
DEWS2006 2A-o4

Efficient Large Scale Continuous Selection-Join Queries Based on

Multidimensional Index

Botao WANG† and Masaru KITSUREGAWA†

† Institute of Industrial Science, The Univeristy of Tokyo
Komaba 4–6–1, Meguro-Ku, Tokyo, 153–8505 Japan

Abstract We consider the problem of large number of continuous selection-join queries over data streams. As far

as we know, in current data stream management systems, events are filtered based on the query plan(s) which are

created according to continuous queries defined by users. Even many kinds of optimizations on query plans have

been proposed, there are few proposals on the processing of continuous selection-join queries. The query plan-based

processing of continuous selection-join queries schedules the executions of operators and manages the buffers for in-

termediate results used by selection or join operators. When the number of continuous selection-join queries becomes

larger, the processing based on query plan is inefficient for two reasons: 1)the system has to schedule large amount

of operators, and 2) the memory will be consumed quickly by the larger number of buffers used by the operators. In

this paper, we introduce an efficient event filtering algorithm based on multidimensional index structure, where the

event filtering is considered as a query in multidimensional space. Because our proposal is not based on query plan,

no operator scheduling is needed. At the same time, only one global buffer for join operation is kept, accordingly

much larger sliding window can be defined. We first introduce an event filtering model for continuous selection-join

queries. Based on the model, an optimized event filtering algorithm is proposed to filter the stream of join results

efficiently. The evaluation results show that the event filtering of large number of continuous selection-join queries

based on our model has good scalabilities with respect to the number of the queries and number of dimensions. The

performance of the event filtering is improved significantly by the proposed algorithm, especially for the continuous

selection-join queries with large sliding window.

Key words data stream, multidimensional index, performance evaluation

1. Introduction

Many kinds of stream data are being generated from dif-

ferent sources, like stock market, weather forecast, location

information (cars, kids, pets), logs (web access, telecommu-

nication, click), sensors (buildings , animals, patients), etc..

Continuous Queries (CQ) are defined to monitor and pro-

cess those data in data stream management systems. Some

of those data from same or different sources are relevant. For

example, for a future trader, he may concern on both fore-

cast of a place where one commodity being traded by him is

produced and the current price of the commodity. One ex-

ample CQ corresponding to his request is shown as follows.

SELECT ∗
FROM TradingStream T , WeatherStream W

WHERE T.name = ”orange” AND T.price < 25 AND

T.productionArea = W.area AND

W.event = ”hurricane” AND W.category > 4 AND

W.date < August

The number of such kind of CQs may be hundreds of thou-

sands. In the paper, we consider the problem of large number

of continuous selection-join queries over data streams for this

kind of data stream applications. The Continuous Selection-

Join Query (CSJQ) is the continuous query composed of both

join and selection operations as shown in the example.

As far as we know, up until now, there doesn’t exist an ef-

ficient data stream management system which can deal with

larger number of CSJQs on multiple streams. Even the sys-

tems like Telegraph [7] [8] [17], Niagara [10] [9], STREAM [2]

[3] [4], Aurora [1] [20], Gigascope [16], can process CSJQs, we

argue that it is hard for these systems to process CSJQs when

the numbers of CSJQ and stream become larger. The main

reason is that the event filtering of CSJQs in [1] [2] [3] [4] [9]

[10] [16] are based on a global query (execution) plan com-

posed of pipelined operators, which have their own buffers.

The overhead to schedule large number of operators can not

be neglected. The maintenance of the buffers used by the

operators is complicated. The more the number of buffers is,

the more the memory will be used. [8] has problems of space

or maintenance when the numbers of CSJQs and tuples kept

in buffer become large.

In order to overcome the above problems, we propose an

efficient algorithm for large number of CSJQs on multiple

streams. The main contributions of this paper are

• We propose a simple event filtering model for CSJQs.

The model is based on multidimensional index structure. No

pipelined operator is used. Only one global buffer is used to

keep tuples for join operation. It allows users to define a

large number of CSJQs with large sliding window on multi-

ple streams.

