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Abstract—Object classification from video frames has become
more challenging in the context of Wireless Multimedia Sensor
Networks (WMSNs). This is mainly due to the fact that these
networks are severely resource constrained in terms of the de-
ployed camera sensors. The resources refer to battery, processor,
memory and storage of the camera sensor. Limited resources
mandates the need for efficient classification techniques in terms
of energy consumption, space usage and processing power. In
this paper, we propose an efficient yet accurate classification
algorithm for WMSNs using a genetic algorithm-based classifier.
The efficiency of the algorithm is achieved by extracting two
simple but effective features of the objects from the video frames,
namely shape of the minimum bounding box of the object and
the speed of the object in the monitored region. The accuracy
of the classification, on the other hand, is provided through
using a genetic algorithm whose space/memory requirements are
minimal. The training of this genetic algorithm based classifier
is done offline and it is stored at each camera in advance to
perform online classification during surveillance missions. The
experiments indicate that a promising classification accuracy can
be achieved without introducing a major energy and storage
overhead on camera sensors.

I. INTRODUCTION

Wireless Multimedia Sensor Networks (WMSNs) have re-
ceived a lot of attention very recently due to their potential
to be deployed flexibly in various outdoor applications with
lower costs [1]. Such networks deploy a large number of
image/video sensors with different capabilities and can col-
lect/process multimedia data [2] [3]. Typical applications of
WMSNs include remote surveillance, target tracking, habitat
monitoring, intrusion detection and health care delivery [1].

Considering these applications, current WMSN research has
focused on the issues regarding energy-efficient video data
routing, quality of service (QoS) and intelligent camera actu-
ation for increased network lifetime, which are mostly related
to networking aspects of the application [1] [4]. However,
WMSNs are multi-camera systems and they also deal with
traditional problems of image/video processing to perform
object localization, object/event detection and classification.
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Such processing is associated with networking issues as it may
provide in-network processing to improve the network lifetime
and reduce the bandwidth requirements. This relationship
indicates the need for WMSNs to be able to perform im-
age/video data processing with limited resources in an energy-
efficient manner. In this way, the gap between networking
and data processing research can be filled so as to realize
the deployment of WMSNs in a wide variety of real-life
applications.

To this end, our focus in this paper is to tackle the
object classification problem which may involve some im-
age/video processing along with data transmission in WMSNs.
Deploying a large number of battery-operated image/video
camera sensors in the surveillance region helps to alleviate
issues regarding possible obstacles (blocking cameras) and
thus provides great convenience in terms of object/event cov-
erage. However, accurate classification of the detected objects
regardless of the WMSN size and area coverage percentage is
still a challenge. If the detected objects are classified correctly
on site, then the central decision unit, i.e., the sink, may be
alarmed based on the received object information. This is
very crucial given that surveillance applications are geared for
security and safety. For instance, in a power-plant surveillance
application, only human intruders who are strangers should
trigger an alarm for the guards. In case of a detected animal
or an employee, no alarm is necessary.

In order to perform an accurate object classification, an
effective set of features should be selected and a robust
classifier should be constructed [5] [6] [7]. Nevertheless,
limited resources of WMSNs restricts the options for chosing
the features and the classifier. Specifically, features and clas-
sifiers which are lightweight in terms of processing, energy
consumption and storage are needed. In addition, real-time
applicability of the classifier is crucial considering the fact that
the classification process is performed at camera sensors when
an object is detected. Finally, the flexibility of the classifier
for adding new features and object classes and making it
applicable for other domains is also a big plus.

In this paper, we choose two simple but effective features
from the video frames: Shape Ratio and Speed of the



detected objects. The idea is to reduce the cost of the extraction
of the features to save energy and improve the WMSN
lifetime. These two features are obtained by only extracting the
minimum bounding rectangle (MBR) of the detected objects
in their video frames. Assuming that the objects’ locations can
be known by using a localization teachnique, the speed of an
object can be calculated by using location information of the
object at different times.

