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Abstract. Correlated patterns are an important class of regularities
that exist in a transactional database. CoMine uses pattern-growth tech-
nique to discover the complete set of correlated patterns that satisfy
the user-defined minimum support and minimum all-confidence con-
straints. The technique involves compacting the database into FP-tree,
and mining it recursively by building conditional pattern bases (CPB)
for each item (or suffix pattern) in FP-tree. The CPB of the suffix pat-
tern in CoMine represents the set of complete prefix paths in FP-tree
co-occurring with itself. Thus, CoMine implicitly assumes that the suf-
fix pattern can concatenate with all items in its prefix paths to generate
correlated patterns of higher-order. It has been observed that such an as-
sumption can cause performance problems in CoMine. This paper makes
an effort to improve the performance of CoMine by introducing a novel
concept known as items’ support intervals. The concept says that an item
in FP-tree can generate correlated patterns of higher-order by concate-
nating with only those items in its prefix-paths that have supports within
a specific interval. We call the proposed algorithm as CoMine++. Exper-
imental results on various datasets show that CoMine++ can discover
high correlated patterns effectively.

Keywords: Data mining, Knowledge Discovery in Databases, Corre-
lated patterns and Pattern-growth technique.

1 Introduction

Mining frequent patterns [2] from transactional databases has been actively and
widely studied in data mining [3, 5]. A major obstacle for the popular adoption
of frequent pattern mining in real-world applications is its failure to capture the
true correlation relationship among data objects [4]. To confront the obstacle,
researchers have made efforts to discover correlated patterns using alternative
measures [4, 9, 11, 12]. Although there exists no universally accepted best mea-
sure to judge the interestingness of a pattern, all-confidence [9] is emerging as
a measure that can disclose true correlation relationships among data objects
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[13]. An interesting application of correlated patterns is the activity recognition
for people with dementia [10]. The model of frequent and correlated patterns is
as follows [8].

Let I = {i1, i2, · · · , in} be a set of items, and DB be a database that consists
of a set of transactions. Each transaction T contains a set of items such that
T ⊆ I. Each transaction is associated with an identifier, called TID. Let X ⊆ I
be a set of items, referred as an itemset or a pattern. A pattern that contains
k items is a k-pattern. A transaction T is said to contain X if and only if
X ⊆ T . The support of a pattern X in DB, denoted as S(X), is the number
of transactions in DB containing X. The pattern X is frequent if it occurs no
less frequent than the user-defined minimum support (minSup) threshold, i.e.,
S(X) ≥ minSup. The all-confidence of a pattern X, denoted as all-conf(X),
can be expressed as the ratio of its support to the maximum support of an

item within it. That is, all-conf(X) =
S(X)

max{S(ij)|∀ ij ∈ X}
. A pattern X is

said to be all-confident or associated or correlated if S(X) ≥ minSup and
all -conf (X ) ≥ minAllConf , where minAllConf is the user-defined minimum
all-confidence threshold.

Example 1. Consider the transactional database of 20 transactions shown in
Table 1. The set of items I = {a, b, c, d, e, f, g, h}. The set of items a and b,
i.e., {a, b} is a pattern. It is a 2-pattern. For simplicity, we write this pattern as
“ab”. It occurs in 8 transactions (tids of 1, 2, 7, 10, 11, 13, 16 and 19). Therefore,
the support of “ab,” i.e., S(ab) = 8. If the user-specified minSup = 3, then
“ab” is a frequent pattern because S(ab) ≥ minSup. The all -confidence of “ab”,
i.e., all -conf (ab) = 8

max(11,9) = 0.72. If the user-specified minAllConf = 0.63,

then “ab” is a correlated pattern because S(ab) ≥ minSup and all -conf (ab) ≥
minAllConf .

Table 1. Transactional database.

TID ITEMS TID ITEMS TID ITEMS TID ITEMS

1 a, b 6 a, c 11 a, b 16 a, b
2 a, b, e 7 a, b 12 a, c, f 17 c, d
3 c, d 8 e, f 13 a, b, e 18 a, c
4 e, f 9 c, d, g 14 b, e, f, g 19 a, b, h
5 c, d 10 a, b 15 c, d 20 c, d, f

The problem statement of mining correlated patterns is as follows. Given
a transactional database (DB), and user-defined minimum support (minSup)
and minimum all-confidence (minAllConf) thresholds, discover the complete
set of correlated patterns in DB that satisfy both minSup and minAllConf
thresholds.