• We propose an algorithm to filter join results effi-

ciently. The performance can be improved significantly com-

pared to the naive algorithm.

The rest of the paper is organized as follows. Section 2

presents the event filtering model for CSJQs. Section 3 de-

scribes the join result filering algorithm. Section 4 presents

the experimental results. Section 5 discusses the related

work. Section 6 contains the concluding remarks and future

work.

2. Event Filtering Model for Continuous
Selection-Join Queries

We first analyize the reasons why current query plan-based

solutions can not deal with large number of CSJQs and then

introduce the motivation of our proposal.

2. 1 Preliminaries

There are two kinds of basic operations in CSJQ queries:

selection and join. Selection is a stateless operation that

no buffer is required to keep past data. Join operation needs

buffers to keep past data. While creating a global query plan

for the total CSJQs, the system has two basic strategies (Ni-

agra [9] [10]) to arrange the execution sequence of selection

and join operators: selection first or join first as shown in

Fig.1.

shared join

Buffer for join results

Split

Selection of
Query 1

Selection of
Query N

Shared
Selection

Result buffer for join
 of Query 1

Result buffer for
 join of Query N

Join of Quer1 Join of QuerN

Join First Selection First

Buffer for join

Figure 1 Two strategies of creating query plan for multiple

CSJQs

For the join-first query plan, only one buffer is used to keep

the results of the shared join operation. The problem is that

when the number of CSJQs is larger, the number of differ-

ent selection operators becomes larger also. The overhead

to schedule the executions of these operators is high. For

the selection-first query plan, besides the scheduling prob-

lem same as join first, it requires large number of buffers for

join operations. More memory spaces are used. Without

sharing operations at the first step (multiple query plans),

the system will suffer in the overhead of scheduling and high

memory cost much more.

As introduced in [9], join-first plan is better than selection-

first plan for the reason that join is a more expensive opera-

tion than selection. The selection operation filters events ac-

cording to predefined predicates. Many predicate index tech-

niques for event filtering have been proposed, which are built

based on multiple one-dimensional index structures (Count

algorithm [25] and Hanson algorithm [11] [14] [15]) or multidi-

mensional data structure [21] [22]. As introduced in [21] [22],

multidimensional data structure is feasible for event filtering

by utilizing efficient point access methods like UB-tree [19]

or MultiLevel Grid File (MLGF) [23] [24].

Our motivation is that filtering stream of join results (out-

put by ”shared join” in Join First, Fig.2) by utilizing pred-

icate index techniques introduced above instead of multiple

selection operations, so the overhead of scheduling multiple

selection operators can be avoided.

2. 2 Event Filtering Model for CSJQs

The model is shown in Fig.2. It is the model for all CSJQs

with same join predicate. For example, all the CSJQs with

join predicate T.productionArea = W.area will be processed

in the same model.

Join Filtering

CSJQs

CSJQ
Index

Mutltiple Stream Data

Join
Buffer

Join Results Stream

Matched
CSJQs

Figure 2 Event filtering model for continuous selection-join

queries

Inside the model, there are 2 data structures (join Buffer

and CSJQ index) and 2 corresponding operations (Join and

Filtering). Join Buffer is used to keep past data for join op-

eration. It is a global buffer shared by all the CSJQs with

same join predicate. CSJQ index is a predicate index to keep

the CSJQs.

The event filering of CSJQs has two steps. The first step

is join operation where stream data are joined. Symmet-

ric hash join is used in our model. The result is a stream.

The second step is filtering join result stream by utilizing the

CSJQ index.

Structure of one stream data

Time t8

t5

t3

t2

Link List Hash Table

Join
Buffer QId QId QId QId QId QId

CSJQ index

Figure 3 Data structure used in event filtering model of contin-

uous selection-join queries

Fig.3 shows the details of the model. Each stream has two

data structure: link list and hash table. The link list is used

to support the insertion and deletion of stream data in the

way of first in first out. Hash table is used for hash join. The

data type of both link list and hash table is pointer of the

tuple belong to the stream. For each tuple, there is only one

copy in the join buffer.

