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ABSTRACT

Many recent large-scale data intensive applications are in-
creasingly demanding efficient graph databases. Distributed
graph algorithms, as a core part of practical graph databases,
have a wide range of important applications, but have been
rarely studied in sufficient detail. These problems are chal-
lenging as real graphs are usually extremely large and the
intrinsic character of graph data, lacking locality, causes un-
balanced computation and communication workloads.
In this paper, we explore distributed breadth-first search

algorithms with regards to large-scale applications. We pro-
pose DPC (Degree-based Partitioning and Communication),
a scalable and efficient distributed BFS algorithm which
achieves high scalability and performance through novel bal-
ancing techniques between computation and communica-
tion. In experimental study, we compare our algorithm with
two state-of-the-art algorithms under the Graph500 bench-
mark with a variety of settings. The result shows our algo-
rithm significantly outperforms the existing algorithms un-
der all the settings.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems

General Terms

Algorithms, Experimentation, Performance
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1. INTRODUCTION
Graph databases are playing an increasingly important

role in science and industry. A large number of graph data
processing techniques have been proposed in recent years
and applied to a wide range of applications including so-
cial networks [3, 8, 24, 27], telecommunication [23], chem-
istry informatics [7, 32], medical informatics [31, 33, 34] and
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bioinformatics [21, 22]. However, distributed graph algo-
rithms, as a critical component of practical large-scale graph
databases, have been scarcely studied.

Breadth-first search (BFS) is a fundamental problem in
graph databases. Given a graph G = (V, E) and a particu-
lar root vertex r, a BFS algorithm wants to find a BFS tree
rooted at r. That is, the path from r to any other vertex v

must contain the minimum number of edges among all the
paths from r to v in the original graph G. BFS algorithms
play a critical role in numerous applications. For example,
social network games may search for a certain user’s k-hop
friends to deploy the game, while online advertising compa-
nies may want to generate the BFS tree rooted at a product
customer to advertise the product to the customer’s k-hop
social neighborhoods. Ideally, the running time of a sequen-
tial BFS algorithm is in O(|V | + |E|) complexity when G

is represented in an adjacency list. Unfortunately, when
we consider the large graphs generated from social networks
such as Facebook (350 million users), Twitter (75 million
users) and LinkedIn (60 million users), it is impossible to
store such graphs in the main memory of a single computer.
This makes the sequential BFS algorithms [9, 10, 13] and
the traditional shared-memory parallel algorithms [12, 18,
19, 25] (i.e. the algorithms based on the PRAM model)
impractical for the large-scale applications, because these
algorithms take several minutes or more for a single query.

In contrast to sequential/shared-memory parallel BFS al-
gorithms, a distributed BFS algorithm is an algorithm for a
communication network to find a BFS tree. Initially, each
compute node has a subset of the edges, while it is unaware
of the topology of the whole graph. The compute nodes,
which have the edges emanating from the root, start the al-
gorithm and send messages to the other compute nodes. The
other compute nodes participate in the computation when
they receive the messages. When the algorithm stops, each
reachable vertex from the root knows its parent in the BFS
tree. Note that a vertex does not need to know the shortest
path to the root, since the vertex can send a message to its
parent and so forth to generate the path.

Most existing approaches use predefined partitioning func-
tions to partition the edges into the compute nodes. How-
ever, large real world graphs usually have highly skewed
degree distributions. It causes the compute nodes which
have the high degree frontiers become the communication
bottlenecks at each level of the BFS tree. This problem is
challenging since (1) online applications require very fast re-
sponse time and the graphs in these applications are often
extremely huge which make most data mining algorithms



impractical for this problem; (2) the graph density and the
degree distribution vary depending on the type of applica-
tions; and (3) the computing power of compute nodes and
the communication bandwidth and latency vary depending
on the configuration of a communication network.
To address these challenges, we propose DPC (Degree-

based Partitioning and Communication), a scalable and ef-
ficient distributed BFS algorithm which achieves high scala-
bility and performance through novel and clever techniques
to achieve the balance between computation and communi-
cation for different degree distributions and hardware con-
figurations.
Our contributions can be summarized as follows:

1. We are the first to introduce a general framework to
capture the commonalities of many existing algorithms
which are based on various kinds of graph partitioning
methods and communication patterns. We extensively
explore the partitioning methods and analyze the com-
munication patterns of these methods.

2. We propose an effective graph partitioning method
based on the degree of each vertex. Our method avoids
the heavy computational and communication work-
loads on the compute nodes which own high degree
frontiers and achieves high scalability and performance
by balancing communication-loads.

3. We observe that BFS is neither a simple communication-
intensive nor computation-intensive application on mod-
ern communication networks. Tuning the communication-
to-computation ratio is a critical issue. Our proposed
algorithm can always achieve a high performance by
tuning this ratio. We propose an effective tuning tech-
nique to achieve the balance between computation and
communication. Furthermore, buffer length optimiza-
tion methods are also proposed.

4. We comprehensively study the theoretical effect of these
techniques and evaluate their performance. Compared
with two state-of-the-art algorithms, our proposed al-
gorithm outperforms the existing algorithms under the
Graph500 benchmark with a variety of settings.

The rest of the paper is organized as follows. Section 2
presents the problem definitions and the preliminaries. Sec-
tion 3 describes the general framework. Section 4 introduces
two baseline algorithms under our proposed framework. Sec-
tion 5 proposes our BFS algorithm. The related tuning
methods and technique details are discussed in Section 6.
Section 7 reports the experimental results and analyses. The
related work and the conclusion are given in Section 8 and
Section 9, respectively.

2. PRELIMINARIES
Following the Graph500 benchmark[2], we mainly focus on

undirected pseudographs in this paper. A pseudograph is a
graph that allows multiple edges and self-loops. Clearly, the
techniques discussed in this paper can be straightforwardly
applied to multigraphs where self-loops are not allowed, and
simple graphs where neither self-loops nor multiple edges
are allowed. Furthermore, we assume each undirected edge
e(v1, v2) is represented as two directed edges e(v1, v2) and

e′(v2, v1), and our techniques can be easily extended to di-
rected graphs. For presentation simplicity, an undirected
pseudograph is hereafter abbreviated to a graph.

