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Web spamming has emerged to deceive search engines and obtain a higher
ranking in search result lists which brings more traffic and profits to web sites.
Link farm is one of the major spamming techniques, which creates a large set of
densely inter-linked spam pages to deceive link-based ranking algorithms that
regard incoming links to a page as endorsements to it. Those link farms need
to be eliminated when we are searching, analyzing and mining the Web, but
they are also interesting social activities in the cyberspace. Our purpose is
to understand dynamics of link farms, such as, how much they are growing or
shrinking, and how their topics change over time. Such information is helpful in
developing new spam detection techniques and tracking spam sites for observing
their topics. Especially, we are interested in where we can find emerging spam
sites that is useful for updating spam classifiers. In this paper, we study overall
size/topic distribution and evolution of link farms in large-scale Japanese web
archives for three years containing four million hosts and 83 million links. As
far as we know, the overall characteristics of link farms in a time-series of web
snapshots of this scale have never been explored. We propose a method for
extracting link farms and investigate their size distribution and topics. We
observe the evolution of link farms from the perspective of size growth and
change in topic distribution. We recursively decomposed host graphs into link
farms and found that from 4% to 7% of hosts were members of link farms. This
implies we can remove quite a number of spam hosts without contents analysis.
We also found the two dominant topics, “Adult” and “Travel”, accounted for
over 60% of spam hosts in link farms. The size evolution of link farms showed
that many link farms maintained for years, but most of them did not grow.
The distribution of topics in link farms was not significantly changed, but hosts
and keywords related to each topic dynamically changed. These results suggest
that we can observe topic changes in each link farm, but we cannot efficiently
find emerging spam sites by monitoring link farms. This implies that to detect
newly created spam sites, monitoring current link farm is not enough. Detecting
sites that generate links to spam sites would be an effective approach.

†1 Institute of Industrial Science, the University of Tokyo
∗1 Presently with Rakuten Institute of Technology, Rakuten Inc.

1. Introduction

The Web has become a major source of information and a place for commercial
activities for the last two decades. Many people now access the Web via search
engines such as Google, Yahoo! And MSN to get knowledge, reserve hotels, and
buy daily product. While there are over one trillion URLs on the Web 1), the half
of users look at no more than the top five sites in search result lists 2). In this
situation, it is essential to obtain a high ranking in search results, which leads
to increase in visitors and profits. As a result, some people started manipulating
pages’ contents and link structures to mislead search engines and boost their
rankings. This behavior is called web spamming, and manipulated pages are
called spam pages.

Spammers use various techniques for manipulating textual contents and the
link structure. They insert popular keywords into their pages and copy relative
documents from other sites to make their sites look useful. They also create a
link farm, a densely connected structure which consists of many inter-linked spam
pages, to increase the number of incoming links and deceive link-based ranking
algorithms such as PageRank 3) which regard incoming links as endorsements to
that pages.

Addressing web spam is critical not only for search engines but also for web
analysis applications based on web archives, since spamming techniques confuse
various web analysis. For example, when we use link-based community extraction
methods such as HITS 4) and trawling 5), results would include many link farms.
Artificially stuffed popular keywords can contaminate the result of time-frequency
analysis of terms in the Web. Addressing web spam is also challenging because
new spam pages are being continuously created to avoid new anti-spamming tech-
niques and to advertise new products. For example, spammers started inserting
short text segments copied from various sites to avoid document copy detection
techniques. They also continue creating massive pages advertising new drugs and
products, which have not yet known to spam filters.

Spam pages need to be eliminated when we are searching, analyzing and mining
the Web, but they are also interesting social activities in the cyberspace. In this
paper, we focus on link farm and study dynamics of link farms, such as, how
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much they are growing or shrinking, and how their topics change over time. Such
information is helpful in developing new spam detection techniques and tracking
spam sites for observing their topics. Especially, we are interested in where we
can find emerging spam sites that is useful for updating spam classifiers. We use
large-scale Japanese web archives for three years containing four million hosts
and 83 million links. As far as we know, link farms in a time-series of snapshots
of this scale have never been explored.

In previous work 6), we extracted link farms in a single Web snapshot by ap-
plying a strongly connected components (SCC) decomposition algorithm to the
Web graph. We showed that except for the largest SCC (i.e., the core), almost
all large SCCs were link farms. We, however, could not efficiently extract link
farms in the core. In this paper, we improve the SCC decomposition algorithm to
extract more densely-connected link farms in the core. That is, we prune nodes
with small degrees from the core and recursively apply the SCC decomposition
algorithm to the pruned core with increasing a degree threshold. We extracted
large SCCs for at least 10 iterations and showed that these SCCs in the core
were also likely to be link farms. We found that from 4% to 7% of all hosts were
members of link farms. This implies that we can remove quite a number of spam
hosts from web archives only based on the link structure.

After extracting link farms, we classify topics of spam hosts in them based
on URLs. We observed that spammers construct a link farm using spam
hosts having URLs and contents related to the same topic. For example,
Fig. 1 shows two spam pages in one link farm. URLs of these hosts are
"free-debt-consolidating-loans.063.us" and "bad-credit-car-loans.