The CSJQ index is a multidimensional index with tree

structure. Its input is a join result and output is a set of

matched CSJQs. Each dimension corresponds to one at-

tribute of stream and all attributes used to define selection

predicates of CSJQ are used. As an illustration, the example

query used in Section 1, for two streams: 1) TradingStream

with attributes (name, price, productionArea) and 2)

WeatherStream with attributes (event, aera, category,

date), the attributes used in CSJQ index are (name, price,

productionArea, event, aera, category, date). The filtering

of one join result can be a 7d point-enclosed query on hyper-

cubes in a 7d space or a 14d range query on points in a 14d

space by dimension transform. For the details of the way

to make use of multidimensional data structure, please refer

to [21] [22]. The same way is applied to build CSJQ index for

multiple streams.

Because there is no operator inside the model, the over-

head related to execute multiple operators individually can

be avoided. Even each kind of join predicate corresponds

to one instance of the model. We believe that the number

of different join predicates is much less than the number of

CSJQs. At the same time, for one model, only one global

buffer is used to keep past data for join operation, so the

buffer can be very large.

3. Optimization of Join Result Filtering

In the next, we first introduce some assumptions in this

paper and then introduce an optimized algorithm to filter

join results in the case that the number of join results is

more than one.

3. 1 Assumptions

Due to the unbounded nature of streams, queries over

streams are often defined in terms of sliding window. In this

paper, we address sliding windows that are applied across

all streams and the window is defined in terms of period of

time. We only consider about sliding-window equijoin in this

paper in order to simplify the problem.

3. 2 Observations on Join Results and Search

Paths

In our event filtering model for CSJQs, a link list and a

hash table are used for each stream, the cost related to join

operation is low because symmetric hash join is used. The

cost of filtering join results dominates the total cost of CSJQ

processing. Especially the number of join results is larger.

The naive method to filter join results is to make use of

the original search algorithm of the multidimensional data

structure selected to build CSJQ index. Here we propose

an optimized algorithm to improve the performance of join

result filtering based on the following two observations:

S2

S1

1 2

1 3

1 6

1 7

Current Tuple

1 7 1 2

1 7 1 3

1 7 1 6

Hash Results

s1 HashTable

s2 HashTable

Bucket entry
for value 1

1

Figure 4 Structure of hash join result (Input of CSJQ index)

• There exists a common part among the join results (in-

put of CSJQ index). Fig.4 shows an example, where there

are two streams S1 and S2. The attribute used by join opera-

tion of each stream is the first attribute here and the current

input is a tuple belongs to S1. As shown on the right of

Fig.4, the common part is the set of data of the attributes

belong to S1 and the value of each attribute has the same

value as the corresponding value of the S1 input tuple ([1,7]).

• The search result set of a multidimensional index can

be regarded as an intersection of two result sets obtained

from two excluded dimension (attribute) sets of which the

total dimension space is consisted as shown on the top of

Fig.5. There, one dimension set consists of all attributes be-

long to stream S1 and another set consists of all attributes

belong to stream S2.

Generally there are several strategies (depth-first, right-

first or leaf-first) for the traverse of index tree. For all these

strategies, the current input tuple (S1:[1, 7] in Fig.4) will

be processed multiple times in the case that the number of

join result is more than 1. It is a kind of overhead. In the

next, an optimizing algorithm to eliminate this overhead is

Attribute Belong to S1 Attribute Belong to S2

Structure of join result

P1 P2 P3 P5 P6P4

Paths traversed by S1 data: P2 P3 Paths traversed by S2 data: P3 P4

Paths traversed by S1 and S2 data: P3

P1 P2 P3 P5 P6P4 P1 P2 P3 P5 P6P4

Intersection

Figure 5 Paths traversed by different dimension sets

introduced.