A graph can be represented by G = (V,E) where V is
the set of vertices, and E ⊆ V × V is the set of edges. We
denote the number of vertices and edges by |V | and |E|,
respectively.

Given a graph G = (V,E), a path p of length k from a
vertex v to a vertex v′ is a sequence (v0, v1, ..., vk) of vertices
such that v = v0, v

′ = vk, vi ∈ V for i = 0, 1, ..., k,
and (vi − 1, vi) ∈ E for i = 1, 2, ..., k.

Definition 1. (Reachablity) Given a graph G = (V,E)
and two vertex v and v′, we say v′ is reachable from v if
there exists a path from v to v′.

Definition 2. (Shortest Path) Given a graph G = (V,E)
and two vertex v and v′, a shortest path from v to v′ is a
path with length k satisfying that k is the minimum length
among all the paths from v to v′.

Breadth-First Search. Breadth-first search(BFS) is de-
fined as follows.

Definition 3. (Breadth-First Search) Given a graph G =
(V,E) and a vertex r, breadth-first search is to produce a
BFS tree T with root r satisfying that

1. T contains all reachable vertices from r in G.

2. ∀v ∈ T , the path from r to v corresponds to a shortest
path from r to v in G.

3. FRAMEWORK
Initially, the graph is obtained as a list of edge tuples.

Each edge tuple e(src, tgt) is undirected with its two end-
points given in the tuple as source vertex(src) and target
vertex(tgt). In the preprocessing phase, the edge list are
randomly partitioned into N equal-sized parts where N is
the number of compute nodes. In Figure 1, there are four
compute nodes, denoted by CN1-CN4. We do not consider
the obtaining edge lists phase in our framework, since the
access to data sources can vary depending on different ap-
plications.

File Servers

Obtain Edge Lists Graph Partition Index Construction BFS

CN1 CN1 CN1 CN1

CN2 CN2 CN2 CN2

CN3 CN3 CN3 CN3

CN4 CN4 CN4 CN4

Figure 1: Framework

Assuming a graph has already been obtained as N initial
edge lists by the compute nodes, our framework consists of
three phases: graph partition, index construction and BFS.

1. Graph Partition Phase. In the first phase, the com-
pute nodes exchange the edge tuples to generate local
edge sets. Each compute node owns a local edge set.
These local edge sets can be either overlapped or non-
overlapped. Statistical or meta information such as
the number of vertices is computed in this phase.



2. Index Construction Phase. Based on the local edge
set and the other statistical information, each compute
node builds its own index.

3. BFS Phase. A root vertex is given in this phase. The
compute nodes produce a BFS tree with the given root
by both local computing and message passing.

The core part of a BFS algorithm is the partitioning method.
We formalize it as a partition function as follows.

Definition 4. (Partition Function) Given a graph G(V, E)
and the number N of compute nodes, a graph partition func-
tion is a function H(e) where e ∈ E and H(e) ∈ {0, 1,
..., N − 1}.

We analyze the existing algorithms and our algorithm un-
der this framework by considering its computational com-
plexity and communication cost in all three phases. As send-
ing or receiving an edge is usually much more costly than
processing one on a compute node, we analyze the commu-
nication cost by considering the total message size rather
than the communication complexity.
The performance is also affected by several other issues in-

cluding the degree distribution, the communication to com-
putation ratio and the workload balancing methods, we will
evaluate these issues in a experimental study. As there is no
communication in the index construction phase, bandwidth
will be wasted if the framework is strictly implemented to
follow a sequential order. In our implementation, we always
mix the graph partition and index construction phases to-
gether whenever the local data is enough to start the index
construction.

4. BASELINE ALGORITHMS
In this section, we survey the existing work and introduce

two baseline algorithms.

4.1 SourceBFS
SourceBFS [2] is an efficient and effective approach. This

algorithm partitions the edges by the source vertex. The
partitioning function is shown as follows:

Hsrc(e) = e.src mod N

Algorithm 1: Headfile for all the algorithms

size = the number of compute nodes;1

rank = the rank of the current compute node;2

Algorithm 1 describes the declarations of two common
variables: size which is the number of compute nodes in a
communication network and rank satisfying rank ∈ {0, 1,
..., size− 1} which is the rank of the current compute node.
For presentation simplicity, we omit these declarations in
the rest algorithms. Initially, each compute node owns an
initial edge set Einit as shown in Algorithm 2. In lines 1-4,
the algorithm scans the initial edge set and stores the edges
into different sending buffers by the source vertex. In lines 5-
8, the algorithm exchanges the edges to ensure that each
compute node owns the vertices satisfying v mod size =
rank. Each compute node also owns the emanating edges
from the vertices which it owns.

Algorithm 2: SourceBFS-Partition(Einit)

Input : Einit is the local initial edge list of a graph;
Output: E is the local edge set;
for each e (src, tgt) ∈ Einit do1

q = e.src mod size;2

Sq = Sq ∪ {e};3

end for4

for each q in [0, size− 1] except rank do5

Send Sq to CN q;6

Receive Rq from CN q;7

end for8

Rrank = Srank;9

E =
⋃size−1

q=0 Rq;10

The BFS phase is described in Algorithm 3. Initially, the
compute node which owns the root r inserts the root into
its frontier set F0 for the first iteration in lines 1-5. At
each level i, each compute node has a set of frontier ver-
tices Fi. The edges emanating from Fi are retrieved from
each compute node’s local edge set, and then the targets of
these edges generate a set S which is the neighbors of Fi

in lines 6-9. Some of the vertices in S which still belongs
to the same compute node such as Srank. Therefore, these
vertices are moved to Fi+1 of the current compute node for
next iteration in line 13. For the other vertices, messages are
sent to other compute nodes which own the vertices. Each
compute node receives the messages R from other compute
nodes and merges them to form Fi+1 which will be the fron-
tier set for next iteration in lines 11-15. When the algorithm
terminates, the function Parent(v) stores the parent of the
vertices in lines 16-20.