063.us", respectively. Both hosts contain many similar keywords such as loan,
credit and debt, which implies their topic is “Finance”. Based on this observa-
tion, we assume that a relatively small link farm consists of pages about the same
topic. We select seven spam topics that are heavily targeted by spammers based
on a manual investigation of small link farms and categorize spam hosts in link
farms into these seven topics using URLs. We showed that adding URLs from
link farms can improve the classification result. We found that two dominant
topics, “Adult” and “Travel”, account for over 60% of spam hosts in link farms.

We investigated the size growth and the change in topic distributions of link

Fig. 1 Two spam hosts from the same link farm are related to the same topic.

farms for three years. We found that almost all large link farms do not grow
and overall topic distribution in link farms hardly change although spam hosts
and keywords in link farm dynamically changed. These results suggest that
monitoring existing link farms might be helpful in detecting new spam keywords,
but it is not helpful in detecting newly created spam pages. Detecting sites that
generate links to spam sites can be a better approach to finding emerging spam
pages.

The rest of this paper is organized as follows. In Section 2, we review previous
work on web spamming detection, web page classification by URLs, and topics of
spam. In Section 3, we describe dataset. In Section 4, we propose a recursive SCC
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decomposition algorithm with node filtering and show various characteristics of
SCCs. In Section 5, we select topics of spam hosts in link farms and show topic
classification results. In Section 6, we observe the evolution of link farms from
the perspective of the size and topics. Finally, we summarize and conclude our
work in Section 7.

2. Previous Work

There are several works for understanding and detecting spamming. Gyöngyi,
et al. introduced and categorized various web spamming techniques 7). They
also studied optimal link structures to boost PageRank scores 8). Fetterly, et al.
showed that outliers in statistical distributions are very likely to be spam pages
by analyzing statistical properties of link, URL, host resolutions and contents
of pages 9). To detect link spamming, Gyöngyi, et al. proposed TrustRank 10), a
biased PageRank where rank scores are propagated from a seed set of good pages
through outgoing links. As a result, spam pages obtain low TrustRank scores
while legitimate pages obtain high TrustRank scores. Benczúr, et al. introduced
SpamRank 11), which checks PageRank score distributions of all in-neighbors of
a target page. If this distribution is abnormal, SpamRank regards a target page
as a spam and penalizes it. Saito, et al. employed a graph algorithm to detect
link spam 6). They decomposed the Web graph into SCCs and discovered that
large SCCs were spam with high probability. They extracted link farms in the
core by maximal clique enumeration. This work is similar to ours in that both
apply the SCC decomposition algorithm to the Web graph, but we introduce the
recursive SCC decomposition algorithm instead of clique enumeration to extract
link farms in the core.

There is several research on classification web pages using URLs. Kan and
Thi proposed the approach to web page classification using URLs and supervised
maximum entropy model 12). They mentioned classification with URLs is useful
when page contents are not available, a page contains few text information, or
speed is crucial. Baykan, et al. categorized legitimated pages from Open Direc-
tory Project �1 into 15 topics using their URLs 13) with a high accuracy. This work

�1 http://www.dmoz.org/

is different from ours in that we focus on spam hosts and manually investigate
their topics. Ma, et al. identified URLs of spam sites by lexical and host-based
featurs 14) with a high accuracy. This work is different from ours in that they
used spam URLs in e-mail spams that were labeled by users and automatically
provided by feed.

On the other hand, some research has been performed on topics of spams.
Hulten, et al. categorized spam e-mail messages by the type of a product that
spammers try to advertise 15). They manually examined 1,200 spam messages
from 2003 and 2004 and divided them into 10 categories. Wang, et al. categorized
the keywords that were heavily targeted by redirection spammers to understand
characteristics of redirection spamming 16). They collected different keywords
from anchor texts of spam links at public forums and manually selected 10 spam
topics based on those keywords.

3. Dataset

Three yearly snapshots of Japanese web archive are used for the experiments.
These snapshots were built by massive crawls from 2004 to 2006. Our crawler
is based on the breadth first crawling strategy and focuses on pages written in
Japanese. Pages outside the .jp domain were collected if they were written
in Japanese. The crawler stops collecting pages from a site if it cannot find
any Japanese pages on the site within the first few pages. Hence, our snapshot
contains pages written in various languages such as English, French, Chinese,
and so on. The amount of Japanese pages was around 60% by our estimation
based on character code. Our crawler does not have an explicit spam filter, while
it detects mirror servers and crawl only representative ones. As a result, our
archive includes spam hosts without mirroring.

We used host graphs, where each node represents a host and each edge between
nodes represents a hyperlink between pages in different hosts. We used host
graphs from 2004, 2005, and 2006. In each graph, we included only hosts that
existed in the 2006 archive and excluded hosts that disappeared from 2004 to
2005, since it is difficult to know whether these hosts really disappeared or they
were just not reached by our crawler. The properties of our host graphs are listed
in Table 1.
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Table 1 Properties of the Japanese host graph.