For the classifier, we employ a genetic algorithm based
classifier proposed in [8] for the best accuracy. This classifier
is designed as an instance based classifier which provides a
lightweight solution with its low time complexity. In addition,
the classifier utilizes the Class-Specific Features (CSF) [9]
in order to relate the prototype classes with the most rep-
resentative and discriminative features for them. The training
of the classifier is done offline with a set of sample objects
and then the classifier is stored at each camera sensor before
the data collection starts. Once the object is classified at a
camera sensor online, this class information is sent to the
sink node along with the speed and location of the object to
extract certain events. The experiments show that the classifier
can classify the most usual object types such as human or
animal accurately with lower costs in terms of energy, time
and storage.

This paper is organized as follows: In the next section, we
summarize the related work. Section III states our considered
system model and assumptions. In Section IV, we present the
details of the feature selection, classifier and our approach.
Section V includes performance evaluation of the proposed
approach. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Wireless Multimedia Sensor Networks

Recent works on WMSNs focused on processing and com-
pression of the raw video data sent to the sink in order to
increase network lifetime, providing Quality of Service (QoS)
for data communication and placement of cameras for desired
coverage [1], [4], [10]–[12]. In addition to these studies,
there are surveillance specific tasks such as object detection,
localization or tracking which have also received some interest
[13]–[17] by considering the resource constraints of WMSNs.

Object classification is also part of surveillance applications
which can be performed in conjunction with object detection
and tracking. The main challenges with object classification
stay with video processing, data elimination and data reduction
so as to minimize communication and coordination needs
of the involved camera sensors for saving energy. However,
currently, there is not much research focusing solely on
this aspect of WMSNs which indirectly affects the network-
ing/communication costs. The works in resource constraint
WSNs (such as [18]) do not apply as they work only on scalar
sensors not cameras. Our work is one of the first to address
this issue in the context of WMSNs at resource constraint
cameras rather than the resource rich base-station or sink node.
Given that there is no work in WMSNs on classification, next
we look at the related literature on object classification and

feature selection in general surveillance applications without
any resource constraints.

B. Object Classification

Until now, a significant amount of research has been done
on classification problem in general. A detailed discussion on
several types of classifiers and an extensive comparison of
them can be found in [7] and [19]. Below, we present a broad
categorization of classifiers according to their decision units.
Also, we analyze their applicability to WMSNs according to
their complexity and flexibility.

The classifiers in literature can be grouped into three dif-
ferent approaches: Instance-based, probabilistic and decision
boundary-based [7]. In an instance-based classifier, objects are
classified according to the similarities with the prototypes.
The classifier model holds the prototype classes, prototype
objects in each class and their features. In order to classify
a given object (i.e., query object), similarity of the object
with each prototype class is calculated. Thus, the complexity
of the classifier in terms of processing, energy and time
depends on the similarity function and the features chosen.
If reasonable distance functions with some simple features
are utilized, this approach provides a lightweight solution.
Moreover, considering that the raw features are hold in the
classifier model, it is easy to extend the classifier by including
new features and objects classes. However, this approach
suffers from the risk of low accuracy if its model contains
a few number of prototypes for each class and they do not
represent the classes well or noise exists in the prototypes.
There may be also a high storage requirement if the model
is constructed with a large number of prototypes in order to
represent the prototype classes better. Besides, the probabilistic
and the decision boundary-based approaches perform better
than the instance-based approaches at the expense of more
complex operations. Some of the well-known classifiers of
this type are as follows: Template matching classifier, Nearest
mean classifier, Subspace method, 1-nearest neighbor rule
[20].

Probabilistic classifiers perform classification by using the
generative probability models obtained via the distributions of
object classes over the feature space. The classifier model does
not hold the features, but holds the probability models. Thus,
the storage requirement is less for this type. However, it may
not be possible to obtain the flexibility as in the instance-based
approaches since the probability models should be recalculated
when new features and classes are included. The accuracy
of probabilistic classifiers are reasonably high considering the
low complexity of the classifier model, but it is sensitive to
the outliers and class density estimation errors. Some of the
well-known classifiers of this type are: Naive Bayes classifier,
K-nearest neighbor rule, Logistic classifier, Parzen classifier
[20].