Algorithm 3: SourceBFS-BFS(E, r)

Input : E is the local edge set;
r is a root;

Output: Parent(v) stores the parent of each vertex,
initialized as null for all vertices;

if rank = r mod size then1

F0 = {r}; Parent(r) = r;2

else3

F0 = ∅;4

end if5

for i = 0 to ∞ do6

if Fi = ∅ for all CNs then TERMINATE.7

Ei = {e|e ∈ E ∧ e.src ∈ Fi};
for each q in [0, size− 1] except rank do8

Sq = {e|e ∈ Ei ∧ q = e.tgt mod size };9

Send Sq to CN q;10

Receive Rq from CN q;11

end for12

Rrank = Srank;13

R =
⋃size−1

q=0 Rq;14

Fi+1 = {e.tgt|e ∈ R};15

for each e in R do16

if Parent(e.tgt) = null then17

Parent(e.tgt) = e.src;18

end if19

end for20

end for21



Cost Analysis. The communication cost in the graph par-
tition phase is N−1

N2 |E|, because each compute node initially

has |E|
N

edges and |E|

N2 of them still belong to the compute
node itself after the graph partition phase. Therefore, each
compute node sends N−1

N2 |E| edges. As the function Hsrc(e)
takes constant time for sending each edge, the computational

complexity is O( |E|
N

). In the index construction phase, the
computational complexity of constructing compressed sparse

rows(CSR) on each compute node is O( |E|
N

).
In the BFS phase, all the reachable vertices will be ac-

cessed. Then each edge e(src, tgt) will be sent once except
the ones whose src and tgt belong to a same compute node.
Therefore, the communication cost is N−1

N2 |E|. If we assume
that both operating an edge on communication buffers and
accessing to a vertex are in O(1) time complexity, the com-

putational complexity is O( |V |+|E|
N

).

4.2 TargetBFS
Intuitively, TargetBFS is alternative algorithm which par-

titions the edges by the target vertex. The partitioning func-
tion, Htgt(e) is described as follows.

Htgt(e) = e.tgt mod N

The graph partition phase of TargetBFS is the same as
that of SourceBFS except using Htgt(e) instead of Hsrc(e),
while the BFS phase is different. In the beginning of the BFS
phase, all the compute nodes insert r into their frontier set
F0. At each level i, each compute node has a set of frontier
vertices, Fi. The edges emanating from Fi are retrieved
from the local edge set. Clearly, the targets of these edges
are non-overlapped among the compute nodes. All these
targets are broadcasted to the other compute nodes. The
union of them generates the frontier set for next iteration.

Cost Analysis. In the graph partition and index con-
struction phases, the communication cost and the compu-
tational complexity of TargetBFS are the same as those of
SourceBFS. In the BFS phase, all the reachable vertices will
be broadcasted to N −1 compute nodes once and each com-

pute node owns |V |
N

vertices. Therefore, the communica-

tion cost is N−1
N

|V | and the computational complexity is

O(|V |+ |E|
N

).

5. PARTITIONING, INDEXING AND BFS

5.1 Partitioning by statistical measures
In contrast to the existing methods which use predefined

partition functions, our proposed algorithm, DPC (Degree-
based Partitioning and Communication), determine its par-
tition function based on the degree of the vertices. Let us
consider that we have a graph which has already been par-
titioned by the partition function Hsrc(e). For a given ver-
tex v and its degree d(v), the compute node sends N−1

N
d(v)

edges to the other compute nodes when v is in the frontier
set. However, if we repartition the emanating edges from
v by their target vertices, the compute node broadcasts v

to all the other compute nodes. The other compute nodes
access the local subset of the emanating edges from v. If
we assume that sending an edge and broadcasting a vertex
have a same communication cost, the communication cost
for broadcasting v is N − 1.

For a given vertex v, the communication cost by using
Htgt(e) is less than the communication cost by using Hsrc(e)
when d(v) > N , and the performance gap is N−1

N
(d(v)−N)

regarding the communication cost. In contrast, the compu-
tational cost of the whole network increases from Cvertex +
d(v) × Cedge to N × Cvertex + d(v) × Cedge where Cvertex

is the cost of accessing a vertex and Cedge is the cost of
operating an edge, respectively. Because all compute nodes
have to access v by using Htgt(e), even if the compute node
does not own any edge emanating from v. Based on the
above observation, we define the partition function of DPC
as follows.

Definition 5. Given an integer partitioning threshold σ,
the partition function of DPC algorithm is that

Hdegree(e) =

{

e.src mod N if d(e.src) < σ

e.tgt mod N if d(e.src) ≥ σ

We will discuss how to determine the value of the partition-
ing threshold σ in Subsection 6.1.

The partition algorithm of DPC consists of two substeps,
counting and partitioning. In the counting step, each com-
pute node counts the local degree for each vertex based on
the local initial edge list and followed by a reduction oper-
ation which produces the global degree for each vertex. In
the partitioning step, the algorithm is the same as that of
SourceBFS except using Hdegree(e) instead of Hsrc(e). The
counting step takes O(|V | + |E|) computational time and
extra |V | communication cost for the reduction.

a (root) b

c d

(a) A sample graph

Owned CN1 a− {b, c, d} b− {a}
edges CN2 c− {a, b, d} d− {b}

Iteration CN Visited Messages Frontiers
1 CN1 {a} Forward {c, d} to CN2 {b, c, d}

CN2 ∅ ∅
2 CN1 {a, b} ∅

CN2 {c, d} Forward {a, b} to CN1 ∅
(b) The communication schedule of SourceBFS

By source vertex By target vertex
Owned CN1 b− {a} a− {b} c− {a, b}
edges CN2 d− {b} a− {c, d} c− {d}

Iteration CN Visited Messages Frontiers
1 CN1 {a} Broadcast: {a} {b}

CN2 {a} {c, d}
2 CN1 {a, b, c} ∅

CN2 {a, c, d} Broadcast: {c} ∅
Forward {b} to CN1

(c) The communication schedule of DPC (σ = 2)