CoMine [8] extends FP-growth [6] to discover the complete set of correlated
patterns in a database. In particular, CoMine uses pattern-growth technique to
discover the patterns. The technique involves the following steps.
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i. The given database is compressed into a tree known as frequent pattern-tree
(FP-tree). The FP-tree retains the pattern association information.

ii. Using each item in the FP-tree as an initial suffix item (or pattern)1, CoMine
constructs its Conditional Pattern Base (CPB) consisting of the set of com-
plete prefix paths in the FP-tree co-occurring with the suffix item, then
construct its conditional FP-tree and perform mining recursively on such
a tree. The pattern-growth is achieved by the concatenation of the suffix
pattern with the frequent patterns generated from the conditional FP-tree.

The construction of initial CPB for the suffix item in FP-tree is a key step
because it reduces the search space effectively. Since the CPB of a suffix pattern
represents the set of complete prefix paths in the FP-tree co-occurring with
itself, the CoMine implicitly assumes that the suffix item can concatenate with
all items in its prefix paths to form correlated patterns of higher-order. This
assumption causes performance problems in CoMine. The reason is that all-
confidence facilitates the suffix item to generate correlated patterns of higher-
order by combining with only those items in its prefix-paths that have supports
within a specific interval range.

This paper makes an effort to discover correlated patterns effectively. The
key contributions of this paper are as follows:

i. This paper introduces a novel concept known as items’ support intervals. It
states that an item can combine with only those items having supports within
a specific interval to form correlated (or interesting) patterns of higher-order.
A methodology to find items’ support intervals for the correlated pattern
model has also been discussed in the paper.

ii. An improved CoMine, called CoMine++, has also been presented in the
paper using items’ support intervals. Unlike CoMine, the CPB of the suffix
item in CoMine++ represents the set of partial prefix-paths (i.e., involving
only those items that have support within the support interval of suffix item)
in FP-tree co-occurring with itself.

iii. Using the prior knowledge regarding the construction and mining of FP-tree,
CoMine++ uses a novel pruning technique to construct the CPB of the suffix
item effectively.

iv. Experimental results on both synthetic and real-world datasets show that
mining high correlated patterns with CoMine++ is time and memory effi-
cient, and highly scalable as well.

The rest of this paper is organized as follows. Section 2 discusses previ-
ous works on mining correlated patterns. Section 3 describes the working of
CoMine. Section 4 discusses the performance problems of CoMine and introduces
CoMine++ to mine correlated patterns. Experimental evaluations of CoMine
and CoMine++ are reported in Section 5. Finally, Section 6 concludes with
future research directions.

1 In this paper, the suffix pattern with one item has been referred as suffix item for
simplicity purpose.
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2 Related Work

Since the introduction of frequent patterns in [2], numerous algorithms have been
discussed in the literature to mine frequent patterns from transactional databases
[5]. FP-growth [6] is a popular algorithm to discover frequent patterns. It uses
pattern-growth technique (discussed in Section 1) to discover frequent patterns.
The initial CPB of a suffix item in FP-growth represents the set of complete
prefix paths in the FP-tree co-occurring with itself. Such a CPB for the suffix
item is valid for FP-growth. It is because every suffix item (or pattern) in FP-
tree can concatenate with all other items in its prefix-paths to form frequent
patterns of higher-order.

Brin et al. [4] have introduced correlated pattern mining using lift and χ2 as
the interestingness measures. Lee et al. [8] have shown that correlated patterns
can be effectively discovered with all-confidence measure as it satisfies both
null-invariance and downward closure properties. The null-invariance property
facilitates the measure to disclose genuine correlation relationships without being
influenced by the object co-absence in a database. The downward closure property
facilitates in the reduction of search space as all non-empty subsets of a correlated
pattern must also be correlated. An FP-growth-like algorithm known as CoMine
was proposed in [8] to discover the patterns using both all-confidence and support
values. The performance issues of CoMine and the techniques to improve the
same are discussed in later parts of this paper.