The decision boundary-based classifiers construct decision
boundaries by optimizing some certain error criteria and
perform classification based on these boundaries. Decision
boundary approach is the most complex one among the



three approaches with respect to the processing. However, the
accuracy of this approach is usually better. As in the case of the
probabilistic approaches, it is not easy to include new features
and classes. The decision boundary should be recalculated.
Some of the well-known classifiers of this type are as follows:
Fisher linear discriminant, Perceptron, Binary decision tree,
Neural networks, Support vector classifier [20].

Considering these three approaches, the third one is the
least convenient for WMSNs because of its complexity and
inflexibility though it provides the best accuracy. Thus, we
prefer to use a classifier that benefits from the advantages
of both the instance-based classifiers and the probabilistic
classifiers, as described in [8]. The classifier is first con-
structed like an instance based classifier by respecting the low-
complexity requirements of the WMSNs. Yet, the classifier
model is constructed with a large number of prototypes.
Then, by applying genetic algorithm operations, the prototypes
are regulated according to their fitness and the probability
knowledge present in the training data is absorbed so that the
classifier is enhanced.

C. Feature Selection

One important issue for classification of objects is the
representation of images. There exists an excessive number of
visual features proposed for the representation of images. The
features can be classified as global and local features. The for-
mer include color [21], shape [22] and texture [21] descriptors
on the whole image while the latter is based on some special
local points in the image (SIFT [23], SURF [24]). However,
most of these features are low-level features. Extraction and
utilization of such low-level features impose a high processing
complexity as far as the WMSN applications are concerned.

As a result, we prefer utilizing more semantic features
which can be easily extracted during normal video processing
for tracking purposes (e.g., object detection or localization).
The goal is to reduce the burden on camera sensors when
extracting the features. However, there is a tradeoff here
regarding the number and type of the features used and the
classification accuracy. Our features of object shape and object
speed are unique and novel in the sense that they do not require
additional processing while they can still represent the objects
for accurate classification.

III. PRELIMINARIES

A. Assumptions

We assume a WMSN consisting of a set of camera sensors
(e.g., CmuCam3 [25]), placed randomly in a power-plant
surveillance application to monitor multiple moving objects.
In our application, we assume three general object classes that
may be captured: human, animal and vehicle. The resolution
and storage features of CmuCam3 camera sensors are [26]: 1)
Data format of Common Intermediate Format with resolution
(352x288) on RGB color sensor; 2) For storage, MMC/SD
flash slot (e.g., PQI 128MB MMC, SanDisk 2GB/1GB/512MB
SD cards, SanDisk 512MB MMC cards).

Each camera sensor has a certain Field-of-View(FoV)
β and Depth-of-Field(DoF) d which are the angle
and the distance respectively, where the camera sensor
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Fig. 1. A camera sen-
sor with its FoV (β) and
DoF (d)

can capture an accurate image/video as
seen in Figure 1. The camera sensors
are assumed to have a fixed random
position and orientation. We assume that
all camera sensors know their locations
[27] and can communicate with one an-
other independent of the type of camera
sensor as long as they are within the
transmission range of each other.

B. Problem Definition

Our problem can be formally defined
as follows: “Given a video camera sensor which is generat-
ing video frames within a WMSN,determine the class of a
detected object by such a camera with maximum accuracy
and minimum overhead in terms of energy, time and storage”.
Our goal is to minimize the need for human intervention on
the WMSN applications with automated and accurate object
classification.

IV. MOVING OBJECT CLASSIFICATION USING A GENETIC
ALGORITHM BASED CLASSIFIER

A. Feature Selection & Extraction

In visual object classification task, extracting features from
images and performing classification with these features are
usually complex and costly operations. In order to provide a
lightweight classification mechanism in terms of processing
and energy consumption, it is crucial to adapt an energy-
efficient and effective solution for the choice of features and
the classification process. Therefore, in this paper, we propose
to use two simple visual features that are related to the objects
rather than the whole image: Shape Ratio and Speed. The
Shape Ratio feature is the ratio of width and height of
the detected object’s minimum bounding rectangle (MBR),
whereas Speed feature gives the speed of the object. Note
that while these features are easy to extract, the classification
using such limited features (i.e., in terms of the number and
the characteristics of features) will be challenging. We will
address this challenge when we employ a suitable classifier as
will be detailed in the next subsection.
Shape Ratio can be easily obtained from a detected object.