Figure 2: Communication schedules

For example, the graph is shown in Figure 2(a). There are
four vertices and eight edges in this directed graph. The BFS
is rooted at vertex a. Figure 2(b) illustrates the partitions



and the communication schedule of SourceBFS. There are
two compute nodes CN1 and CN2. CN1 owns vertices a and
b while CN2 owns vertices c and d. In the first iteration, CN1
sends the frontiers c and d to CN2, and marks its own vertex
b as a frontier. In the second iteration, CN1 accesses b’s edge
list {a}, but a is not marked as a frontier since it has been
accessed. CN2 accesses the edge lists of c and d, and then
sends a and b to CN1 as frontiers. As a, b and d have been
accessed, there is no frontier for the next iteration.
As described in Figure 2(c), the communication schedule

of DPC is more complicated than SourceBFS. Assuming the
partitioning threshold σ = 2, the edges emanating from a

and c are partitioned by the target vertex, while the edges
emanating from b and d are partitioned by the source ver-
tex. As a result, CN1 owns the edges ab, ba, ca and cb, while
CN2 owns the edges ac, ad, cd and db. There are two kinds
of communication messages, (1) broadcasting the vertices
which are partitioned by the target vertex, and (2) forward-
ing the frontiers of the vertices which are partitioned by the
source vertex. In the first iteration, CN1 broadcasts the root
a to CN2. Then, CN1 and CN2 parallelly access the partial
edge lists of a and consider b, c and d as frontiers. In the
second iteration, CN2 broadcasts the vertex c to CN1 since c
is partitioned by the target vertex. As all the vertices in c’s
edge list have been accessed, they are not considered as the
frontiers for the next iteration. In the meanwhile, CN2 ac-
cesses d’s edge list and forwards the frontier b to CN1. As b
has been accessed, there is no frontier for the next iteration.
It is tricky that the forwarding messages do not have to wait
for the broadcasting messages, because the partial edge lists
only contain the vertices owned by the same compute node,
and these vertices do not need to be forwarded. Therefore,
the two kinds of communication messages, broadcasting and
forwarding, do not block each other and can share a same
message buffer. Compared with SourceBFS and TargetBFS,
there is no additional delay for DPC in the communication.

5.2 Index structure and BFS algorithm

Vertex:

Bitmap:

Vertex Array:
(Offsets in the
edge array)

Edge Array:

Address:

CN1

a b c d

1 0 1 0

0 1 2

b a a b

0 1 2 3

CN2

a b c d

1 0 1 0

0 2 3

c d d b

0 1 2 3

Figure 3: Index structure

The index of DPC consists of two components, a bitmap
and a compressed sparse row (CSR). The bitmap indicates
whether the edges emanating from the vertex are partitioned
by the source vertex or the target vertex. The bitmap uses
“1” to indicate the vertex whose degree is equal or greater
than the threshold σ, and the edges emanating from this
vertex are partitioned by the target vertex. In contrast, the
vertex whose degree is less than the threshold σ is marked
with “0” in the bitmap, and its emanating edges are parti-
tioned by the source vertex. The CSR stores vertices and
edges of the graph in two separate arrays. The edge array is
sorted by the source vertices of the edges. It only contains
the target vertices for the edges. The vertex array stores
the offsets within the edge array which locates the address

of the first edge emanating from each vertex. For example,
Figure 3 shows the index of the graph in Figure 2(a) and
the partition in Figure 2(c). In this partition, the bitmap
{1, 0, 1, 0} indicates that the edges emanating from the ver-
tices a and c are partitioned by the target vertex, while the
edges emanating from the vertices b and d are partitioned
by the source vertex. The distributed CSR has much less
overhead than many other graph formats such as distributed
adjacency list. In the worst case, the space requirement is

O(|V |+ |E|
N

).
In the index construction phase, we first generate the

bitmap with size |V | in O(|VG|) time complexity. Then we
construct the vertex array and the edge array. The com-
putational complexity of constructing the vertex array and

the edge array is O(|V | + |E|
N

). The overall computational

complexity is O(|V |+ |E|
N

) since |VG| ≤ |V | always holds.
The BFS algorithm is illustrated in Algorithm 4. Given

a root r, the compute node which owns r inserts it into
its frontier set F0 for the first iteration in lines 1-3. For
each iteration i, the algorithm first stores the frontiers with
B[v] = 1 (i.e. v ∈ VG) into a set SV . The other frontiers’
edge sets are retrieved and stored in Ei in line 10. In line 12,
a set RV is generated as the union of SV among all the com-
pute nodes. The neighbors Sq of the frontiers are sent to the
other compute nodes which own these vertices in lines 13-
17. The neighbors Srank which still belongs to the current
compute node are directly moved to Rrank in line 18. Each
compute node receives the messages Rq from other compute
nodes and merges them together with the neighbors of the
vertices in RV to generate Fi+1 which will be the frontier
set for the next iteration in lines 19-23. When the algorithm
terminates, the function Parent(v) stores the parent of the
vertices in lines 24-26 .

SourceBFS TargetBFS DPC

M1
N−1
N2 |E| N−1

N2 |E| |V |
N

+ N−1
N2 |E|

C1 O( |E|
N

) O( |E|
N

) O( |E|
N

)

C2 O( |V |+|E|
N

) O(|V |+ |E|
N

) O(|V |+ |E|
N

)

M3
N−1
N2 |E| N−1

N
|V | N−1

N2 |EL|+
N−1
N

|VG|

C3 O( |V |+|E|
N

) O(|V |+ |E|
N

) O( |VL|+|EL|
N

+ |VG|+
|EG|
N

)

Figure 4: The comparison of BFS algorithms

Cost Analysis. Given a graph with a vertex set V and
an edge set E, σ is the predefined partitioning threshold.
The vertex set V is divided into two subsets, VL = {v|v ∈
V ∧d(v) < σ} and VG = {v|v ∈ V ∧d(v) ≥ σ}. The edge set
E is also divided into two subsets by the source vertex, EL =
{e|e.src ∈ VL} and EG = {e|e.src ∈ VG}. Clearly, E = EL∪
EG and EL∩EG = ∅. In the BFS phase, the communication
costs of processing the edges in EL and EG are N−1

N2 |EL|

and N−1
N

|VG|, respectively. The computational complexities

of processing the edges in EL and EG are |VL|+|EL|
N

and

|VG|+
|EG|
N

, respectively. SourceBFS and TargetBFS can be
considered as two special cases of DPC when VG = ∅ and
VL = ∅, respectively. The summary of the computational
complexities C{1,2,3} and the communication costs M{1,3} in
three phases is illustrated in Figure 4. If we choose σ = N ,
the communication costs of SourceBFS and TargetBFS can
be considered as two upper bounds of that cost of DPC.
These two upper bounds are achieved by ∀v ∈ V, ∃d(v) ≤ N

and ∀v ∈ V, ∃d(v) ≥ N , respectively.