CCMine is a variant of CoMine to discover confidence-closed correlated pat-
terns. Please note that CCMine also suffers from the same performance problems
as the CoMine. However, this paper focuses only on CoMine algorithm.

Kim et al. [7] have made an effort to discover top-k correlated patterns using
the measures that satisfy null-invariance property. Since some of those measures
(e.g. cosine) do not satisfy anti-monotonic property, an apriori-like algorithm,
NICOMINER, has been proposed by introducing new pruning techniques. Al-
though their work is closely related to our work, their pruning techniques can-
not be directly extendable to discover correlated patterns using support and
all-confidence measures. The reason is that their work have not discussed any
methodology to determine the support intervals for items if correlated pat-
terns are defined using both support and all-confidence measures. Moreover,
NICOMINER suffers from the same performance problems as the Apriori algo-
rithm, which includes the generation of huge number of candidate patterns and
multiple scans on the dataset.

CoMine performs better than NICOMINER as it is specifically designed only
for support and all-confidence measures using downward closure property. In the
next section, we describe the working of CoMine.

3 Working of CoMine

The CoMine uses pattern-growth technique to discover the complete set of cor-
related patterns in a database. The technique involves: (i) compressing the
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database into FP-tree and (ii) recursive mining of FP-tree to discover the com-
plete set of correlated patterns.

The FP-tree is a compact data structure for storing all necessary information
about frequent patterns in a database. Every branch of the FP-tree represents
a pattern, and the nodes along the branch are ordered decreasingly by the fre-
quency of the corresponding item, with leaves representing the least frequent
items. Compression is achieved by building the tree in such a way that overlap-
ping patterns are represented by sharing pre-fixes of the corresponding branches.
It has a header table containing two fields: item name (I), and their support
count (S). A row in the header table also contains the head of a list that links
all the corresponding nodes of the FP-tree.

The FP-tree is constructed with only two scans on the database. In the
first scan, all frequent items are found and sorted in support descending order.
Using the sorted order, the second scan constructs the FP-tree which stores all
frequency information of the original dataset. Mining the database then becomes
mining the FP-tree. For the user-defined minSup = 3 and minAllConf = 0.63,
the set of sorted frequent items found after first scan on the database of Table 1
are {{a : 11}, {b : 9}, {c : 9}, {d : 6}, {e : 5}, {f : 5}}. Figure 1 shows the FP-tree
constructed after performing the second scan on the database.

{}null

a:11

b:8

e:2

c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

I S NL
a

b
c
d
e
f

11

9
9
6
5
5

Fig. 1. FP-tree. The terms ‘I’, ‘S’ and ‘NL’ respectively denote item, support and
node-link.

Table 2. Mining correlated patterns with CoMine.

Suffix Conditional Conditional Correlated
item Pattern Base FP-tree Patterns

f {{ac : 1}, {cd : 1}, {e : 2}, ⟨e : 3⟩ {ef : 3}
{be : 1}}

e {ab : 2} - -

d {c : 6} ⟨c : 6⟩ {cd : 6}
c {a : 3} - -

b {ea : 8} ⟨a : 8⟩ {ab : 8}

Mining correlated patterns using FP-tree of Figure 1 is shown in Table 2
and detailed as follows. Consider the item f , which is the last item in FP-tree,
as a suffix item. The item f occurs in four branches of the FP-tree of Figure
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1. The paths formed by these branches are ⟨acf : 1⟩, ⟨cdf : 1⟩ ⟨ef : 2⟩ and
⟨bef : 1⟩. Therefore, considering f as a suffix, its corresponding four prefix paths
are ⟨ac : 1⟩, ⟨cd : 1⟩, ⟨e : 2⟩ and ⟨be : 1⟩, which form its conditional pattern
base. Its conditional FP-tree contains only a single path, ⟨e : 3⟩. The items a,
b, c and d are not included in Conditional FP-tree because their support of 1
is less than minSup (also, the all-confidence values of af , bf , cf and df are
less than minAllConf). The concatenation of suffix pattern with conditional
FP-tree generates the correlated pattern {ef : 3}. Similar process is repeated for
other items in the FP-tree to discover the complete set of correlated patterns.

In the next section, we discuss the performance issues of CoMine and propose
techniques to improve its performance.