To do this, first the object is extracted from the video frames
using frame differencing at individual camera sensors. MBR
on the image can then be easily calculated. This process does
not require a lot of video processing as it only depends on the
frame differencing which was shown to be energy-efficient in
[17]. MBR has the height and width of the object which are
used to calculate Shape Ratio =Width/Height

The speed can also be calculated based on some pre-
processing using camera properties and camera locations.
Specifically, once the object is extracted, the distance between
the object and the camera sensor is calculated. The object
location is then calculated by using the camera’s location and



direction, the object position on the frame and the distance
between the object and the camera. At the end, previous
frame’s results for localization is used to calculate the speed
of the object in the area under surveillance. This process has
also been shown to be feasible and cost-efficient in [17] for
object tracking applications.

B. Object Classification using GA based Classifier

In this paper, an instance-based classification mechanism is
adopted. The instance-based mechanism requires some proto-
type images for each class as the classifier model and makes a
decision by using the dissimilarities of the prototypes with the
query object. To avoid the large space requirements of such a
classifier model (i.e., it can be used on resource constrained
cameras), a pre-defined number of prototypes are selected by
using a Genetic Algorithm (GA) based approach [8] on the
training data. In addition to the GA support, the classifier
utilizes CSF approach [9] in order to define prototype objects
with the most representative and discriminative features.

The classifier model is constructed offline and can be
deployed to the camera sensors to be used in classification
process. Note that when a new and improved classifier is
available, this classifier can also be deployed to the camera
sensors to replace the existing classifier.

1) Classifier Model Construction During Training: Before
starting the actual classification, a training phase is performed
to construct the classifier model. The goal in this phase is
to train the algorithm by using a set of prototype images. In
order to do this, two things need to be performed: 1) Objects
features that best represent each class need to be identified by
using Class Specific Feature (CSF) indices; and 2) A genetic
algorithm (GA) should be used to classify candidate prototype
objects from all images available. Thus, the classifier model
contains two major parts: CSF Model and GA Model. Note
that the object features used here are different than the features
that will be used in the classification of the objects after the
training is done.

As introduced in [9], the CSF model is built on the idea that
different object types can be represented better by different
visual features. For example, a ‘car’ object can be represented
better by its ‘shape’, whereas a ‘sea’ object can be repre-
sented with its ‘color’. In this study, the class-specific feature
selection mechanism, which is proposed in [9], is utilized. The
method finds out the representative and discriminative features
for each image class. The representative characteristics of
features are calculated according to the dissimilarities of
images within the same class, and discriminative character-
istics are calculated according to the dissimilarities of images
between different image classes. Using these representative
and discriminative characteristics, the weight values of features
for each image class are calculated. These weight values are
referred to as CSF indices and are used during the decision
making in the classification process.

GA model contains the prototype images for each class.
These prototype images are obtained by using the GA based
approach in [8]. Based on the GA notations, each class is

represented with a set of chromosomes (prototypes) which are
representative images of the class. Each chromosome holds an
Effectiveness Value that is used as a weight during the decision
making. In addition, each chromosome is represented with a
set of genes which are the representative features for that class
in correspondence with the CSF model.

To utilize a GA based approach and perform genetic op-
erations, the training phase is divided into two parts: one
training phase for obtaining the definitions of the training
objects (First-Training) and one for making improvements on
the definitions by using genetic operations (Second-Training).
The initial population of genetic algorithm is generated by
using the First-Training data. In other words, the classes in
the classifier model gains chromosomes by identifying new
objects in the First-Training phase. Then, the genetic opera-
tions are applied to the system during Second-Training. These
genetic operations are: Effectiveness Correction, Crossover
and Mutation. By applying these operations, “survival of the
fittest” principle of genetic algorithm is provided and the fittest
chromosomes (prototypes) are selected as the classifier model.