3. 3 Partial Dimension Filtering Algorithm (PDFA)

The optimization is based on a search algorithm called Par-

tial Dimension Filtering Algorithm (PDFA). The basic idea

of PDFA is that only the dimensions specified by current in-

put(stream) will be checked while traversing index tree. If

PDFA is executed multiple times with different dimension

sets and the input of each execution is the output of last

execution, the final result set will be same as that of the

original search algorithm. Fig.6 shows an example where the

PDFA is executed 2 times. The first execution (Step1) with

dimension set belongs to S1 (Fig.4), is executed on the total

index tree, and the second execution (Step 2) is on a subtree

of the index tree composed of the paths leading to the results

of the first execution. The dimension set of the second exe-

cution is the set of dimensions belong to S2 (Fig.4). When

the number of join results is more than 1 as shown in Fig.4,

the first step needs to be executed only one time. It is the

point of our optimization.

New Added items for PDFA Items belong to original index

P3

Paths to be traversed
by Step1 (total index)

Result of Search

P1 P2 P3 P5 P6P4 P2 P3

Paths to be taversed
by Step2

(subtree used by Step2)

Step1 Step2

TimpStamp

TimpStamp Entry of Non-leaf Node

 Entry of Leaf Node Pointer of next entry

IR-List IR-List P2 P3

Figure 6 Search based on PDFA and the related data structure

In order to filter join result by PDFA, the paths leading to

the results of the previous execution must be remembered.

The data structures of the entries inside non-leaf node and

leaf node of the index tree are extended as shown in Fig.6.

”TimeStamp” is a flag which is used to mark the paths (on

which the results were found) of the first execution and is

used as an indicator for the second execution. For the en-

try belongs to leaf node, an pointer named ”Pointer of next

entry” is defined, which is used to point to the next entry

which is the result of the first execution. As shown in Fig.6,

P3 is pointed by P2 after the first execution. The system

will keep the head of this list named Intermediate Result

(IR) list. The reason we define the pointer is that the sec-

ond execution does not need to be executed from root to leaf

when the tree is high and the number of intermediate result

is small. It is an implementation problem.

In order to execute PDFA on the index tree, some basic

functions used by multidimensional data structure (intersect,

include, inside, etc.) must be redesigned. The pseudo code

of inside function (named insideEntry) used by PDFA is

shown in Fig.7. The output of the function insideEntry

is a boolean value. The input of currentEntry and Range

have same meanings as those of the original inside checking

function. The flag is the sequence No.(FIRST or SECOND)

of the current execution. The currentStamp is the system

time just before the first execution and the same value will

be used as the input of the second execution. dimSet is the

set of dimensions will be used in current execution. Line 4-6

check whether the entry has been marked or not if the cur-

rent execution is not FIRST. If the entry was not marked,

the entry needs not to be processed further. Line 8-12 check

whether the current entry is inside the input Range with

regard to the dimensions in dimSet. Line 14 means, if the

currentEntry values of all dimensions is inside the corre-

sponding range, the timeStamp (Fig.6) of currentEntry is

set to be currentStamp in the case that current execution is

FIRST. The redesigns of the other basic functions are simi-

lar to the above example. The maintenance of the IR-list is

straight-forward.

1 bool
2 insideEntry(currentEntry, Range, flag, currentStamp, dimSet)
3 Begin
4 If (flag != FIRST && currentStamp != currentEntry.TimeStamp)
5 return FALSE;
6 EndIf
7
8 For (For each dimension currentDim in DimSet)
9 If (Range on currentDim is not inside currentEntry)
10 return FALSE;
11 Endif
12 EndFor
13
14 if (flag == FIRST)
15 currentEntry.timeStamp = currentStamp;
16 EndIf
17
18 return TRUE;
19 End