Algorithm 4: BFS(B, E, r)

Input : B is the bitmap which stores VG and VL;
E is the local edge set;
r is a root;

Output: Parent(v) stores the parent of each vertex,
initialized as null for all vertices;

if rank = r mod size then1

Parent(r) = r; F0 = {r};2

else3

F0 = ∅;4

end if5

for i = 0 to ∞ do6

if Fi = ∅ for all CNs then TERMINATE.7

for each v in Fi do8

if B[v] = 1 then SV = SV ∪ {v};9

else Ei = Ei ∪ {e|e ∈ E ∧ e.src = v};10

end for11

RV =
⋃size−1

q=0 SV on all CNs;12

for each q in [0, size− 1] except rank do13

Sq = {e|e ∈ Ei ∧ q = e.tgt mod size };14

Send Sq to CN q;15

Receive Rq from CN q;16

end for17

Rrank = Srank;18

R =
⋃size−1

q=0 Rq;19

for each v in RV do20

R = R ∪ {e|e ∈ E ∧ e.src = v};21

end for22

Fi+1 = {e.tgt|e ∈ R};23

for each e in R and e.tgt mod size = rank do24

if Parent(e.tgt) = null then25

Parent(e.tgt) = e.src;
end for26

end for27

6. OPTIMIZATIONS
We further discuss the technique details and optimizations

in this section. This includes the tuning technique of the
parameter σ, the optimization for the buffer length and the
discussion on network topologies.

6.1 Partitioning threshold
We say that σ is optimal when the BFS algorithm achieves

the best overall performance. The optimal value of σ is
affected by the latency and bandwidth of the communication
network and the computing power of the compute nodes.
If the communication cost dominates the overall cost, the
optimal value of σ is equal to N which provides a minimum
communication cost.
Unfortunately, the computational cost cannot be omit-

ted in modern communication networks and therefore the
optimal value of σ is usually greater than N . The opti-
mal value of σ cannot be straightforwardly calculated by
the latency and bandwidth of the network and the comput-
ing power of the compute nodes because many issues can
affect the utilization of the network such as barriers, the
cost of starting listeners and etc. Tuning the performance
becomes a very challenging task. We propose a heuristic
algorithm to solve this problem by tuning communication-
to-computation(C/C) ratio. If we define the computational

cost as the time spent by a compute node in computing and
the communication cost as the time spent by a compute
node in sending and receiving messages, the C/C ratio is the
communication cost divided by computational cost. As we
adopt the non-blocking communication, the compute nodes
achieve optimal resource utilization when the computation
and communication is balanced. When σ is greater than
N , the communication cost can be reduced as a trade-off of
additional computation by decreasing σ and vice verse. As-
suming that we have known the optimal σ for a given graph
size, we prove that σ is optimal for a different graph size if
the random variables of degrees follow a same distribution.

The optimal σ is constant to graph size. We say
an algorithm satisfying linear C/C ratio to graph size, if
the speedup (or slowdown) of computation is linear to the
speedup (or slowdown) of communication when increasing
(or decreasing) the graph size. We prove the BFS phase of
DPC satisfying linear C/C ratio for constant σ if the random
variables of degrees follow a same distribution.

Proof. Given a graph with a vertex set V and an edge set
E, σ is the predefined partitioning threshold. The vertex set
V is divided into two subsets, VL = {v|v ∈ V ∧d(v) < σ} and
VG = {v|v ∈ V ∧ d(v) ≥ σ}. The edge set E is also divided
into two subsets by the source vertex, EL = {e|e.src ∈ VL}
and EG = {e|e.src ∈ VG}.

Suppose the number of compute nodes is N , then com-
munication cost of each computing node is Comm(N) =
(N−1)

N
× |EL|

N
+ (N − 1) |VG|

N
, since each compute node owns

|EL|
N

edges of EL and (N−1)
N

of them are sent out, and owns
|VG|
N

vertices of VG and each vertex is sent to N −1 comput-
ing nodes. The computational cost of each compute node is

Cmpt(N) = |VL|+|EL|
N

+|VG|+
|EG|
N

, since the computational
cost of operating the vertices in VL and the edges in EL is
as same as that of SourceBFS while the computational cost
of operating the vertices in VG and the edges in EG is as
same as that of TargetBFS. Because the random variables
of degrees follow a same distribution, the expected values of
|VL|, |EL|, |VG| and |EG| are linear to the graph size. The
theorem immediate follows.

Based on the above observations, the tuning method is
straightforward. We first consider a small graph (e.g. a
simpling graph or a low-scale problem) as the tuning graph.
The random variable of the vertex degree in the tunning
graph follows the same distribution as the original graph.
We set the initial value of σ as N and increase σ step by
step. The overall performance increase at the beginning and
drops at a certain value. We select the value which achieves
the peak performance as the value of σ.

6.2 Buffer length
In contrast to the existing approachs which use the mes-

sage buffers with fixed length which is the upper bound on
the message size in each iteration, we propose to use mes-
sage buffers of flexible length with a maximum limit which
is usually smaller than the message size in each iteration.

