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Abstract  Semantic similarity measure between sentences is an important issue in many applications, such as, text mining, 
Web page retrieval, dialogue systems, and so forth. Although it has been explored for several decades, most of these studies 
focus on how to improve the effectiveness of the problem. In this paper, we address the efficiency issue, i.e., for a given 
sentence collection, how to efficiently discover the top-k most semantic similar sentences to the query. It is a very important 
issue for real applications while existing state-of-the-art strategies cannot satisfy the performance requirement of the users. We 
introduce a general framework to tackle the issue, in which several efficient strategies are proposed. Extensive experimental 
evaluations demonstrate that our approach outperforms the state-of-the-art methods. 
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1. Introduction 

In many applications, searching semantic similar 
sentences is an important issue, such as text mining, 
Web page retrieval, and dialogue systems, etc. The 
framework for such application is: given a collection 
of sentences, the system gives the most (i.e., top-k) 
semantically similar sentences to a query. 

The problem can be solved by firstly measuring 
the semantic similarity score between the query and 
each sentence in the data collection using the 
state-ofthe-art techniques [6, 9, 11, 13, 15], and then 
sorting them with regard to such similarity score and 
finally returning the top-k ones. However, when the 
size of the data collection increases, the scale of the 
problem has dramatically increased. 

Note that almost all the previous studies focus on 
improving the effectiveness of the problem while in 
this paper we firstly propose the strategy which 
addresses the efficiency issue in the literature. 
Secondly, most of the previous approaches are 
threshold-based, i.e., the similarity threshold is 
predefined. But it is the case that such threshold is 
difficult for user to predefine because the returned 
results are sensitive with the threshold value, i.e., if 
the threshold is too small, few results will be 
returned while too many results will be returned 
when the threshold is set to be too large. Therefore, 
searching top-k similar sentences seems to be very 
challenging. 

Traditionally, techniques for measuring similarity 
between long texts (e.g., documents) have centered 
on analyzing co-occurred words [14]. Such methods 

are usually effective when dealing with long texts 
because similar long texts usually contain a degree of 
sharing words. However, in short texts (e.g., 
sentences), word co-occurrence may be rare or even 
null. This problem poses a difficult computational 
challenge that we cannot apply the document 
similarity measurement strategies in sentences 
directly. 

To remedy such problem, extensive studies have 
been explored based on the feature of sentence and 
can be classified into the following main groups: (1) 
knowledge-based strategies [15, 11]; (2) 
corpus-based strategies [6]; (3) common word order 
based strategies [9, 6]; (4) hybrid strategies [6, 9]. 
Since words are the components of sentences, word 
similarity is a non neglectable feature when we 
measure the sentence similarity [6, 9, 11]. 

There are two questions we are facing when search 
top-k semantic similar sentences. (1) Scalability. 
Traditional approaches [9, 6] will compute all the 
similarity between the query and candidates in the 
data collection. However, it is time consuming when 
searching top-k results in rather large data collection. 
If more features are taken into account, it will 
become more worse. (2) Efficiency. For searching 
top-k, we need not know all the similarity score 
between query and the candidates in the data 
collection, i.e., we only need know their orders. We 
regard that the candidates in the data collection will 
following some orders which are based on the 
similarity strategies. Therefore, if we preprocess the 
candidates, the first result will be returned to the user 



 
  
 

 

almost instantly and the more results will be output 
following the execution time. In this paper, we aim to 
address such challenges. Precomputing all the 
similarity scores of candidates may tackle the 
problem we mentioned [12]. However, data is 
frequently changed, e.g.,Web. Re-computing and 
processing all the similarity scores is time and space 
consuming. In addition, evaluating all the similarity 
scores also seems unpractical because we cannot 
predict a user’s query. Therefore, computing the 
similarity on-the-fly seems a practical solution. 

It should be noted that, we do not discuss the other 
optimization strategies, e.g., caching strategies, 
cloud computing which are out of the scope of our 
paper. 

The contribution of this paper are as follows: 
(1) We propose a strategy to tackle the efficiency 

of searching top-k semantic similar sentences, which 
is different from previous works which focus on the 
effectiveness aspect. We take two representative 
kings of measurement strategies, i.e., string 
similarity strategies and semantic similarity 
strategies. More similarity measurement strategies 
can be incorporated into the proposed framework 
which will be discussed later in this paper. 

(2) We propose efficient strategies to extract the 
top-k results. For each similarity measure, we 
introduce a corresponding strategy to minimize the 
number of candidates to be evaluated. A rank 
aggregation method is presented to optimally obtain 
the top-k results when assembling the features. 