4 Proposed Algorithm

In this section, we first introduce the concept of items’ support intervals. This
term simplifies the understanding of performance issue in CoMine, which is dis-
cussed subsequently. Next, we propose the basic idea of incorporating the pro-
posed concept in CoMine to improve its performance. We call the improved
CoMine as CoMine++.

4.1 Items’ Support Intervals

The concept of items’ support intervals say that every item can generate inter-
esting patterns by combining with only those items having supports within a
specific interval. Finding the support interval for each item in the database is
non-trivial because it depends upon the following two factors: (i) the support
of an item and (ii) the user-defined threshold values’ for the measures. In this
paper, we make an effort to identify the items’ support interval for correlated
pattern model defined using support and all-confidence measures.

For the user-defined minAllConf and minSup thresholds, the support inter-

val of an item ij ∈ I is

max

(
S(ij)×minAllConf,

minSup

)
,max

 S(ij)

minAllConf
,

minSup

.
The correctness is shown in Theorem 1, and is based on Properties 1 and 2 and
Lemmas 1 and 2.

Property 1. If X and Y are two patterns such that X ⊂ Y , then S(X) ≥ S(Y ).

Property 2. The maximum support a pattern X can have is min(S(ij)|∀ij ∈ X).
Therefore, the maximum all-confidence a pattern X can have is
min(S(ij)|∀ij ∈ X)

max(S(ij)|∀ij ∈ X)
.

Lemma 1. Let minAllConf be the user-defined minimum all-confidence thresh-
old value. The lower limit of a support interval for an item iq ∈ I having support
S(iq) is S(iq)×minAllConf .
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Proof. Let ‘ip’ and ‘iq’ be the two items (or 1-patterns) having supports such that
S(ip) < S(iq). The maximum all-confidence the pattern ‘ipiq’ (={ip, iq}) can

have is
S(ip)
S(iq)

(Property 2). If S(iq)×minAllConf > S(ip), then minAllConf >
S(ip)
S(iq)

(= all-conf(ipiq)). If S(iq)×minAllConf = S(ip), then minAllConf =
S(ip)
S(iq)

(= all-conf(ipiq)). Therefore, the lower limit of a support interval for an

item iq ∈ I with support S(iq) is S(iq)×minAllConf .

Lemma 2. Let minAllConf be the user-defined minimum all-confidence thresh-
old value. The upper limit of a support interval for an item iq ∈ I having support

S(iq) is
S(iq)

minAllConf
.

Proof. Let ‘iq’ and ‘ir’ be the two items (or 1-patterns) having supports such that
S(iq) < S(ir). Using Property 2, the maximum all-confidence for the pattern

‘iqir’ (={iq, ir}) can be
S(iq)
S(ir)

. If S(ir) >
S(iq)

minAllConf
, then minAllConf >

S(iq)

S(ir)
(= all-conf(iqir)). Therefore, the upper limit of a support interval for an

item iq ∈ I is
S(iq)

minAllConf
.

Theorem 1. For the user-defined minSup and minAllConf thresholds, the
support interval for an iq ∈ I with support S(iq) ismax

(
S(iq)×minAllConf,

minSup

)
, max

 S(iq)

minAllConf
,

minSup

.
Proof. The support interval for an item iq ∈ I for support measure is [minSup, ∞).
In other words, items having support no less than minSup can combine with
one another in all possible ways to generate frequent patterns of higher-order.
Using Lemmas 1 and 2, the support interval of an item iq ∈ I for all-confidence

measure is

[
S(iq)×minAllConf,

S(iq)

minAllConf

]
. Therefore, the support inter-

val for an item iq ∈ I for both support and all-confidence measures ismax

(
S(iq)×minAllConf,

minSup

)
, max

 S(iq)

minAllConf
,

minSup

.
Example 2. The support of f in Table 1 is 5. If minAllConf = 0.63 and
minSup = 3, then f can generate correlated patterns by combining with only
those items having frequencies in the range of [3, 8] (= [max(5×0.63, 3),max( 5

0.63 , 3)]).

4.2 Performance Problems in CoMine

Since the initial CPB of a suffix item constitutes of the set of complete prefix
paths in the FP-tree co-occurring with itself, CoMine implicitly assumes that
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the suffix item can generate correlated patterns of higher-order by concatenating
with all items in its prefix path. However, this is not the seldom case because
all-confidence facilitates the suffix item to concatenate with only those items in
its prefix paths that have support within a specific interval range to generate the
patterns. As a result, CoMine suffers from the performance problems pertaining
to both memory and runtime requirements.