2) Classification Process on the Camera Sensors: Our
proposed classification method performs multiple labeling on
a query object by providing a fuzzy membership decision for
each class in the range [0,1]. For instance, if there are two
classes as human and animal, an object’s fuzzy membership
value can be [0.7, 0.3] which indicates that the object is
classified as a human with 0.7 fuzzy membership value and
as an animal with 0.3 fuzzy membership value. In order
to obtain the membership value of each class, decisions of
chromosomes that are contained in that class are combined
by using a weighted sum. The weights of the chromosomes
are the effectiveness values of chromosomes that are updated
during the genetic operations according to the fitness of
the chromosomes. The decision of each chromosome is also
found by a weighted sum. To obtain a chromosome decision,
decisions of genes in the chromosome are combined. This
time, the weights are the CSF indices for the decision-giving
class. Lastly, decision of each gene is calculated by using the
similarity of the query object with the corresponding prototype
object to which the feature belongs.

As can be seen from the explanations above, the calculation
of the fuzzy membership value does not bring a significant
processing overhead to the camera sensors as the calculations
are mostly finding the weighted sums.

V. ALGORITHM ANALYSIS

The steps that are followed before the actual classification
algorithm is run are listed below. These are the steps to extract
the features that we use in the classification of the object.

1) Detect the moving object on the frame
2) Calculate the distance between the moving object and

the camera sensor
3) Locate and calculate the speed of the moving object
We can assume that the features that we are using in the

classification will be available as part of object detection and
tracking in surveillance. Therefore, we focus on the analysis of



the classification algorithm only. We analyze the time, energy
and storage complexity of the algorithm to see its applicability
to WMSNs.

A. Time Complexity Analysis

As mentioned in Section IV-B2, the object classification
process requires calculating the similarity between the query
object and each of the prototype objects in the classifier model
for each feature. Considering that preferred features are one-
dimensional, performing an Euclidian-distance calculation in
order to find the similarities requires a constant time, which
is O(1). Thus, assuming that m and n denote the feature
count and the total number of prototypes respectively, the total
classification process is performed in O(mn) time.

Note that m is the feature count that cannot increase
dramatically (e.g., it is 2 in our case). As a result, n is a
more dominant value than m. Hence, we can simplify the
complexity to O(n) which is linearly dependent to n.

B. Energy Analysis

The energy consumption of classification algorithm depends
on calculations made on each video frame for the classification
process. In our algorithm, in order to calculate the similarity
between the query object and each of the prototype objects in
the classifier model, we perform Euclidian-distance calculation
for each feature and it requires O(mn) simple subtractions
where m refers the feature count and n refers to number of
prototypes. In order to calculate the total weight for the query
object, we perform O(mn) additions and multiplications.
Then, for each class, we perform O(1) division to find decision
value for the prototype, O(1) addition to find effectiveness for
the prototype, and O(1) multiplication and addition to find
the total sum for the prototype. Lastly we perform O(1) more
division to find the decision of the class for the query object.
Hence, if we have c classes, totally we perform O(cmn) sub-
tractions, O(cmn+ c) additions, O(cmn+ c) multiplications
and O(c) divisions. Since typically c is small value, total
operation count is linearly dependent on mn. Therefore, total
energy cost at each camera sensor for data processing would be
the cost of performing O(mn) multiplications, additions and
subtractions. Hence, we can again simplify the complexity to
O(n) which is linearly dependent to n.

C. Storage Analysis

As stated in Section IV-B1, the classifier model contains two
models: CSF model and the genetic algorithm model. CSF
model includes the weights of each feature for each class.
Thus, the complexity of the function for calculating the bytes
needed for storage of CSF is O(mc), where m and c denotes
the number of features and classes respectively. Besides,
genetic algorithm model holds features of each prototype
and weights of the prototypes. As a result, the complexity
of the storage required for the genetic algorithm model is
O(n(m+ 1)).