Year 2004 2005 2006
Number of nodes (hosts) 2.98 M 3.70 M 4.02 M
Number of edges 67.96 M 83.07 M 82.08 M

4. Size Distribution of Link Farms

In this section, we introduce the recursive SCC decomposition algorithm with
node filtering for link farm extraction. We then describe the details of obtained
SCCs and evaluate their spamicity to confirm that they are link farms.

4.1 Recursive Strongly Connected Component Decomposition with
Node Filtering

To extract link farms, we decompose the host graph into strongly connected
components (SCCs). An SCC of a graph is a subgraph where all node pairs have
a directed path between them. Since spam hosts tend to construct a densely
connected link structure, it could be assumed that spam hosts form an SCC.
It is known that Web graph is decomposed to the core, the largest SCC which
contains about 30% of all nodes, and many smaller SCCs 17).

Since link farm is a densely connected structure 8) and links between spam and
legitimate hosts seldom exist, it can be expected that spam hosts form an SCC.
Our previous work 6) confirmed that 95% of SCCs around the core that contained
over 100 sites were link farms �1, but we could not efficiently find denser link farms
left in the core.

We expand the previous work by introducing a recursive SCC decomposition
algorithm with node filtering. We prune nodes with small degrees from the core
and recursively apply SCC decomposition to the pruned core with increasing a
degree threshold. That is, after we decompose the host graph into SCCs, we
remove hosts in the core whose in- and out-degree are smaller than two, and
decompose the remaining hosts in the core again. As a result, we can extract
denser SCCs in the core. Next, we investigate the largest SCC among newly
obtained SCCs, remove hosts whose in- and out-degrees are smaller than three,

�1 We manually examined contents of randomly sampled 550 sites by selecting 5 sites from
110 SCCs of size over 100 and found that 95% of such sites were spam.

Table 2 Number of hosts and SCCs of different levels in 2004.

Level 1 2 5 10
# of hosts 2,978,223 556,190 302,613 196,218
# of SCCs 1,888,550 9,055 612 127
Size of the core 749,166 520,554 301,120 195,926
(%) 25.15 93.6 99.51 99.85

Table 3 Number of hosts and SCCs of different levels in 2005.

level 1 2 5 10
# of hosts 3,702,029 949,742 517,057 329,990
# of SCCs 2,188,035 12,633 830 135
Size of the core 1,271,253 890,703 512,370 329,290
(%) 34.34 93.78 99.1 99.79

Table 4 Number of hosts and SCCs of different levels in 2006.

level 1 2 5 10
# of hosts 4,017,250 918,826 499,031 315,644
# of SCCs 2,483,446 12,182 899 215
Size of the core 1,245,152 872,269 495,451 314,950
(%) 31.00 95.00 99.28 99.78

and apply the decomposition algorithm to the remaining hosts. This process is
recursively performed with increasing a degree threshold and continued while we
obtain large SCCs in the results.

In this paper, we use terminology listed below.
• Level 1 graph Level 1 graph is the host graph that contains all hosts.
• Level n SCC Level n SCC is the SCCs obtained by decomposing level n

graph.
• Level n core Level n core is the largest level n SCC. Level 1 core is the core

of the Web.
• Level n graph (n ≥2) Level n graph contains hosts that exist in level n− 1

core and have in- and out-degrees of more than n.
• Size of an SCC Size of an SCC is the number of hosts in an SCC.
4.2 Size Distribution of Strongly Connected Components
The decomposition results of level 1, 2, 5, and 10 graphs in 2004, 2005 and 2006

are listed in Table 2, Table 3, and Table 4. The proportion of the core size
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Fig. 2 SCC size distribution of year 2004 (top), 2005 (middle), and 2006 (bottom). Each
graph shows the size distribution of SCCs of different levels.

increases drastically between level 1 and level 2 and remains stable after level 2
in all years. This means that hosts in the core of the Web are densely connected.

Figure 2 shows the size distributions of SCCs of different levels in each year.

Table 5 Exponent of SCC size distributions.

Year/Level 1 2 5
2004 −2.50 −2.50 −2.67
2005 −2.44 −2.60 −2.52
2006 −2.45 −2.54 −2.29

The x axis shows the size of SCCs and the y axis shows the number of SCCs. As
the Figure indicates, the size distribution of SCCs follows the power law, which
agrees with Broder, et al. 17). Moreover, we found that the size distributions
of SCCs of different levels show the similar power-law exponents as listed in
Table 5.

Note that abnormal distribution appears at the tail of each distribution graph
in Fig. 2. This phenomenon is particularly clear in SCCs of size over 100. We
measured spamicity of such SCCs and discovered that large SCCs containing
over 100 hosts were likely to consist of spam hosts. Details of measurement are
explained in Section 4.3.