Figure 7 Inside function used by PDFA

3. 4 Efficiency of PDFA

Many factors influence the efficiency of PDFA. Fundmen-

tally, the more the number of join result is, the more the

filtering based on PDFA can be benefited. Considering the

cost of join operation is low here, the average response time

of one event filtering of CSJQ can be formulated by the fol-

lowing equation,

Taverage = TStep1 + TStep2 ∗Njoin (1)

where Taverage represents the average response time, TStep1

and TStep2 corresponds to the time of Step1 and Step2 in

Fig.6, Njoin represents the number of join results. As shown

in Fig.6, because Step1 is executed on the total index tree

and Step2 is executed on the subtree or IR list directly. Gen-

erally, TStep2 is less than TStep1. And for the same reason

TStep2 is less than the average response time based the origi-

nal search algorithm. The larger the Njoin, the higher the ef-

ficiency of PDDA compared to the original search algorithm

is. When TStep1 is much larger than TStep2 (Fig.11), the

Taverage is dominated by TStep1 which is a constant if Njoin

is not large enough to make TStep2 ∗Njoin to be comparable

to TStep1. We think this observation is very meaningful in

practice.

Because large silding window means that more join results

will be produced, we can say that PDFA is suitable to sup-

port large sliding window.

4. Evaluation

4. 1 Environment

We implemented and compared 4 approached based on 2

algorithms with 2 multidimensional index structures Rtree

[5] [12] and MultiLevel Grid File (MLGF) [23] [24]. The two

algorithms are:

• Naive. The filtering algorithm of CSJQs is same as

the original one of the corresponding multidimensional index

data structure. The selection predicate of CSJQ is regarded

as a hypercube in a high dimensional space and kept in Rtree.

While using MLGF, the hypercube (selection predicates) in a

d space is transferred into a point in a 2d space. The method

of dimension transform and its efficiency has been reported

in [22] [21].

• Optimized. The ways (index building and dimension

transform) are same as those of naive approaches. The dif-

ference is that join results were filtered based on PDFA.

The stream data and continuous selection-join queries are

created according to a workload specification as shown in

Table 1 along with their default values. we change one pa-

rameter and fix the others with their default values without

specific introduction. The size of sliding window is defined

according to period of time. For each evaluation, all results

were measured after all the related data had been loaded into

main memory. The sizes of sliding windows of all CSJQs

queries are same. The average response time of 1000 tuple

filterings of CSJQs was measured for performance evaluation.

Table 1 Parameters Related to Workload

Parameter Value range Default value

Number of queries 50,000-500,000 100,000

Number of attributes (dimen-

sion) per stream

3-17 5

Number of streams 2-6 2

Selectivity of CQSJ index 0.001%-0.1% 0.01%

Ratio of dimension of two

streams

1:5 - 5:1 1:1

All the solutions were implemented in C++. The type of

all attributes used by selection predicates is short integer,

and the type of the attribute used by hash key is integer.

The hardware platform is a Sun Fire 4800 workstation with

four 900MHz CPUs and 16G bytes memory under Solaris 8.

4. 2 Evaluation of Partial Dimension Filtering Al-

gorithm

4. 2. 1 Scalability with Respect to Number of Queries

0
200
400
600
800

1000
1200

1400
1600
1800
2000
2200
2400

50000 150000 250000 350000 450000

F
ilt

er
in

g
tim

e(
m

s)

Number of Selection-Join Queries

Filtering time per event

RTree
PDFA-RTree

MLGF
PDFA-MLGF

Figure 8 The Scalability with Respect to Number of Queries

Fig.8 shows the scalability on the number of queries. The

number of queries changed from 50,000 to 500,000. MLGF

stands for naive solutions based on MLGF. PDFA-MLGF

stands for optimized solution based on MLGF using PDFA.

RTree and PDFA-RTree have corresponding meanings.

All these 4 legends symbol have same meanings in the fol-

lowed evaluations.