As the algorithm uses non-blocking point-to-point com-
munication, our optimization is based on two observations:
(1) scheduling the compute nodes to communicate in differ-
ent time has better bandwidth utilization than scheduling
the compute nodes to communicate at a same time; and (2)
the message size cannot reach its upper bound in most itera-



tions and flexible short buffer length introduces low latency
in such iterations.
Considering the edges in EL as an example, the number

of edges which are sent from a compute node to another in

each iteration is at most |V |
N

if we do not send the edges with
duplicated target vertex. When the buffer length is larger
than this upper bound, the communication cannot start un-
til the compute node iterate the all edges emanating from
the current frontier set. The bandwidth in this period is
wasted. Our solution is that we use a relative small message
buffer length limit. Whenever the message size reaches this
limit, we immediately send the message to its target com-
pute node via non-blocking communication. As the graph
is usually skewed, some of the compute nodes achieve this
limit earlier than the others. The compute nodes start to
utilize the bandwidth when first one achieve this limit, and
the bandwidth will be utilized in the whole computing pe-
riod. As we reuse the buffer in a same iteration, we use a
bitmap to avoid sending edges with duplicated target vertex.

The upper bound |V |
N

of total message size still applies to
our algorithm. When the message size is still less the limit
and the iteration is done for the frontier set, we send the
message out as its actual size to achieve low latency.

6.3 Network topologies
We discuss the underlying network topologies. A poor

choice of topology will reduce performance due to the bot-
tlenecks or the long distances among compute nodes. In
network topologies, the average path length is defined as
the average distance between two compute nodes in the net-
work over all pairs of distinct compute nodes. Short average
path lengths decrease overall network utilization and reduce
message latency. The diameter of a network is the longest
path in the network between two compute nodes. The di-
ameter is found by recording the shortest paths among all
pairs of distinct compute nodes and taking the maximum of
them. The diameter usually affects the performance of bot-
tlenecks, since it considers distance between the two farthest
compute nodes. The average path length and the diameter
are typically related in general network topologies, since a
large diameter generally implies a large average path lengths
and vice versa.
The algorithms discussed in this paper, as general solu-

tions, are based on the assumption that path lengths be-
tween any two distinct compute nodes are same. It implies
that the diameter of a network is equal to the average path
length. Ideally, this property can be achieved via a fully
connected network. However, this topology is impractical
for large-scale clusters, since it requires the large number

of links, n(n−1)
2

, as well as the large number of ports of
each compute node, n − 1. In practical, fat-tree and hy-
percube topologies can almost achieve this property and are
widely used in data centers and supercomputing. We choose
a fat-tree [26] topology in our configuration with considering
scalability evaluation on a subset of compute nodes. Briefly,
fat-tree is a tree-structured network topology where the com-
pute nodes are located at the leaves. The internal nodes are
switches. The capacities of the links increase as we go up the
tree. Our configuration interconnects the compute nodes as
a fat-tree with two layers of switch fabric(L1 and L2). Each
L1 switch is connected to 18 compute nodes via a 10 Gigabit
Ethernet(10 GigE) cable and is connected to L2 via four 10
GigE cables. It is clear that the capacity between L1 and

L2 is four times larger than that between L1 and compute
nodes. With a fat-tree topology, the performance is nearly
identical no matter which subset of the compute nodes the
implementation used, while the performance varies depends
on which compute nodes the implementation used for a par-
ticular run for a hypercube topology. The details of our
cluster will be given in Section 7. In Figure 5 and Fig-
ure 6, we use L1 to indicate the communication between
two nodes under a same L1 switch and L2 to indicate the
communication between two compute nodes under two dif-
ferent L1 switches. The results, tested by using OMB [1],
show that the latency gap between L1 and L2 communi-
cation is about 12.5% and its affect to uni-directional and
bi-directional bandwidth is less than 5%.
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7. EXPERIMENTS
In this section, we report a summary of the techniques de-

veloped and implemented for a comprehensive performance
study.

7.1 Experimental settings

Node Hardware. The cluster is built by interconnecting
128 Dell PowerEdge R610 compute nodes. Each node is
configured with two Intel Xeon E5530 2.4GHz CPUs and
24GB memory.

Interconnect. The compute nodes are interconnected as
a fat-tree network with two layers of switch fabric(L1 and
L2) by Summit X650-24x switches. Each L1 switch is con-
nected to 18 compute nodes via a 10 Gigabit Ethernet(10
GigE) cable and is connected to L2 via four 10 GigE cables.
The latency and bandwidth of our cluster has already been
reported in Figure 5 and Figure 6 in Section 2.

Software. The nodes are running Debian GNU/Linux 5.0.
All algorithms are implemented in C and parallelized using



the MPI library. The compiler and the library are GCC-
4.3.2 and Open MPI 1.2.7rc2, respectively. All the algo-
rithms are implemented following the specification of the
Graph500 benchmark [2]. This benchmark includes a data
generator and two kernels which are timed for performance
metric. The data generator produces edge tuples containing
the start vertex and the end vertex for each edge. The first
kernel constructs an undirected graph in a format usable by
the second kernel. The second kernel performs a BFS on
the graph. We implemented the graph partition and index
construction phases as the first kernel and the BFS phase as
the second kernel.

Data Generator. The graph generator is a Kronecker gen-
erator similar to [6]. Two parameters are required to gener-
ate a graph. The parameter graph scale is used to determine
the number of vertices, |V | = 2graph scale. The other param-
eter edge factor(ef) is the number of edges, |E| = ef × |V |.
Therefore, the average degree is 2× ef .

TEPS. The performance rate of Graph500 benchmark is
defined as traversed edges per second (TEPS). We measure
TEPS through the measures of the BFS phase as follows.
Let time be the measured execution time for a run of the
BFS phase. Let m be the number of the edges within the
component traversed by the BFS. We define the normalized
performance rate TEPS as:

TEPS =
m

time

Execution Time. We define execution time as the total
time of the BFS phase.

Message Size. Message size is defined as the number of
bytes sent by each compute node for a BFS run.

Construction Time. We define construction time as the
total time of the graph partition and index construction
phases, since we always mix the graph partition and index
construction phases together for communication efficiency
as mentioned in Section 3.
For each index, we randomly sample 16 unique roots. The

results always report the median TEPS, the median Execu-
tion Time and the median Message Size measured by 16 runs
with unique roots.