The overall complexity of the storage needed to store the
classifier is O(mc + n(m + 1)) which is linearly dependent

on the number of features, classes and prototypes. Since n
is larger compared to c and m values (i.e., generally c and
m are constants), we can simplify the complexity to O(n). If
we emphasize having limited storage on camera nodes, linear
dependency is the best we can achieve for that purpose.

VI. EXPERIMENTAL EVALUATION

A. Experiment Setup and Performance Metrics

For the experiments, we assume a power plant surveillance
application scenario. In this scenario, when an intrusion occurs
in the area under surveillance, the detected objects are classi-
fied at the camera sensors. The classification is performed as
a multi-class choice with three classes: Human, V ehicle and
Animal. For the camera sensor experiment data, the Caltech
101 image dataset [28] (for V ehicle and Animal classes) and
search results from Google Image Search (for Human class)
are used by formatting them into the CmuCam3 [25] output
format. The CalTech101 dataset does not contain V ehicle
and Animal classes. Therefore, images from several different
classes in Caltech 101 dataset are re-grouped according to
these classes. The dataset is divided into three sets: First-
Training, Second-Training and Test. The number of images
is determined as 10 for each class in each of the training sets
and 20 for each class in the test set.

The Shape Ratio feature of each sample is extracted by
simply dividing the width of the image by the height value.
Besides, Speed values are randomly generated, considering
that it is not possible to have speed values in an image
dataset. For the random generation, speed values between
[1, 10], [5, 25] and [10, 100] meter/sec are used for classes
Human, Animal, V ehicle, respectively.

As mentioned in Section IV-B, the CSF mechanism [9]
is applied in order to find representative and discriminative
features for each object class. CSF mechanism gives weights
of each feature for each class. Acquired weights are given
in Table I. According to these weights, it has been observed
that Speed is the dominant feature for all classes. However,
the effect of it is more for Animal class than the other two
classes.

TABLE I
CSF WEIGHTS

Shape Ratio Speed
Human 0.371051 0.628949
V ehicle 0.342217 0.657783
Animal 0.130904 0.869096

We have considered three metrics to assess the performance
of the classification:

• Classification Accuracy: This metric shows the accuracy
in estimating the class of the intruder.

• Energy Overhead: This constitutes total energy in pro-
cessing and transmitting the frames (if needed). Our goal
is to minimize this overhead in order to maximize the
lifetime of the cameras.

• Occupied Space: This metric shows the required space
for classifier model at the camera sensor. The occupied



should be minimum, considering that the sensor has a
limited memory.

B. Performance Results

1) Classification Accuracy: Under given test setup, the
classification results in Table II and Table III are obtained. As
mentioned in Section IV-B2, the classifier performs multiple
labeling by providing fuzzy membership values in the range
[0,1] for each class. Thus, in order to measure the precision
values, the class with the highest membership value is taken as
the classification result. The system performs a high accuracy
ratio in which only a total of 1 instance is classified wrong
among the 60 test instances. The only instance is a V ehicle
instance and classified as Animal due to its very low Speed
value. As seen in Table I, Speed is a more effective feature
for Animal class. Thus, having Speed values very close to
those of the Animal class caused such a classification.

TABLE II
CONFUSION MATRIX FOR GA-BASED CLASSIFICATION

Prediction
Human V ehicle Animal

A
ct

ua
l Human 20 0 0

V ehicle 0 19 1
Animal 0 0 20

TABLE III
CLASS ACCURACIES FOR GA-BASED CLASSIFICATION

Class Accuracy
Human 1.00
V ehicle 0.95
Animal 1.00
Total 0.98

In addition, we compared our classification results with a
baseline approach which uses a fuzzy membership set defined
by an expert user to do the classification. The results shown
in Table IV and Table V indicate that overall classification
accuracy is increased to 0.98 by using genetic algorithm based
classifier from 0.92, where an expert user prepares fuzzy
membership functions to be used in classification process. In
addition, the whole classification process is automated and
human intervention is removed.