Fig.8 shows that the MLGF-based implementations out-

perform the RTree-based implementations. The Implemen-

tations based on PDFA outperforms the naive implementa-

tions. All solutions have good scalabilities. We can say that

the proposed model is suitable to deal with larger number of

CSJQs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

3 5 7 9 11 13 15 17

F
ilt

er
in

g
tim

e(
m

s)

Number of Dimension Per Stream

Filtering time per event

RTree
PDFA-RTree

MLGF
PDFA-MLGF

Figure 9 The scalability with respect to dimension

4. 2. 2 Scalability with Respect to Number of Dimensions

Fig.9 shows the scalability with regard to the number of di-

mensions (attributes) in data streams. X-axis represents the

number of dimensions used by one stream. The MLGF-based

implementations has good scalability in our environment.

The performance of RTree-based implementation deterio-

rates quickly when the number of dimensions increase. The

reason is that one CSJQ is used as a hypercube in a d space

for RTree-based implementation. The overlaps between hy-

percubes increases exponentially when the number of dimen-

sions increases. The MLGF-based implementation is a range

query on points in a 2d space. No overlap exists between

points.

4. 2. 3 Scalability with Respect to Selectivity of CSJQ

Index

0

200

400

600

800

1000

1200

1400

0.001 0.0001 0.00001 0.000001

F
ilt

er
in

g
tim

e(
m

s)

Selectivity factor

Filtering time per event

RTree
PDFA-RTree

MLGF
PDFA-MLGF

Figure 10 The scalability with respect to selectivity of CSJQ in-

dex

Fig.10 shows the scalability with regard to the selectivity

of CSJQ index. Except the naive implementation based on

MLGF, the average response time decreases with selectivity.

We found that the numbers of leaf nodes accessed by MLGF

with different selectivities are at same level, even the num-

ber of results decreases while the selectivity becomes less, the

related time doesn’t change much. The reason is that the hy-

percube representing the selection predicate in a d space is

transferred into a point in a 2d space. The data distribution

are total different from the original distribution. It is one

problem of event filtering based on multidimensional index

structure with dimension transform introduced in [21] [22].

4. 2. 4 Scalability with Respect to Number of Join Re-

sults

0

200

400

600

800

1000

1200

1400

1 5 10 15

F
ilt

er
in

g
tim

e(
m

s)

Result Number Per Probe

Filtering time per event

RTree
PS-RTree

MLGF
PS-MLGF

Figure 11 The scalability with respect to number of hash result

Fig.11 shows the scalability with regard to number of hash

join results. The number of hash result was controlled by ad-

justing the number of tuples kept by each stream. It is rea-

sonable that the average response time increases when the

number of join results becomes larger for the naive imple-

mentations. Because its performance is linear to the number

of input. The average response time based on PDFA seems to

be a constant when the number of join results is larger than

5 in our environment. The reason is that TStep1 is nearly 4

orders of magnitude larger than TStep2. According to equa-

tion (1) in Section 3.4, the performance mainly depends on

TStep1. The time related to TStep2 ∗Njoin can be neglected.

The result shows that PDFA can support larger sliding win-

dow efficiently, because the larger the sliding window is, the

larger the number of tuples pointed by hash tables is.

Next evaluation shows the performance when the number

of join results increases in a different way.

4. 2. 5 Scalability with Respect to Number of Streams

Fig.12 shows the scalability with regard to number of

streams. With the increasement of number of streams, the

number of join results increases exponentially if the average

number of one probe is larger than 1. Here the number of per

hash probe is set be 2. So the number of join results changes

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200

2 3 4 5 6

F
ilt

er
in

g
tim

e(
m

s)

Number of Streams

Filtering time per event

RTree
PDFA-RTree

MLGF
PDFA-MLGF

Figure 12 The scalability with respect to number of streams

0

100

200

300

400

500

600

700

800

900

1000

1100

1:5 2:4 3:3 4:2 5:1

F
ilt

er
in

g
tim

e(
m

s)

Dimension of R : Dimension of S

Filtering time per event

RTree
PDFA-RTree

MLGF
PDFA-MLGF

Figure 13 The scalability with respect to dimension distribution

via two streams

in the sequence 4, 8, 16, 32, 64 when the number of streams

increases from 2 to 6. Even the performance based on PDFA

outperforms that based on naive, the improvement is not as

large as that in the evaluation introduced in Section 4.2.4.