Figure 3 illustrates the overall structure of level 1 and level 2 SCCs in each
year. The left-hand side represents the structure of level 1 SCCs and the right-
hand one shows that of level 2 SCCs. A big gray node represents a core, black
nodes represent SCCs with over 100 nodes, and white nodes represent smaller
SCCs that connect large SCCs. The size of a node represents the number of hosts
in the SCC. Two SCCs are connected by a directed edge when hyperlinks exist
between hosts in SCCs at both ends. Each edge starts from the thick end and
goes to the thin end.

Comparing left and right sides of Fig. 3, we can see both level 1 and level 2 SCCs
show similar structures. In addition, most large SCCs are directly connected to
the core. Some large SCCs form a larger link structure by connecting to other
large SCCs. We also checked how level 1 SCCs were connected to level 2 SCCs.
Surprisingly, we found that most level 1 SCCs were directly connected to the
level 2 core. That is, link farms in even different level graphs are isolated from
each other. This implies that most link farms are isolated from each other.

4.3 Spamicity of Strongly Connected Components
After extracting SCCs, we evaluated their spamicity to verify whether they

were link farms. We used hostname properties for spamicity measurement based
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Fig. 3 Connectivity of level 1 and level 2 SCCs in 2004 (top), 2005 (middle) and 2006
(bottom). Level 1 SCCs and level 2 SCCs show similar connectivity in all years.

on the study of Fetterly, et al. 9) and Becchetti, et al. 18). We used two met-
rics: hostname length and spam keywords in a hostname. Hostname length
is the number of characters in it. Spammers tend to generate long URLs
such as "sample-job-reference-letters.974.us" and stuff terms such as

Table 6 Percentage of spam hosts of different hostname lengths.

Hostname length Total host Spam host Spam host (%)
1–19 33 6 18.2%
20–29 35 13 37.1%
30–39 15 7 46.7%
40–49 5 5 100.0%
50–59 6 6 100.0%
60–69 3 3 100.0%
70–79 1 1 100.0%
80–89 0 0 0.0%
90–99 2 2 100.0%
Total 100 43 43.0%

porn,casino,cheap,download in URLs �1. We obtained spam keywords as fol-
lows. First, we extracted SCCs that contains over 1,000 hosts from the 2004
archive. We split hostnames of hosts in these SCCs into tokens by non-alphabetic
characters, such as periods, dashes, and digits. Then, we made a frequency list
of these tokens and manually chose 114 tokens as spam keywords from the 1,000
tokens with the highest frequencies. These keywords contain words from various
languages such as English, Spanish, Italian, French, and Japanese, and it could
detect spam hostnames in various languages. In addition to these keywords, we
regarded the first field of a hostname as a spam keyword if it contained only non-
alphabetic characters such as dashes and digits (e.g., "123-vakantiehuis.nl").

We investigated if hostname length and spam keywords in a hostname could
correctly evaluate spamicity. We randomly selected 100 hosts from all hosts and
investigated the relation between spamicity and hostname length. Table 6 shows
that the percentage of spam hosts increases as the hostname length increases.
Especially, all hosts that had hostnames consisting over 40 characters were spam.
On the other hand, we randomly selected 100 hosts of which hostnames contained
more than one spam keyword. Manual investigations showed that 98% of those
hosts were spam hosts.

We investigate average hostname length of hosts in SCCs and ratio of hosts
with hostnames containing spam keywords. If an SCC shows a long averaged

�1 For all hosts in the dataset, the average hostname length was 24.25 characters, and the
ratio of hostnames that contain spam keywords were 8.97%.
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Fig. 4 Spamicity of SCCs of level 1: Average hostname length (left) and ratio of spam
hostnames (right).

Fig. 5 Spamicity of SCCs of level 2: Average hostname length (left) and ratio of spam
hostnames (right).

hostname length or a high ratio of hostnames containing spam keywords, that
SCC is regarded as having high spamicity.

Figure 4, Fig. 5 and Fig. 6 show the results of spamicity measurement. In all
Figures, log-scale is used for the x axis that represents the size of an SCC. We
examined spamicity of SCCs of different levels except the core. We can see that
as the size of an SCC increases, the average hostname length and the ratio of
hostnames containing more than one spam keyword also increase. This indicates
that SCCs with relatively many hosts (especially, over 100 hosts) have very high
spamicity, which agrees with the result of Ref. 6).

Since some large SCCs in deeper level graphs showed low spamicity as described
in Fig. 6, we manually investigated hosts in them and found that they were also

Fig. 6 Spamicity of SCCs of level 4: Average hostname length (left) and ratio of spam
hostnames (right).

Table 7 Number of SCCs (size over 100) and hosts in them.

Year/Level 1 2 3 4 5 Total
2004 # SCCs 228 24 7 9 2 270

# hosts 182,285 18,650 9,306 5,032 242 215,515 (7.2%)
2005 # SCCs 167 32 18 13 7 237

# hosts 95,347 38,111 8,236 15,566 2,789 160,049 (4.3%)
2006 # SCCs 180 26 21 6 8 241

# hosts 146,015 26,127 11,092 9,084 1,499 193,817 (4.8%)

spam hosts. Their hostnames were short and consisted of a series of spam key-
words without any non-alphabetic characters (e.g., "www.dvdporno.net"), or
consisted of only digits and characters (e.g., "www.ib5.x1024.com").

