9.9

R
un

tim
e

(s
)

Dataset size (100K)

RSA
RSFP-growth

Figure 4: Scalability of RSA and RSFP-growth algorithms.

each portion with previous parts while performing correlated pat-
tern mining each time. We fixed minsup = 0.1% and minRsup =
0.5 (i.e., α = 2) for each experiment. The experimental results are
shown in Figure 4. The runtime in y-axes of Figure 4 specify the
total runtime consumed by RSA and RSFP-growth algorithms with
the increase of database size. It is clear from the graphs that as the
database size increases, overall runtime increases for both RSA and
RSFP-growth algorithms. However, the RSFP-growth algorithm
requires relatively less runtime than RSA algorithm. Therefore, it
can be observed from the scalability test that RSFP-growth can effi-
ciently mine frequent patterns over large datasets and distinct items
with considerable amount of runtime.

Overall, the RSFP-growth algorithm is runtime efficient and scal-
able than the RSA algorithm.

6. CONCLUSIONS AND FUTURE WORK
This paper has proposed an efficient and effective pattern-growth

algorithm to discover the complete set of frequent patterns using
relative support and support measures. The paper has also shown
that it is not computationally expensive to mine the patterns as the
relative support measure satisfies the convertible anti-monotonic
property if items within a pattern are arranged in support order. A
novel concept known as conditional minimum support has been in-
troduced and extended to FP-growth algorithm to discover frequent
patterns. By conducting experiments on various datasets, we have
shown that RSFP-growth outperforms RSA algorithm with respect
to both runtime and scalability.

The future works of the paper are as follows: first, data min-
ing techniques, such as classification and clustering, employ fre-
quent patterns discovered with single minsup constraint to improve
their performance. As a result, these techniques also suffer from
the rare item problem. It is interesting to investigate the usage of
frequent patterns discovered with the relative support measure to
address the problem. Second, the interestingness of frequent pat-
terns discovered using various measures, such as relative support
and all-confidence, needs to be investigated.

7. REFERENCES
[1] Frequent itemset mining repository.

http://fimi.cs.helsinki.fi/data/ .
[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association

rules between sets of items in large databases. In SIGMOD
’93: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pages 207–216, New
York, NY, USA, 1993. ACM.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the
20th International Conference on Very Large Data Bases,
VLDB ’94, pages 487–499, 1994.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: generalizing association rules to correlations.
SIGMOD Rec., 26(2):265–276, 1997.

[5] F. Gedikli and D. Jannach. Neighborhood-restricted mining
and weighted application of association rules for
recommenders. In Proceedings of the 11th international
conference on Web information systems engineering,
WISE’10, pages 157–165, Berlin, Heidelberg, 2010.
Springer-Verlag.

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[7] R. U. Kiran and P. K. Reddy. An improved frequent
pattern-growth approach to discover rare association rules. In
KDIR, pages 43–52, 2009.

[8] R. U. Kiran and P. K. Reddy. Improved approaches to mine
rare association rules in transactional databases. In IDAR
’10: Proceedings of the Fourth SIGMOD PhD Workshop on
Innovative Database Research, pages 19–24, New York, NY,
USA, 2010. ACM.

[9] R. U. Kiran and P. K. Reddy. Mining rare association rules in
the datasets with widely varying items’ frequencies. In
DASFAA (1), pages 49–62, 2010.

[10] R. U. Kiran and P. K. Reddy. Novel techniques to reduce
search space in multiple minimum supports-based frequent
pattern mining algorithms. In EDBT, pages 11–20, 2011.

[11] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for
the detection of oil spills in satellite radar images. Mach.
Learn., 30(2-3):195–215, Feb. 1998.

[12] B. Liu, W. Hsu, and Y. Ma. Mining association rules with
multiple minimum supports. In KDD ’99: Proceedings of the
fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 337–341, New York, NY,
USA, 1999. ACM.

[13] E. R. Omiecinski. Alternative interest measures for mining
associations in databases. IEEE Trans. on Knowl. and Data
Eng., 15(1):57–69, 2003.

[14] J. Pei and J. Han. Constrained frequent pattern mining: a
pattern-growth view. SIGKDD Explor. Newsl., 4(1):31–39,
2002.

[15] J. Pei, J. Han, and L. V. Lakshmanan. Pushing convertible
constraints in frequent itemset mining. Data Mining and
Knowledge Discovery, 8:227–252, 2004.
10.1023/B:DAMI.0000023674.74932.4c.

[16] C. S. K. Selvi and A. Tamilarasi. Mining association rules
with dynamic and collective support thresholds.
International Journal on Open Problems Computational
Mathematics, 2(3):427–438, 2009.

[17] A. Surana, R. U. Kiran, and P. K. Reddy. Selecting a right
interestingness measure for rare association rules. In
COMAD, page 115, 2010.

[18] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD
’02, pages 32–41, New York, NY, USA, 2002. ACM.

[19] G. M. Weiss. Mining with rarity: a unifying framework.
SIGKDD Explor. Newsl., 6(1):7–19, 2004.

[20] T. Wu, Y. Chen, and J. Han. Re-examination of
interestingness measures in pattern mining: a unified
framework. Data Min. Knowl. Discov., 21(3):371–397, 2010.

[21] H. Yun, D. Ha, B. Hwang, and K. H. Ryu. Mining
association rules on significant rare data using relative
support. J. Syst. Softw., 67:181–191, September 2003.