7.2 Experimental results
We study the scalability and the efficiency of DPC by

comparing it against SourceBFS and TargetBFS under the
Graph500 benchmark with a variety of settings. As SourceBFS
has already been implemented as the reference algorithm by
the benchmark, we implement DPC and TargetBFS using
the same framework as SourceBFS. The datasets are gen-
erated by the data generator with the edge factor ef = 10
except the graph density experiments. The buffer length
limit in the BFS phase is 4KB for all the algorithms by de-
fault. The statistical information of the datasets is shown
Figure 7. Top 1% degree refers to the degree of the top
1%|V |th vertex when we sort all the vertices in descending
order of degree.

7.2.1 Tuning parameter σ

In Figure 8, we discuss the methods of tuning σ to the
number of compute nodes(np) and graph size. We use graph
scale 19 and 22 as the tuning datasets. Figure 8(a)(d) shows

SCALE 19 22 25

|V | 5.242× 105 4.194× 106 3.355× 107

|E| 5.242× 106 4.194× 107 3.355× 108

Average Degree 19.999 19.999 19.999

Max Degree 5.610× 105 1.983× 106 7.003× 106

Top 1% Degree 212 220 235

Figure 7: The statistics of the graph datasets

that the highest TEPS for np = 4, np = 8, np = 16 and
np = 32 are achieved by σ = 256, σ = 256, σ = 1024 and
σ = 4096 receptively, while Figure 8(b)(e) illustrates that
the minimal message size is achieved by σ = 64, σ = 64,
σ = 64 and σ = 256 receptively. The result confirms that the
communication cost does not dominate the total cost. Both
the communication cost and the computation cost affect the
overall performance. The traditional optimization methods
which simply considering BFS as a communication-intensive
problem is not suitable for modern communication networks.

The result also shows that the number of compute nodes
is approximately linear to the optimal σ for the best TEPS.
The relation is σ = 64× np in our communication network.
By comparing Figure 8(a) and Figure 8(d), we verifies that
the optimal σ for the best TEPS does not change when vary-
ing the graph size. Figure 8(c)(f) illustrates the percentage
of vertices in |VG|. When the highest TEPS is achieved, only
0.1 − 1% high degree vertices belong to VG which indicates
the graph is skewed.

7.2.2 Performance comparison

As depicted in Figure 9(a)(d)(g), DPC is more efficient
than SourceBFS and TargetBFS on graph scale 19, 22 and
25. Note that both the performance of DPC and SourceBFS
increase with the number of compute nodes. On the con-
trary, the performance of TargetBFS even slightly decreases
with the number of compute nodes since (1) the graph is
sparse where d(v) < np holds for most vertices; (2) these
low degree frontiers of each compute node need to be broad-
casted to all the other nodes; and (3) the more the com-
pute nodes involved in the broadcasting the lower the per-
formance will be. The execution time as shown in Fig-
ure 9(b)(e)(h) indicates the same results as that of TEPS.
Both DPC and SourceBFS are scalable to the number of
compute nodes and DPC always has lower execution time
than SourceBFS.

Figure 9(c)(f)(i) describes the construction time of the
BFS algorithms. The construction time of DPC is nearly
as same as TargetBFS. The result verifies the partition and
index construction algorithms of DPC have very little cost
overhead. To our surprise, the construction time of SourceBFS
is about three times slower than the other two algorithms.
We discover the reason by checking the underlying details of
the Graph500 benchmark. Although the graph is stored in
the distributed CSR, the benchmark uses linked edge pages
to store the temporary emanating edges from each vertex
when generating the distributed CSR. The linked edge pages
become a very long list for SourceBFS, since all the ema-
nating edges from a high degree vertex are stored on a same
compute node. But DPC and TargetBFS partition the ema-
nating edges from high degree vertices into different compute
nodes and therefore avoid this problem. This construction
cost can be reduced by optimizing the temporary data struc-
ture. However, we did not change the underlying temporary
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Figure 8: Tuning σ to the number of compute nodes and the graph size
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Figure 9: The comparison of BFS algorithms by varying the number of compute nodes and the graph size



data structure with the consideration of keeping the origi-
nality of the benchmark and the comparison of the construc-
tion time between DPC and TargetBFS has already provided
sufficient evidence for the low construction cost overhead of
DPC. In Figure 9(c), we observe that the construction cost
of graph scale 19 does not decrease linearly to the number of
compute nodes. It is different from the results of graph scale
22 and 25 as depicted in Figure 9(f)(i). The main reason is
that the initialization and controlling communication affects
the construction time when the problem scale is too small.
The similar observation also can be found in Figure 10(c)
when the graph scale is less than 20.

7.2.3 Scalability

As depicted in Figure 10(a)(b), all three algorithms are
scalable to graph size. Note that the execution time is linear
to graph size, when the TEPS holds a constant value to
graph size. Clearly, DPC and SourceBFS achieve the peak
performance when the graph size is larger than 6.711× 107

with np = 32. As shown in Figure 10(c), all three algorithms
are scalable to graph size in the graph partition and index
construction phases.

7.2.4 The effect of graph density

In order to study the effect of graph density, we generate
five datasets with graph scale 22 by varying the edge factor
ef between 8 and 128. The number of edges is equal to
3.355× 107 × ef for each dataset. As depicted in Figure 11,
we discover the optimal σ for different graph densities.
Figure 12(a) shows DPC outperforms the other two algo-

rithms with all the settings. DPC is 116% and 271% times
faster than SourceBFS for ef = 8 and ef = 128 respectively,
while DPC is 1628% and 766% times faster than TargetBFS
for ef = 8 and ef = 128 respectively. The result indi-
cates that SourceBFS is suitable for sparse graphs while Tar-
getBFS fits dense graph, but DPC always outperforms the
existing algorithms and achieves more stable performance
than the existing algorithms.
Figure 12(b) illustrates that TargetBFS shows nearly con-

stant execution time to graph density. This result clarifies
that (1)the communication cost of TargetBFS is influenced
by |V | and np while the graph density only affects its compu-
tation cost; (2) the communication cost dominate its overall
cost; and (3) TargetBFS is unbalanced between computation
and communication on sparse graphs. It is possible that Tar-
getBFS may achieve high performance on extremely dense
graphs. However, we cannot find any real graph in such ex-
tremely high density and the BFS on highly dense graphs is
not in the scope of this paper. Figure 12(c) illustrates that
all three algorithms are scalable to graph density since they
are scalable to graph size and the graph density is linear to
the number of edges if we fix the number of vertices in the
graph.