Thus, we confirmed that large SCCs of size over 100 have high spamicity, which
means that large SCCs are likely to be link farms. Table 7 lists the number of
SCCs with size over 100 and the number of hosts in such SCCs. Considering that
large SCCs are likely to be link farms, we found about from 4.3% to 7.2% of all
hosts were spam hosts with a precision of 95% for five iterations. This implies
we can remove quite a number of spam hosts without contents analysis.

To confirm whether the tendency that large SCCs are likely to be link farms
continues in the depth of the core, we manually investigated hostnames in large
SCCs in from level 5 to level 10 graphs. As described in Table 8, this tendency
continued in deeper level graphs.
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Table 8 Number of link farms among SCCs (size over 100), in deep level graphs.

Year/Level 5 6 7 8 9 10
2004 Spam / Total 2/2 1/2 1/2 1/1 2/2 0/0
2005 Spam / Total 6/7 3/3 3/3 1/1 1/1 1/1
2006 Spam / Total 8/8 2/2 3/3 1/1 1/1 0/0

Table 9 Number of SCCs of size over 100 and hosts in them. SCCs of from level 1 to level 5
are used.

# of SCCs # of Hosts in SCCs
2004 270 215,515
2005 237 160,049
2006 241 193,817
Total 748 569,381

5. Topic Distribution of Link Farms

In this section, we study topics of spam hosts in large SCCs obtained in the
previous section. We investigate topics of spam hosts and select seven topics that
are heavily targeted by spammers. We classify hosts in SCCs of from level 1 to
level 5 based on their hostnames to analyze the topic distribution in link farms.
Details of SCCs are listed in Table 9. From 569,318 hosts, we removed duplicate
hostnames and finally obtained 245,822 hosts.

5.1 Topics in Link Farms
To select topics of spam hosts, we referred to the topic categorization of e-mail

spam 15) and redirection spam 16). Since characteristics of link spam are different
from those of e-mail spam and redirection spam, we removed and added some
categories after manual investigation into spam hosts in our dataset.
• Adult Hosts of this category contain porno-related contents.
• Dubious product Hosts of this category contains illegal products such as

a crack, a key generator, and pirate DVDs. A crack is a tool for removing
software protection such copy protection and serial key. A key generator
generates illegal serial keys for software.

• Finance Hosts of this category advertise financial services such as banking,
credit card, loan, mortgage and real estate.

• Gamble Hosts of this category include contents about gamble, casino, and

various poker games.
• Mobile phone Hosts of this category provides mobile phone contents such

as wall-paper, ringtone, text-message formats, and mobile games.
• Job Hosts of this category include contents about employment, job, and

affiliation.
• Travel Hosts of this category advertise hotels, accommodations, flight tick-

ets, and car rental.
5.2 Topic Classification
In this section, we classify topics of spam hosts based on their hostnames and

a machine learning approach. We introduce a method for obtaining a sufficient
number of labeled samples for classification. We build a binary classifier for each
topic using two different data sets and two different learning algorithms. We
evaluate the classification performance using precision, recall, and an F-measure.

5.2.1 Training and Test Set
To obtain a sufficient number of labeled samples for training, we used an ob-

served characteristic of link farms that small link farms consist of hosts having
contents/hostnames related to an identical topic. Based on this, we first manu-
ally identified topics of a small number of hostnames in a small link farm, and
if those hostnames were related to an identical topic t, we labeled the remaining
hostnames in the link farm with the topic t.

We selected SCCs of size between 100 and 180 as small link farms. Among
such 299 SCCs, we excluded 23 SCCs that contained meaningless hostnames
(e.g., thjy.cq.focus.cn, quicklink38.netfirms.com). We also excluded 80
SCCs that contained hostnames that were not related to seven topics described in
Section 5.1. Those SCCs consisted of hosts on local information, or selling specific
products (e.g., philadelphia.pa.local-weather.ws, www.york-florists.co.
uk).

We found 31 SCCs of the remaining 196 SCCs contained hosts on multiple
topics: shopping mall sites consisting of hosts advertising products related to
various categories, domain name selling sites consisting of hosts advertising do-
main names on different topics.

Table 10 lists the number of SCCs related to a single topic and the number
of hosts in them. We obtained 11,948 training samples by investigating only 165
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Table 10 Number of SCCs (size of between 101 and 180) and hosts related to each topic.

Category # of SCCs # of hosts
Adult 78 6,082
Dubious 3 330
Finance 10 658
Gamble 14 938
Job 18 1,048
Mobile 11 642
Travel 31 2,250
Total 165 11,948

SCCs.
We built seven binary classifiers. Each classifier checks whether a given host-

name is related to a specific topic, e.g., “Adult” or “Non-adult”. We created
seven different training and test sets by changing positive and negative labels of
fixed hostnames. For example, a hostname "sample-job-reference-letters.