The difference between two evaluations is the number of di-

mensions while filtering join result. In evaluation in Section

4.2.4, Step1 and Step2 (Fig.5) have same number of dimen-

sion. In current evaluation Step1 and Step2 have different

numbers of dimension. The difference becomes larger with

the increasement of number of streams. Logically this eval-

uation is similar to the evaluation (Fig.13) to be introduced

in next section.

4. 2. 6 Scalability with Respect to Ratio of Dimensions

of Two Streams

Fig.13 shows the scalability with regard to respect to ratio

of dimensions of two streams. The total dimension number

of 2 streams is 12 dimensions, but the ratio of dimensions is

different.

Fig.13 shows that when the dimensions of two streams is

same, the improvement is best. The reason is same as that

introduced in Section 4.2.4. At the same time, when the ratio

of dimensions between two streams become larger, the perfor-

mance improvement based on PDFA become less also. The

reasons are that 1) when the number of dimensions of two

streams is equal, TStep1 is much larger than TStep2 and TStep2

can be neglected with regard to the total cost, 2)when the

number of dimensions of two stream is different, the larger

the difference is, the larger the TStep2 is. TStep2 can not

be neglected any more. That’s reason why the performance

improvement based on PDFA decrease when the number of

streams increases in Fig.12.

5. Related Work

Many prototype systems which support continuous

selection-join have been proposed. In STREAM [18], queries

are independent units that logically generate separate plans.

Aurora [6] uses one global query plan performing all com-

putation of interest to all users, who build queries out of a

small set of operators. It uses a single globally-shared queue

for inter-operator data flow instead of separate queues be-

tween operators. GigaScope [16]is a stream-only database, it

doesn’t not support stored relations or continuous queries.

[13] shares the execution of the different window joins to op-

timize the utilization of system resources. There the shared

join produces multiple output data streams for each separate

query. For Telegraph [8] [17], the results of all predicates cor-

respond to all tuples are kept in a buffer in [8]. When the

number of queries and the size of slidding window is larger,

the size of the buffer is large for the reason that the number

of predicates increases. In [17], for each query, a set of status

bits are defined and inserted on each tuple which is routed

among kinds of operators. The size of tuple routed among

the operators will become larger when the number of queries

is larger.

For theses systems, the execution of query operators is con-

trolled by a global scheduler except [8]. Even resources and

computation can be shared with query plans, when the num-

ber of queries or the size of sliding window become large, it

becomes difficult for system to schedule hundred thousands

operators and the buffers used by theses operators need large

amount of memory resources also.

Our proposal is not based on query plan(s), so it doesn’t

have scheduling problem and its realted memory problem.

The performance mainly depends on the multidimensional

data structure chosen to filter join results. According to our

evaluation, MLGF is one candidate of the feasible multidi-

mensional data structures. We evaluated our proposal on

multiple streams.

6. Conclusions and Future Work

Based on multidimensional data structure, we introduced

an event filtering model for large number of continuous

selection-join queries on multiple streams. No operator

scheduling is needed and only one global join buffer is used.

We proposed an optimized algorithm called partial dimen-

sion filter algorithm to share the computations while filtering

join results.

In an experimental study with synthetic data, our exper-

imental results showed significant improvement in event fi-

lering time. The event filtering of continuous selection-join

queries based on our proposal has good scalabilities with re-

gard to the number of queries and number of dimensions.

We intend to pursue the following 2 directions in future.

1)Besides continuous selection-join queries, there are many

other kinds of continuous queries including aggregate oper-

ation, sort operation, group by operation, etc.. We want to

extend our model to support continuous queries including

the other types of operations besides selection and join op-

erations. 2)The PDFA is sensitive to the ratio of dimensions

used by different streams, we want to investigate whether

the PDFA can be more efficient by filtering multiple streams

with multiple steps, because join of multiple streams requires

multiple probes, which produce subsets of join results with

sharable computations.