(3) We conduct comprehensive experiments and 
evaluate the query efficiency of the proposed 
strategies. The results show that the proposed 
strategies outperform the state-of-the-art methods. 
2. Problem Statement 

Formally, for a query sentence Q, finding a set of k 
sentences P in a given sentence collection S which 
are most similar to Q, i.e., ∀p ∈ P and ∀r ∈ (S 
−P) will yield sim(Q, p) ≥ sim(Q, r). To measure the 
similarity sim(Q, P) between two sentences, we apply 
the state-of-the-art strategies by assembling multiple 
similarity metric features together [9, 6]. Because we 
focus on tackling the efficiency issue in this paper, 
we select several representative features from the 
main categories based on the framework which has 
been proposed in [6]. 

2.1. Similarity Measurement Strategies 
String-based Similarity 
String similarity measures the difference of syntax 

between strings. An intuitive idea is that two strings 
are similar to each other if they have enough common 
subsequences (i.e., LCS [4]). We focus on three 
representative string similarity measurement 
strategies, i.e., NLCS, NMCLCS1 and NMCLCSn1 
which are denoted as SimNLCS, SimMCLCS1 and 
SimMCLCSn in the following. 

NLCS LCS is a common string similarity 
measurement strategy and it measures the longest 
common subsequence of two strings. The similarity 
score is the length of LCS normalized by the product 
of the length of two strings. For two strings wi, wj , 
Formula 1 tells us how to evaluate their NLCS 
similarity. 

We take two strings abacd and acadb as an 
example. These two strings have common 
subsequence a, aa, ad or aad while aad is the longest. 
So LCS(abacd, acadb)=3 and SimNLCS(abacd, 
acadb)= 9/25 . 

NMCLCS1 NMCLCS1 measures the similarity 
between two strings where they have the maximal 
consecutive LCS from the first character which tells 
us whether these two strings have the maximal 
consecutive prefix substring. Different from NLCS, 
NMCLCS1 has two properties: (1) The longest 
common subsequence in NMCLCS1 should be 
consecutive; (2) The two strings should have the 
same first character. So the NMCCLS1 similarity 
between wi and wj is indicated as the following 
formula. 

We take examples to illustrate how NMCLCS1 
works. (1) Two strings abcd and abed have the 
longest common subsequence abd, but not 
consecutive. Therefore MCLCS1(abcd,abed)=ab and 
SimNMCLCS1(abcd,abed)= 4/16 . (2) Although abcd 
and bbcd have the longest common subsequence bcd 
and also be consecutive, they are different in the first 
character. So MCLCS1(abcd,bbcd)=0 and 
SimNMCLCS1(abcd,bbcd)=0; 

NMCLCSn Similar to NMCLCS1, NMCLCSn 
measures the similarity between two strings where 
they have the maximal consecutive common 
subsequence. The only difference here is that it starts 
at any position. We show the NMCLCSn similarity 
measurement strategy of two strings wi and wj as 



 
  
 

 

follows: 
For better under how NMCLCSn works, we take 

two strings abcd and bbcd as an example. Because 
NMCLCSn does not take the first character into 
account, so MCLCS(abcd,bbcd)=bcd and 
SimNMCLCSn(abcd,bbcd)= 9/16. 

Corpus-based Similarity 
Corpus-based similarity measurement strategy is 

to recognize the degree of similarity between words 
using large corpora [8]. There are several kinds of 
strategies: PMI (PointwiseMutual Information) [16] 
applies the search engine to gather the existence 
information from the Web; LSA (Latent Semantic 
Analysis) [7, 8] analyzes a large corpus of natural 
language text and generates a representation that 
captures the similarity of words and text passages; 
HAL (Hyperspace Analogues to Language) [1] uses 
lexical co-occurrence to produce a high-dimensional 
semantic space to capture the semantic information. 
There also exist some other strategies, e.g., 
chi-square, log-likelihood, and so forth. In this paper, 
we use the SOC-PMI (Second Order Co-occurrence 
PMI) word similarity method [5, 7] that uses PMI to 
sort lists of important neighbor words in a context 
window of the two target words from a large corpus. 
The underlying idea is that the neighbors of the two 
target words have the abundant semantic context with 
each other and aggregate the more important 
information. PMI for two words wi,wj is defined as 
follows: 

 

Common Word Order 
Common word order measures the similarity 

between the common words of sentence pair. If two 
sentences have some words in common, we can 
measure how similar the order of the common words 
in these two sentences. For example, we have two 
sentences P and Q, and there are δ words appear in 
both sentences. We assign a unique index number for 
each common word in P from 1 to δ, that is X = x1, ..., 
xδ and them mark the index number to the common 
word Y in Q based on such unique index number. So 
the common word order similarity of two sentence is 
as follows: 

 

2.2. A General Framework 

 
To measure the overall similarity between two 

sentences, a general framework is needed to 
incorporate all the similarity measurement strategies. 
From the previous works, [6] is the most 
comprehensive approach which incorporates string 
similarity, semantic similarity and common word 
order similarity into its framework. Fig. 1 shows the 
concept of the framework. The string similarity base 
is composed of three different similarity  
measurement strategies, i.e., NLCS, NMCLCS1 and 
NMCLCSn. The final sentence pair similarity is the 
aggregation of string similarity, semantic similarity 
and common word order similarity. The common 
words plays syntax information in sentence pair. 
However the number of common word is rare and [6] 
demonstrates that common word order similarity 
plays a less important role in semantic processing of 
short text, e.g., sentence. Therefore, they ignore the 
such similarity in the implementation of their 
framework. Fig. 2 is the implementation of the top-k 
similar sentences searching framework. 