974.us" is a positive sample for “Job” classifier, while it is a negative sample for
the other classifiers. As a result, the ratio of the positive and negative samples
becomes 1-to-6 in all training and test sets.

To confirm whether hostnames labeled by link farms can improve the classifica-
tion performance, we trained classifiers using two data sets: the set H consisting
of only hand-labeled hostnames and the set HS consisting of hand-labeled host-
names and hostnames from labeled SCCs.

For the data set H, we prepared 150 hand-labeled hostnames for each topic.
For the data set HS, we prepared 75 hand-labeled hostnames and 75 hostnames
from labeled SCCs for each topic. Consequently, each set had 1,050 hostnames
(150 hostnames × seven topics).

To evaluate performance of topic classifiers, we carried 30 trials; in each trial,
data sets H and HS were randomly divided into training sets SH and SHS

consisting of 100 positive and 600 negative samples. SH contained 100 positive
samples labeled by hand. SHS contained 50 positive samples labeled by hand
and 50 positive samples from SCCs. SH and SHS were used to train classifiers,
and the resulting classifiers were tested on the fixed test sets. After all trials, 30
classification results on each data set were obtained for one topic and averaged
to produce the final result.

For test sets, we selected 700 hostnames (100 hostnames × seven topics) of
which contents were manually checked. We changed positive and negative labels
of these hostnames to create seven different test sets. For each topic, we did not
select test samples from SCC where a training sample was selected.

5.2.2 Features and Algorithms
We used n-grams as features, which are used broadly for web page classification

based on texts 19),20). N-gram is the sequences of n-characters. For example, we
can divide a hostname cheaphotel into six 5-grams including cheap, heaph,
eapho, aphot, phote, and hotel.

To create n-grams from hostnames, each hostname was lower-cased and split
into tokens by using punctuation marks, numbers or other non-alphabetic charac-
ters as delimiters. Among obtained tokens, we removed tokens of which the length
was less than two and tokens that started with two same characters. We also
removed tokens like www, com because they frequently appear in all URLs. Thus,
a URL www.free-download-ringtones.com produces tokens free, download,
and ringtones. In total, we obtained 61,221 tokens. We extracted 3, 4, 5, 6, 7
and 8 grams from these tokens. The total number of n-gram features was 530,224.

We used both a batch learning algorithm and an online learning algorithm for
training to confirm if we can classify topics regardless of learning algorithms. For
batch learning, we used the support vector machine (SVM) with a linear ker-
nel implemented by SV MLight 24). For online learning, we used the confidence-
weighted (CW) 21),22) learning algorithm implemented by the online learning li-
brary, oll 23). During online learning, we shuffled the sample data and trained
classifiers with 20 iterations.

5.2.3 Classification Results
We built classifiers using different labeling strategies and learning algorithms.

The classification results are listed in Table 11 and Table 12. We used precision,
recall and an F-measure to evaluate the classification performance.

Overall classification performance improved when HS was used for training.
Average improvement in F-measure was 1.7% in classifiers trained with SVM and
1.3% in classifiers trained with CW. F-measures are marked with asterisks in Ta-
ble 11 and Table 12 if they were better with greater than 95% confidence based
on the t-test. Using SVM, classifiers trained with HS outperformed with high
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Table 11 Classification result using different data sets and SVM.

H HS HSall

P R F P R F P R F
Adult 0.956 0.811 0.877 0.943 0.821 0.876 0.866 0.900 0.882
Dubious 1.000 0.992 0.996* 1.000 0.985 0.992 1.000 0.990 0.995
Finance 0.937 0.796 0.859 0.975 0.783 0.868 0.988 0.815 0.893
Gamble 0.947 1.000 0.973 0.980 0.995 0.987* 0.985 0.985 0.985
Job 0.994 0.799 0.884 0.990 0.949 0.969* 1.000 0.950 0.974
Mobile 0.996 0.911 0.951 0.990 0.947 0.968* 0.975 0.930 0.952
Travel 0.973 0.900 0.935 0.975 0.900 0.936 0.968 0.905 0.935
Average 0.972 0.887 0.925 0.979 0.911 0.942 0.969 0.925 0.945

P: Precision, R: Recall, F: F-measure

Table 12 Classification result using different data sets and CW.