References
[1] D. J. Abadi, D. Carney, U. etintemel, M. Cherniack, C. Con-

vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Au-

rora: a new model and architecture for data stream man-

agement. The VLDB Journal, 12(2):120–139, 2003.

[2] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and

J. Widom. Adaptive ordering of pipelined stream filters.

In Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, pages 407–418. ACM

Press, 2004.

[3] S. Babu, K. Munagala, J. Widom, and R. Motwani. Adap-

tive caching for continuous queries. In ICDE, pages 118–129,

2005.

[4] S. Babu, U. Srivastava, and J. Widom. Exploiting

k-constraints to reduce memory overhead in continuous

queries over data streams. ACM Trans. Database Syst.,

29(3):545–580, 2004.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: An efficient and robust access method for

points and rectangles. In Proceedings of the 1990 ACM SIG-

MOD International Conference on Management of Data,

pages 322–331. ACM Press, 1990.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,

G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.

Monitoring streams - a new class of data management ap-

plications. In VLDB, pages 215–226, 2002.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,

S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-

graphcq: Continuous dataflow processing for an uncertain

world. In CIDR, 2003.

[8] S. Chandrasekaran and M. J. Franklin:. Streaming queries

over streaming data. In VLDB, pages 203–214, 2001.

[9] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and

evaluation of alternative selection placement strategies in

optimizing continuous queries. In ICDE, pages 345–356,

2002.

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq:

a scalable continuous query system for internet databases.

In Proceedings of the 2000 ACM SIGMOD international

conference on Man agement of data, pages 379–390. ACM

Press, 2000.

[11] F. Fabret, H. A. Jacobsen, F. L. bat, J. Pereira, K. A. Ross,

and D. Shasha. Filtering algorithms and implementation for

very fast publish/subscrib e systems. In SIGMOD, pages

115–126, 2001.

[12] A. Guttman. R-trees: a dynamic index structure for spatial

searching. Readings in database systems, pages 599–609,

1988.

[13] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.

Elmagarmid. Scheduling for shared window joins over data

streams. In VLDB, pages 297–308, 2003.

[14] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,

L. Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.

Scalable trigger processing. In ICDE, pages 266–275, 1999.

[15] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang.

A predicate matching algorithm for database rule systems.

In SIGMOD, pages 271–280, 1990.

[16] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and

O. Spatscheck. A heartbeat mechanism and its application

in gigascope. In VLDB, pages 1079–1088, 2005.

[17] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.

Continuously adaptive continuous queries over streams. In

SIGMOD Conference, pages 49–60, 2002.

[18] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and

R. Varma. Query processing, approximation, and resource

management in a data stream management system. In

CIDR, 2003.

[19] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and

R. Bayer. Integrating the ub-tree into a database system

kernel. In VLDB, pages 263–272, 2000.

[20] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and

M. Stonebraker. Load shedding in a data stream manager.

In VLDB, pages 309–320, 2003.

[21] B. Wang and M. Kitsuregawa. Dimension transform based

efficient event filtering for symmetric publish/subscribe sys-

tem. In DEXA, pages 786–796, 2005.

[22] B. Wang, W. Zhang, and M. Kitsuregawa. UB-Tree

based efficient predicate index with dimension transform for

pub/sub system. In DASFAA, pages 63–37, 2004.

[23] K. Y. Whang, S. W. Kim, and G. Wiederhold. Dynamic

maintenance of data distribution for selectivity estimation.

The VLDB Journal, 3(1):29–51, 1994.

[24] K.-Y. Whang and R. Krishnamurthy. The multilevel grid

file - a dynamic hierarchical multidimensional fil e structure.

In Proceedings of the Second International Symposium on

Database Syst ems for Advanced Applications, pages 449–

459, 1992.

[25] T. W. Yan and H. Garcia-Molina. The sift information dis-

semination system. ACM Trans. Database Syst., 24(4):529–

565, 1999.