7.2.5 Buffer length optimization

We evaluate the performance with different buffer length
limits in Figure 13. As the protocol is changed from Ea-
ger to Rendezvous when the message size reaches a limit,
we modify this limit to ensure all the experiments are con-
ducted under Eager protocol. Each edge occupies 16 bytes
in a message. In Figure 13(a), we use graph scale 16 as the
dateset where the graph has 65536 vertices. Each compute
node owns 4096 and 9192 vertices for np = 16 and np = 8,

respectively. When the buffer length limit reaches 16KB(i.e.
1024 edges) and 32KB(i.e. 2048 edges), the performance of
np = 16 and np = 8 drastically falls since the buffer length
limit is larger than the number of edges sending in each
iteration and the communication has to wait until the com-
putation is done. np = 32 avoids this problem because we
use flexible message size and the latency is much lower for
small messages. np = 4 achieves stable performance since
the size of most messages is above the buffer length limit. In
Figure 13(b), we observe similar performance decreasing for
np = 16 and np = 32 since the buffer length limit is too high
and the compute nodes have to wait and communicate at a
same time when the computation is done. In Figure 13(c),
this performance fall only happens to np = 32 since the mes-
sage size in each iteration increases with the graph scale and
most of the messages are larger than the buffer length limit
for np = 4-16. The results show that the small buffer length
limit always achieves high and stable performance and we
set the buffer length limit as 4KB for three algorithms in
the other experiments.

8. RELATED WORK
The most related work [2] has already been introduced

as the SourceBFS in the baseline algorithms. In constrast
to general algorithms, the authors of [35] focus on inves-
tigating algorithms specific to the torus network on Blue-
Gene/L. In a recent study, Pregel [29] is developed as a
scalable and fault-tolerant platform for large graph process-
ing. Although our proposed techniques can be implemented
on Pregel, the Graph500 platform [2] adopted by this pa-
per is more suitable for the performance evaluation than
Pregel platform. BFS algorithms on weighted graphs have
also been well studied under the name single source short-
est path(SSSP). Dijkstra’s algorithm [13] is a well known
approach to SSSP problem. There is a great effort from dif-
ferent areas to exploit pre-computed indexes to speed up the
running time of SSSP discovery. The 2-hop [9, 10] indexes
assign each vertex with two vertex label set and discover the
shortest path by intersecting the two sets, while the combi-
nation of A∗ algorithm and landmark index is also studied by
Goldberg [17]. In a recent work, Gao [16] studies to utilize
could computing to efficiently compute SSSP on large graphs
with neighborhood-privacy protected. In addition, approxi-
mate algorithms with different error bounds have also been
exploited in [30]. The classical parallel solution to SSSP
problem is a distributed form [20] of the Bellman-Ford algo-
rithm [11]. This algorithm operates same as a simple BFS
algorithm, except that it updates a vertex’s distance to the
root when a subsequent message of the vertex arrives with a
shorter path, and then the algorithm resends the messages
with the reduced new distance. Another obvious solution is
called coordinated BFS algorithm. The subsequent work
on this solution are focus on reducing the cost of synroniza-
tion. Gallager [15] and Frederickson [14] processes a group
of levels at a time, synchronizing back to the root only once
for each group. In [14], the Bellman-Ford is used within a
group and the coordinated algorithm is used between groups.
This leads to a result of O(|V |

√

|E|) in both time and com-
munication complexity. Awerbuch [4] perform the synchro-
nization based on constructing a subgraph, which leads to
a communication complexity of O(|V |2) and a time com-
plexity of O(|V | log |V |). The communication complexity is
subsequently reduced to O(|V |1.6 + |E|) in [5].
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Figure 10: Scalability to the graph size

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

0 2 4 6 8 10 12 14 16 18

T
E

P
S

(E
d
g
e
s
/s

e
c
)

Scale of σ(σ=2
x
)

ef=8
ef=16
ef=32
ef=64

ef=128

(a) TEPS, np=32, Graph Scale=22

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

0 2 4 6 8 10 12 14 16 18

M
e
s
s
a
g
e
 S

iz
e
(B

y
te

s
)

Scale of σ(σ=2
x
)

ef=8
ef=16
ef=32
ef=64

ef=128

(b) Message Size, np=32, Graph Scale=22

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

0 2 4 6 8 10 12 14 16 18

P
e
rc

e
n
ta

g
e
 |
V

G
|/
|V

|

Scale of σ(σ=2
x
)

ef=8
ef=16
ef=32
ef=64

ef=128

(c) Percentage |VG|/|V |, np=32, Graph
Scale=22

Figure 11: Tuning σ to the graph density
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Figure 12: Comparison of BFS algorithms by varying the graph density
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Figure 13: Buffer length optimization



9. CONCLUSION
In this paper, we study the problem of BFS in distributed

computing environments. Unlike previous methods which
use uniform predefined graph partitioning methods, we pro-
pose a novel graph partitioning method based the degree
of each vertex. Based on this new partitioning method,
we propose a performance tuning technique which always
achieves a balance between the computation and the com-
munication. Furthermore, buffer length optimization meth-
ods are also proposed. Finally, we perform a comprehensive
experimental study by comparing our algorithm against two
state-of-the-art algorithms under the Graph500 benchmark
with a variety of settings. The results show our algorithm
outperforms the existing ones under all the settings. In the
future work, we will study the problem of supporting other
query types (e.g. shortest path, reachability and etc.) and
platforms (e.g. Pregel [29] and etc.). The self-tuning algo-
rithms with automatic network topology detection [28] will
be another potential direction.
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