H HS HSall

P R F P R F P R F
Adult 0.970 0.791 0.871 0.977 0.801 0.880 0.919 0.890 0.904
Dubious 1.000 0.988 0.994 1.000 0.988 0.994 1.000 0.990 0.995
Finance 0.912 0.949 0.929 0.989 0.868 0.922 0.994 0.890 0.937
Gamble 0.977 1.000 0.989 0.974 0.998 0.986 0.990 0.995 0.993
Job 1.000 0.756 0.859 1.000 0.903 0.949* 1.000 0.965 0.983
Mobile 0.989 0.928 0.957 0.990 0.953 0.971* 0.995 0.960 0.977
Travel 0.963 0.900 0.931 0.962 0.900 0.930 0.973 0.900 0.936
Average 0.973 0.902 0.933 0.985 0.916 0.947 0.982 0.941 0.961

P: Precision, R: Recall, F: F-measure

confidence in three topics whereas classifiers trained with H outperformed in one
topic. Using CW, classifiers trained with HS outperformed with high confidence
in two topics whereas classifiers trained with H did not outperform in any topic.
Improvement by HS was mainly due to the increase of recall, which means that
using hostnames from labeled SCCs identified spam hosts that were not identified
by using only hand-labeled hostnames.

On the other hand, higher F-measures were achieved by the training set HS

regardless of learning algorithms. Note that we used the same training/test sets
for two algorithms.

We built classifiers using all available training samples to obtain the best clas-
sification result. We prepared a data set HSall which consisted of 150 hostnames
labeled by hand and 200 hostnames from labeled SCCs for each topic. In total,
HSall contained 2,450 samples (350 × seven topics). The averaged F-measures

were 0.945 in SVM and 0.961 in CW.

6. Evolution of Link Farms

In Section 4 and Section 5, we confirmed that large SCCs of size over 100 were
likely to be a link farm and classified topics of hosts in link farms with a high
accuracy. In this section, we study temporal changes in link farms’ size and topic
distributions using three-yearly host graphs.

6.1 Growth of Link Farms
We observed changes in SCCs’ size and growth rate using the evolution metrics

from Ref. 25). In this paper, we focus on the growth and shrinkage of SCCs using
the notations as follows.
• t1, t2, ..., tn : Time when each archive crawled. Time unit of our archives is

a year.
• C(tk) : SCC at time tk.
• N(C(tk)) : Size of an SCC at time tk.
To understand how a single SCC C(tk) has evolved, we find out an SCC cor-

responding to C(tk) at time tk−1. This corresponding SCC C(tk−1) is an SCC
that shares the most hosts with C(tk). When multiple SCCs exist at tk−1 which
share the same number of hosts with C(tk), we select the largest SCC as the cor-
responding SCC. The pair of (C(tk), C(tk−1)) is called a mainline. We observed
the size change and the growth rate of mainlines from 2004 to 2005, and from
2005 to 2006. The growth rate of C(tk) is defined as N(C(tk))/N(C(tk−1)).

Figure 7 shows the change in the SCC size in a year and Fig. 8 shows the
growth rate of the SCC size. In all Figures, we can notice the size of most
SCCs is stable. Size stability becomes stronger as the size of an SCC increases.
Considering that most large SCCs are a link farm, we can expect that a link farm
hardly expands. Note that a few large SCCs containing over 1,000 hosts shrunk
significantly between 2004 and 2005, which can be observed at the right-bottom
side of left-hand graphs in Fig. 7 and Fig. 8. Considering the large SCCs were
highly likely to be link farms, such decrease can occur when spammers abandon
their link farms and consequently link farms split into small ones. In our previous
work, we used a graph in 2004 which included hosts that disappeared in 2005 and
found that most SCCs of size over 100 were link farms 6). Since we used a graph
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Fig. 7 Evolution of SCC size from 2004 to 2005 (left) and from 2005 to 2006 (right).

Fig. 8 Growth rate of SCC size from 2004 to 2005 (left) and from 2005 to 2006 (right).

that did not include disappeared hosts in this paper, there would be more link
farms that shrunk. If we consider disappeared hosts, the shrinkage trend would
become clearer.

Interestingly, we confirmed that the growth rate of relatively small SCCs (with
size of from 10 to 100) follows Gibrat’s law. That is, the growth rate of an SCC
is independent of its previous size �1.

For further understanding of the evolution of link farms, we investigated the

�1 Gibrat’s law has been observed in firm-size growth in economics and recently some rela-
tionships between the power-law distribution of firm size and Gibrat’s law are confirmed in
Ref. 26).

Fig. 9 Distribution of previous size of large SCCs in 2005 (left) and 2006 (right).

Table 13 Topic distribution in three years.

A T M J D F G O
2004 50.7 11.9 4.8 2.2 2.9 0.8 0.6 26.2
2005 49.6 15.5 4.4 1.1 1.7 0.8 0.7 26.1
2006 51.4 13.0 3.7 2.2 0.9 0.8 0.6 27.4

A: Adult, T: Travel, M: Mobile, D: Dubious product, J: Job,
F: Finance, G: Gamble, O: Others.

previous size of large SCCs. We calculated N(C(tk−1))/N(C(tk)) for C(tk) whose
N(C(tk)) is over 100. Results are illustrated in Fig. 9, where the x axis represents
the previous size ratio and the y axis represents the number of SCCs. Ratio 0
means that all hosts in link farms were newly appeared at tk or link farms emerged
from a very small SCC; ratio 1 means that the size of link farms has not changed.
Peaks are observed at size ratio 0 and 1. This suggests that most large link farms
emerge in one year, or they are well-maintained over one year.