Example 3. Since the CPB of f contains a, b and c, CoMine implicitly assumes
that f can concatenate with a, b and c items to generate correlated patterns.
However, any correlated pattern containing f can never have the items, a, b and
c. It is because their supports do not lie within the support interval of f .

4.3 Basic Idea: Pruning Technique

Using the concept of items’ support intervals, the complete set of correlated
patterns can be discovered from FP-tree by building the CPB of the initial
suffix item with the set of partial prefix paths involving only those items that
have supports within its support interval.

To construct such CPB for a suffix item, one can assume that the support of
every item present in the prefix path of the suffix item needs to tested, which is
same as constructing CPB with complete set of prefix paths (as in CoMine). This
paper argues that such a process is not necessary. It is because of the following
pruning technique. If an item at level k in the prefix path of the suffix item fails
to have its support within the support interval of corresponding suffix item, then
all items lying in between the root node and the failed item (i.e., items lying in
levels 1 to k−1) will also fail to have their supports within the support interval of
corresponding suffix item. The correctness is shown in Lemma 3 and illustrated
in Example 4.

Lemma 3. Let ⟨i1, i2, · · · , ik, ik+1⟩, 1 ≤ k < n, be a branch in FP-tree such
that S(i1) ≥ S(i2) ≥ · · · ≥ S(ik) ≥ S(ik+1). If all-conf(ikik+1) < minAllConf ,
then all-conf(ijik+1) < minAllConf , where 1 ≤ j < k.

Proof. The prefix path for the suffix item ik+1 is ⟨i1, i2, · · · , ik⟩. If

all-conf(ik, ik+1) < minAllConf , then S(ik) >
S(ik+1)

minAllConf
(using Lemma

2). Since FP-tree is constructed in support descending order of items, it turns

out that S(ij) ≥ S(ik) >
S(ik+1)

minAllConf
, where 1 ≤ j < k. In other words,

all-conf(ijik+1) < minAllConf , 1 ≤ j < k.

Example 4. A prefix path for the suffix item f is ⟨a, c : 1⟩. The support of c

does not lie in the support interval of f , i.e., S(c) >
S(f)

minAllConf
. As a result,

it can be stated without testing that the support of a will not lie in the support

interval of f , i.e., S(a) >
S(f)

minAllConf
.
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4.4 CoMine++ Algorithm

The proposed CoMine++ involves two steps: (i) Construction of FP-tree and
(ii) Mining FP-tree to discover the complete set of correlated patterns. The first
step is same as in CoMine. However, the second step is different, and is as fol-
lows. Considering each frequent item in the FP-tree as a suffix item, CoMine++
constructs its CPB with the set of partial prefix paths containing only those
items having supports within its support interval. Next, compress the CPB by
performing tree-merging operations, which involves merging the common nodes
in the CPB by summing up their respective supports. Next, conditional FP-tree
is built usingminSup andminAllConf constrains. The conditional FP-tree con-
tains only those items that have generated correlated patterns by concatenating
with the suffix item. Thus, subsequent recursive mining on conditional FP-tree
involves constructing CPBs with the set of complete prefix paths co-occurring
with the suffix pattern. The pattern-growth is achieved by the concatenation
of the suffix pattern with the correlated patterns generated from a conditional
FP-tree.

The working of CoMine++ is shown in Algorithm 1, Procedure 2 and Proce-
dure 3. The input parameters to CoMine++ are transactional database and the
user-defined minSup and minAllConf thresholds. The Algorithm 1 constructs
FP-tree using minSup threshold and calls Procedure 2 for mining correlated
patterns from FP-tree. Procedure 2 builds CPB for the suffix item with the set
of partial prefix paths involving only those items having supports within its sup-
port interval, performs tree-merging operation to compress the CPB, constructs
conditional FP-tree for the suffix item and calls Procedure 3 for recursive mining
of conditional FP-tree of the suffix item. The working of Procedure 3 resembles
Procedure 2. However, the variation is that Procedure 3 builds the CPB of the
suffix pattern with the complete set of prefix paths.