Finally, we repeated the same experiments by introducing
a noise of 20% to the randomly-generated Shape Ratio &
Speed values that may happen due to errors in localization or
obstacles in the environment. We observe that the results do
not change as the proposed approach can handle such errors
perfectly.

2) Energy Overhead: We also performed experiments to
assess the energy consumption of our approach at camera sen-
sors. We used the AVR Simulation and Analysis Framework
(AVRORA) to calculate energy costs [29] at camera sensors.
AVRORA is an emulator which can provide realistic results as
if the approach is run on a typical CMOS sensor. It has built in
functions that can compute the processing and communication
costs.

We used a baseline approach which processes the frames at
a base-station and determines the location and classification

TABLE IV
CONFUSION MATRIX FOR FUZZY-MEMBERSHIP-BASED CLASSIFICATION

Prediction
Human V ehicle Animal

A
ct

ua
l Human 20 0 0

V ehicle 0 19 1
Animal 1 3 16

TABLE V
CLASS ACCURACIES FOR FUZZY-MEMBERSHIP-BASED CLASSIFICATION

Class Accuracy
Human 1.00
V ehicle 0.95
Animal 0.80
Total 0.92

of the objects at the base-station. In that case, the frames
travel through multiple hops (i.e., k) to reach the base station.
This approach is referred to as ‘Traditional Method’ in the
graphs. Note that our approach performs the localization and
classification on site and does not send any data to the base-
station. It only sends alarms whenever needed. The results are
given in Table VI and Table VII.

TABLE VI
ENERGY COSTS FOR DIFFERENT TASKS IN BOTH APPROACHES

Task Cost in Joule
C: One-time CPU cost to process the frame

to extract and classify the moving object 0.0220
(our approach)

M : Transmission cost of the
whole frame for 1 hop 0.0700
(traditional approach)

T : Transmission cost of the
alarm for 1 hop 0.0007
(our approach)

Taking the Same for both
video data cases

TABLE VII
TOTAL ENERGY COST COMPARISON OF BOTH APPROACHES (IN JOULES)

Process Traditional Proposed
Method Method

For 1 Hop M = 0.0700 C + T = 0.0227
For k Hops M ∗ k = 0.0700 ∗ k C + T ∗ k =

0.022 + 0.0007*k

The results for varying k (Hop Count) values are depicted in
Figure 2. As can be seen from this figure, energy overhead for
our approach is constant and significantly less than the tradi-
tional method. We would like to note that, in this experiment,
every moving object detection event is sent as an alarm to the
sink. If we define some alarm criteria for the proposed method,
the energy consumption would be further reduced (i.e., alarms
are only sent when needed).

3) Occupied Space on Camera Sensors: As mentioned
in Section V-C, the sensor holds two types of models for
classifier. The actual required space for each of these in our
experiments are given in Table VIII. As can be seen, the space
requirements are not significant compared to the available
space on CMUCam3 sensors (e.g., 128MB).

VII. CONCLUSION

To realize the remote surveillance with WMSNs, the de-
tected objects should be accurately classified at camera nodes



Fig. 2. Energy Costs of Two Different Methods

TABLE VIII
SPACE OCCUPIED BY CLASSIFIER MODELS ON THE SENSOR

Model Occupied Space
CSF Model 24Bytes
GA Model 360Bytes

with limited processing, so that the lifetime of the network
can be extended. In this paper, we present a lightweight and
accurate object classification approach which can work on-site
at a camera sensor with limited information. The approach
utilizes genetic algorithm to built classifiers on top of two
simple but effective features, which are the Shape Ratio &
Speed of the detected objects.

The experimental evaluation reveals that, our approach can
effectively classify typical objects, i.e., human, animal and
vehicles, in a power-plant surveillance application with an
error rate of at most 2% overall. We also assess the energy
overhead of our approach on the individual camera sensors.
The energy consumption is significantly reduced compared to
the cases where the classification is performed at the base-
station due to reduction in the communication energy cost.

In the future, we plan to increase the number of features
used in classification to further improve the accuracy and be
able to work with more classes. Additionally, we will also
investigate online training opportunities for the approach.
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