If we want to obtain the top-k semantic similar 
sentences, we should calculate all the query sentence 
pairs and sort the overall sentence similarity score 
list and finally obtain top-k value. We demonstrate 
how [6] find the top-3 result in Fig. 2. However, 
accessing and computing all the sentences in the data 
collection is time consuming and it is inefficient 
when the data collection is large. Therefore, an 
efficient searching top-k semantic similar sentences 
strategy is needed. 

 



 
  
 

 

3. Proposed Approaches 
In this paper, we propose an efficient framework 

based on [6] which is the most effective in the 
literature of measuring sentence semantic similarity. 
Our key idea is by building appropriate index in the 
preprocessing, we only need access a small part but 
not the whole data collection. The query sentence and 
each candidate in the data collection are sent to two 
modules (i.e., String similarity evaluator, 
Corpus-based similarity evaluator) respectively, to 
obtain the corresponding similarity score. Then, the 
scores from different modules are assembled and 
ranked, resulting in the final ranked list. We 
introduce the best first search strategies of string 
similarity and semantic similarity evaluator, 
respectively. After that, the final assembled 
framework will be introduced. There are many 
studies on exploring how to efficiently search top-k 
similar words with respect to string similarity [19]. 
In this paper, we apply NLCS, NMCLCS1, 
NMCLCSn as string similarity features. 
3.1. Assembling Similarity Features 

Our task is to find the top-k similar semantic 
sentences.We introduce an efficient approach to 
hasten the process of searching top-k similar 
sentences, based on the rank aggregation algorithm 
[2]. For example, there are five sentence in the data 
collection. For query Q: My father likes his work at 
Toyota. Based on two different similarity score list, 

we obtain two lists as shown in Fig. 4. Gray 
rectangles in each list denote the sentence ID and the 
similarity score behinds it. In [2], they tell us that if 
a candidate in the data collection whose similarity 
score Sim(Q, Si)threshold, there is at least for one 
feature that Simfeature(Q, Si) threshold. We use an 
example to illustrate the process which is figured in 
Fig. 4. In the first iteration, we cannot obtain the 
top-1 result for either similarity score is smaller than 
the threshold. We put the similarity score into the 
max queue. The top-1 result can be outputted because 
S3 : 0.91, threshold : 0.885. In addition, we can 
obtain top-3 results in the third iteration. However, 
the sentences are composed of words and we can also 
apply searching top sentences strategies in words 
which has been proposed in [18]. The remaining 
processes can be executed in s same way as Fig. 4 
shows. 

 

4. Related Work 
Measuring the semantic similarity between 

sentences is not similar with the methods of 
measuring the similarity between documents [3] and 
words. Sentence is shorter than document but longer 
than individual words. There is less work related to 
the measurement the semantic similarity between 
sentences. The methods of measurement can be 
classified into the following major categories: word 
co-occurrence or vector-based document model 
methods [10], corpus-based methods [6–8], hybrid 
methods [16, 9]. However, the document model 
methods are not very effective when we measure the 
sentence level similarity. The corpus based methods 
uses the outside resource to measure the semantic 
similarity. The hybrid methods fuse two or more 
methods into a uniform model, e.g., corpus based and 
document model based, corpus-based and 
knowledge-based, etc. However, all the approaches 
above is not take the efficiency into account. When 
we search top-k semantic similar sentence, the 
methods above should access all the sentences in the 
data collection. To the best of our knowledge, we 
firstly propose a strategy on searching top-k semantic 
similar sentence in the literature. Our work is similar 
with [18], while [18] focus on word level, i.e., their 
approach in on searching top-k semantic similar 
words but not sentences.  
5. Conclusion and Future Work 

In this paper, we proposed an efficient searching 
top-k semantic similar sentences strategy based on a 
state-of-the-art framework which has been proposed 
in [6]. This is the first work in searching semantic 
similar in large data collection. Several efficient best 
search strategies are proposed to tackle the efficiency 
issue in the traditional similarity measurement 
approach. Our experimental evaluation demonstrate 
the efficiency on searching top-k semantic similar 
sentences. In the future, we will research on other 
similarity measurement strategies to further evaluate 
the efficiency and effectiveness. 
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