We now explain the working of CoMine++ using the database shown in Table
1. Let minSup = 3 and minAllConf = 0.63. First, FP-tree shown in Figure 1
is created using minSup = 3. Next, mining correlated patterns using FP-tree is
shown in Table 3 and detailed as follows. Consider the item f as a suffix item.
The support interval of f is [3, 7]. The item f occurs in four branches of the
FP-tree of Figure 1. The paths formed by these branches are ⟨acf : 1⟩, ⟨cdf : 1⟩
⟨ef : 2⟩ and ⟨bef : 1⟩ (see Figure 2(a)). Therefore, considering f as a suffix, its
corresponding four prefix paths are ⟨ac : 1⟩, ⟨cd : 1⟩, ⟨e : 2⟩ and ⟨be : 1⟩ (see
Figure 2(b)). In the prefix path ⟨ac : 1⟩, the item c fails the test (i.e., its support
does not lie in the support interval of the suffix item f). Using the pruning
technique discussed in the basic idea, we neglect testing of a in the prefix path
(line 6 in Procedure 2) and directly select another prefix path for testing. In the
prefix path ⟨cd : 1⟩, the item d satisfies the test. As a result, the item c is tested
and is found that it fails the test. Similar process is repeated for the other prefix
paths of f . Finally, we neglect the items a, b and c and construct CPB of f with
only the items d and e, resulting in three branches ⟨e : 1⟩, ⟨d : 1⟩ and ⟨e : 2⟩
(see Figure 2(c)). Since two branches in the CPB of f contain a common item e,
tree-merging operation (line 8 in Procedure 2) is performed on the CPB of f to
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Algorithm 1 CoMine++

INPUT: Transactional database DB, minimum support (minSup) and minimum all-
confidence (minAllConf)
OUTPUT: Complete set of correlated patterns.

1: The FP-tree is constructed in the following steps:

i. Scan the transactional database D once. Collect F , the set of frequent items,
and their support counts. Sort F in support descending order as L, the list of
frequent items.

ii. Create the root of an FP-tree, and label it as “null.” For each transaction t in D
do the following. Select and sort the frequent items in t according to the order
of L. Let the sorted frequent item list in t be [p|P ], where p is the first element
and P is the remaining list. Call insert tree([p|P ], T ), which is performed
as follows. If T has a child N such that N.item-name = p.item-name, then
increment N ’s count by 1; else create a new node N , and let its count be 1, its
parent link be linked to T , and its node-link to the nodes with the same item-
name via the node-link structure. If P is non-empty, call insert tree(P,N)
recursively.

2: The FP-tree is mined by calling Co-mine 1(Tree, null).

create two branches ⟨d : 1⟩ and ⟨e : 3⟩ (see Figure 2(d)). The conditional FP-tree
of f contains only a single path, ⟨e : 3⟩, d is not included because its support
of 1 is less than minSup. The concatenation of suffix pattern with conditional
FP-tree generates the correlated pattern {ef : 3}. Similar process is repeated for
other items in the FP-tree to discover the complete set of correlated patterns.

{}null

a:11 c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

{}null

a:1 c:1

d:1

e:2b:1

e:1c:1

{}null

e:2d:1

{}null

e:3

(a) (b) (c) (d)

e:1 d:1

Fig. 2. Generating conditional pattern base of f . (a) Branches of FP-tree containing
f , (b) prefix paths of f , (c) partial prefix paths of f and (d) Final conditional pattern
base of f after merging its partial prefix paths.

5 Experimental Results

In this section, we evaluate the perform of CoMine and CoMine++ algorithms.
We show that CoMine++ is a better algorithm to mine highly correlated pat-
terns in different types of datasets. The algorithms are written in GNU C++ and
run with the Ubuntu 10.04 operating system on a 2.66 GHz machine with 1GB
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Procedure 2 Co-mine 1(Tree, α); Constructing the conditional pattern base
for frequent item or length-1 suffix pattern.

1: for each ai in the header of Tree do

2: Generate pattern β = α ∪ ai with all-conf =
S(β)

max item sup(β)
. {S(β) = S(ai)

in α-projected database}
3: Construct β-projected database as follows.
4: for each prefix path PPk of ai do
5: Starting from the last item in PPk and moving up the prefix path, test whether

their support is no less than max( S(ai)
minAllConf

,minSup).
6: Skip testing other items in PPk if an item at level l in PPk fails the test. It

is because other items lying in between the root node and the failed item in
PPk will fail the test.