6.2 Trends in Link Farms
In this section, we observe temporal changes in topic distributions of spam hosts

using our classifiers that identified topics of spam hosts with a high accuracy in
Section 5. We classified topics of all spam hosts in large SCCs of level 1 to
level 5 (See Table 7.) from our three-yearly web archive. The result is listed
in Table 13. Note that our classifier does not classify hostnames that are not
related to seven topics described in Section 5.1. These hostnames were classified
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Table 14 Spam keywords with the highest frequencies in hostnames related to “Finance” in
2004, 2005, and 2006.

2004 2005 2006
keyword frequency keyword frequency keyword frequency

card 207 credit 202 loan 169
loan 206 loan 143 card 162

credit 202 card 136 credit 133
insurance 126 cards 88 cards 106

cards 117 mortgage 77 insurance 103
mortgage 102 insurance 76 mortgage 86

home 58 kredite 70 kredite 70
loans 58 report 54 car 50
car 55 finder 49 home 49

personal 52 reports 45 loans 49

“kredite” means “loans” in German. “report” and “finder” are from credit
reports.

into “Others”. In addition, about 3% hostnames were classified into more than
one topic in every year. We included these hostnames into “Others” as well.

As Table 13 shows, the topic distribution in link farms hardly changed for
three years. In all years, the most dominant topic is “Adult”, which agrees to
the observation in e-mail spam 15). It forms over 60% of all spam hosts in every
year. “Travel” is the second most popular topic. The number of spam hosts
related to “Travel” is about ten times that of spam hosts related to “Finance”.
The percentage of hosts classified as “Others” also hardly changed.

We investigated a frequency and a ranking of spam keywords in each year and
found that they are different in every year. Table 14 and Table 15 list the 10
keywords with the highest frequencies from “Finance” and “Mobile”.

Although the percentage of “Finance” hardly changes in all years in Table 13,
the rankings and frequencies of keywords dynamically change in Table 14. For
example, new keywords “report”, “finder” and “reports” appeared in the top
frequency list while “car” and “home”disappeared in 2005. On the other hand,
while the percentage of “Mobile” decreases for all years in Table 13, new keywords
with high frequency, such as “xsonnerie” and “toques”, appeared in 2005 and
some of their frequency increased in 2006; a keyword “sonneries” that was the
most dominant disappeared after 2005 as shown in Table 15. These results imply
that hosts in link farms dynamically changes over time.

Table 15 Spam keywords with the highest frequencies in hostnames related to “Mobile
Phone” in 2004, 2005, and 2006.

2004 2005 2006
keyword frequency keyword frequency keyword frequency
sonneries 2969 ringtones 1202 ringtones 1203
ringtones 1933 nokia 1133 nokia 1132

nokia 1645 logos 1064 logos 1072
portable 1485 xsonnerie 929 xsonnerie 929
sonnerie 1291 suonerie 844 suonerie 843
portables 1240 loghi 813 loghi 812

polyphoniques 1200 polyphonic 721 klingeltoene 725
logos 1189 klingeltoene 715 polyphonic 721
ecran 1177 toques 712 toques 712

klingeltoene 1105 ringetoner 561 ringetoner 561

“sonneries”, “toques”, “polyphonic”, and “klingeltoene” mean “ringtones”
in various languages. “loghi” means “logos” and “ecran” is from “fond
d’ecran” which means “wallpaper” in French.

Considering that the lifetime of spam URLs is generally short 27) and spam
pages and keywords appear and disappear frequently, it is interesting that the
overall topics distribution in spam hosts hardly changes.

7. Conclusion

In this paper, we studied overall size/topic distribution and evolution of link
farms in large-scale Japanese web archives for three years. We proposed a recur-
sive SCC decomposition algorithm with node filtering for extracting denser link
farms in the core. We showed that almost all large SCCs containing more than
100 hosts were link farms and we could extract link farms even after removing
many hosts with small degrees. Using this method, we found from 4.3% to 7.2%
of all hosts were in link farms with a precision of over 95%. This means our
method could extract a quite number of spam hosts from web archives without
contents analysis.

We examined topics of hosts in link farms. We selected seven topics and classi-
fied spam hosts into them with an F-measure of 0.96. We studied the distribution
topics in link farms and found “Adult” and “Travel” is the most dominant topics.

We next examined the change in the size and topics of link farms for three
years to understand their evolution. We found that many link farms maintained



Information and Media Technologies 6(3): 745-758 (2011)
reprinted from: IPSJ Transactions on Database 4(2): 158-171 (2011)
© Information Processing Society of Japan

757

for years, but most of them did not grow. On the other hand, we found that
the topic distribution in link farms is stable while hosts in them dynamically
changed. These results suggest that we can observe topical changes in each link
farm, but we cannot efficiently find emerging spam sites by monitoring link farms.
Detecting sites that generate links to spam sites can be a useful alternative for
finding emerging spam sites.
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