7: Create a temporary branch involving only those items in PPk that satisfy the
test. Preserve the node counts of the items and their order in the temporary
branch.

8: Add the temporary branch in β-projected database. This step is similar to
insert tree function in Procedure 1. Reduce the size of β-projected database
by merging the common nodes and summing up their node counts.

9: end for{CoMine do not perform the above steps (i.e., lines from 4 to 9). It
simply constructs β-projected database with every item in a prefix path of β.}

10: Let Iβ be the set of items in β-projected database.
11: For each item in Iβ , compute its count in β-projected database;
12: for each bj ∈ Iβ do
13: if S(β ∪ bj) < minSup then
14: delete bj from Iβ ; {pruning based on minimum support}
15: end if
16: if all-conf(β ∪ bj) < minAllConf then
17: delete bj from Iβ ; {pruning based on minimum all-confidence}
18: end if
19: end for
20: construct β-conditional FP-tree with items in Iβ Treeβ .
21: if Treeβ ̸= ∅ then
22: Co-mine k(Treeβ , β);
23: end if
24: end for

Table 3. Mining correlated patterns with CoMine++.

Item Conditional Conditional Correlated
Pattern Base FP-tree Patterns

f {{d : 1}, {e : 3}} ⟨e : 3⟩ {ef : 3}
e - - -

d {c : 6} ⟨c : 6⟩ {cd : 6}
c {a : 3} - -

b {a : 8} ⟨a : 8⟩ {ab : 8}
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Procedure 3 Co-mine k(Tree, α); Constructing the conditional pattern base
for length-k suffix pattern, where k ≥ 2.

1: for each ai in the header of Tree do

2: Generate pattern β = α ∪ ai with all-conf =
S(β)

max item sup(β)
. {S(β) = S(ai)

in α-projected database}
3: Get a set Iβ of items to be included in β-projected database. {No need to check

whether S(ij) ≤
min item sup(β)

minAllConf
}

4: for each item in Iβ , compute its count in β-projected database;
5: for each bj ∈ Iβ do
6: if S(β ∪ bj) < minSup then
7: delete bj from Iβ ; {pruning based on minimum support}
8: end if
9: if all-conf(β ∪ bj) < minAllConf then
10: delete bj from Iβ ; {pruning based on minimum all-confidence}
11: end if
12: end for
13: construct β-conditional FP-tree with items in Iβ Treeβ .
14: if Treeβ ̸= ∅ then
15: Co-mine k(Treeβ , β);
16: end if
17: end for

memory. The runtime is expressed in seconds and specifies the total execution
time, i.e., CPU and I/Os. We pursued experiments on synthetic (T10I4D100K)
and real-world (BMS-WebView-1,BMS-WebView-2, Mushroom and Kosarak)
datasets. The datasets are available at Frequent Itemset Mining repository [1].
The details of these datasets are shown in Table 4.

Please note that we are not comparing the proposed CoMine++ with the
NICOMINER [7]. It is because of two reasons: (i) CoMine performs better than
the NICOMINER as the latter suffers from the same performance problems as
the Apriori and (ii) NICOMINER is meant to discover top-k correlated patterns
and not the complete set of correlated patterns in a database.

Table 4. Dataset Characteristics. The terms “Max.”, “Avg.” and “Tran.” are respec-
tively used as the acronyms for “maximum”, “average” and “transaction.“

Dataset Transa- Distinct Max. Avg. Type
ctions Items Trans. Trans.

Size Size

T10I4D100k 100000 870 29 10.102 sparse

BMS-WebView-1 59602 4971 267 2.5 sparse

BMS-WebView-2 77512 33401 161 2 sparse

Mushroom 8124 119 23 23.0 dense

Kosarak 990002 41270 2498 8.1 sparse
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5.1 Memory Tests on CoMine and CoMine++ Algorithms

Figure 3 (a), (b), (c) and (d) respectively show the number of nodes gener-
ated by CoMine and CoMine++ algorithms at different minAllConf values in
T10I4D100k, BMS-WebView-1, BMS-WebView-2 and Mushroom datasets, re-
spectively. TheminSup used in these datasets are 0.1%, 0.1%, 0.1% and 25%, re-
spectively. CoMine++ generates relatively fewer numbers of nodes than CoMine
with the increase in minAllConf value. It is because of the decrease in the width
of items’ support intervals with the increase in minAllConf value.

Since the memory requirement of an algorithm depends on the number of
nodes being generated by an algorithm, it turns out that CoMine++ is more
memory efficient than CoMine.
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Fig. 3. Number of nodes generated in
CoMine and CoMine++ algorithms.
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Fig. 4. Runtime (in seconds) comparison of
CoMine and CoMine++ algorithms.

5.2 Runtime Tests on CoMine and CoMine++ Algorithms

Figure 4 (a), (b), (c) and (d) respectively show the runtime taken by CoMine
and CoMine++ algorithms at different minAllConf values in T10I4D100k,
BMS-WebView-1, BMS-WebView-2 and Mushroom datasets, respectively. The
minSup used in these datasets are 0.1%, 0.1%, 0.1% and 25%, respectively. The
following three observations can be drawn from these graphs.

– Increase in minAllConf has decreased the runtime in both CoMine and
CoMine++ algorithms. It is because of decrease in the number of correlated
patterns with the increase in minAllConf value.

– CoMine++ has outperformed CoMine at higher minAllConf values. It is
because of the decrease in items’ support interval which resulted in the con-
struction of the initial CPB of a suffix item timely.
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– CoMine has performed better than CoMine++ at lowminAllConf values. It
is because of increase in items’ support interval which resulted in CoMine++
to construct the CPB of the suffix item with almost all items in its prefix
paths.

5.3 Scalability Test on CoMine and CoMine++ Algorithms

In this experiment, we evaluate the scalability performance of CoMine and
CoMine++ algorithms on memory and runtime requirements by varying the
number of transactions in a database. We use real-world kosarak dataset for the
scalability experiment, since it is a huge sparse dataset. We divided the dataset
into ten portions of 0.1 million transactions in each part. Then we investigated
the performance of CoMine and CoMine++ algorithms after accumulating each
portion with previous parts while performing correlated pattern mining each
time. We fixed minSup = 0.1% and minAllConf = 0.5 for each experiment.
The experimental results are shown in Figure 5. The memory (represented in
number of nodes) and time in y-axes of the left and right graphs in Figure 5
respectively specify the required memory and total runtime with the increase
of database size. It is clear from the graphs that as the database size increases,
overall tree construction and mining time, and required memory increase. How-
ever, CoMine++ requires relatively less memory (nearly half of the memory
requirements of CoMine) and runtime with respect to the database size. There-
fore, it can be observed from the scalability test that CoMine++ can efficiently
mine correlated patterns over large datasets and distinct items with considerable
amount of runtime and memory.
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Fig. 5. Scalability test. (a) Memory requirement and (b) Runtime.

In many real-world applications, users are generally interested in highly cor-
related patterns. Thus, the proposed CoMine++ algorithm is a better choice
over the existing CoMine algorithm.

6 Conclusion

This paper argues that a pattern-growth algorithm that simply constructs the
CPB of the suffix item with every item in its prefix path can suffer from perfor-
mance problems. It is because some measures facilitate an item to combine with
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only those items having supports within a specific interval to generate interesting
patterns of higher order. This paper introduced the concept of items’ support
intervals and proposed a methodology to determine it for the correlated pattern
model defined using support and all-confidence measures. A pattern-growth algo-
rithm, called CoMine++, has also been proposed to discover correlated patterns
effectively. Unlike the traditional pattern-growth algorithms (such as CoMine),
CoMine++ discovers the complete set of correlated patterns by constructing the
initial CPB of the suffix item with only those items in its prefix paths that have
support within its support interval. A novel pruning technique has also been dis-
cussed to construct CPB of the suffix item effectively. Experimental results have
shown that proposed CoMine++ algorithm can efficiently mine highly correlated
patterns over the existing CoMine algorithm.

As a part of future work, we would like to extend the notion of items’ sup-
port intervals to improve the performance of CCMine algorithm to discover
closed coverage patterns effectively. In addition, we would like to investigate the
methods to determine the items’ support intervals for other measures.
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