
A Study on Efficient Semantic Similar Words Searching

Zhenglu YANG and Masaru KITSUREGAWA
Institute of Industrial Science, the University of Tokyo

Tokyo, Japan
{yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

Abstract Measuring the semantic meaning between words is an important issue because it is the basis for many
applications, such as word sense disambiguation, document summarization, and so forth. Although it has been explored
for several decades, most of the studies focus on improving the effectiveness of the problem, i.e., precision and recall. In
this paper, we study the efficiency issue, that given a collection of words, how to efficiently discover the most semantic
similar words to the query. An extensive comparative experimental evaluation has been conducted to illustrate the effect
of different strategies on the issue.
Key words Top-k, Similar Word Search, Efficiency

1 Introduction

Searching semantic similar words is an important issue
because it involves many applications, such as query sug-
gestion, word disambiguation, machine translation, and
so forth. From a given collection of words, such queries
ask for those words that are most (i.e., top-k) semantically
similar to a given one.

Intuitively, the problem can be solved by firstly mea-
suring the semantic similarity score between the query
and each word in the collection using the state-of-the-
art techniques [1, 6, 11, 14, 8, 3, 2, 13], and then sort-
ing them with regard to the score, and finally extracting
those top-k ones. However, the scale of the problem has
dramatically increased and prevented existing strategies
from conducting on large volume of data (i.e., the Web).
Note that almost all the previous work focus on improv-
ing the effectiveness of the problem (i.e., precision and re-
call) yet this paper is to study the efficiency issue, which
is rather challenging especially when conducting on large
datasets. Another issue is that most of the previous works
are rooted in a threshold-based framework and the simi-
larity threshold is difficult to predefine by common users
because many answers may be returned if the value is too
small and there may be no answers if the value is too large.
Therefore, searching for the top-k most similar words is

an interesting problem.
The issue of finding similar words can be traced back

to the 1940s [12] in the theory field where n-gram was
first introduced. Two words are considered similar to each
other if they have enough common subsequences (i.e., n-
grams). While there are quite a few works on studying
and extending n-gram based strategies [15] and they have
been successfully applied in some applications such as
spell checking, this line of work only takes into account
the syntax of words and ignore the semantic meaning.

To remedy this problem, extensive studies have been
explored and they can be classified into three main
groups: (1) knowledge-based1 strategies [10, 11]; (2)
corpus-based strategies [14]; and (3) hybrid methods [2].

In this work we aim to study the efficiency and progres-
siveness issues of top-k semantic word searching.

2 Problem Statement and Analysis

We consider the top-k semantic similar word query on a
given collection of wordsW . Formally, for a query word
Q, finding a set ofk wordsR in W most similar toQ, that
is, ∀r ∈ R and∀s ∈ (W − R) will yield sim(Q, r) ≥
sim(Q, s).

1It is also called dictionary-based or lexicon-based in the literature.

1

(a) word collection

cap

 male

further

home

mail

mother

kid

leader

1

2

3

4

5

6

7

8

stringid

Query word:

th he er

2 2 2

8 8 5

8

father

1.5404

1.7227

1.5404

2.0794

2.9957

1.5404

2.3026

 3.3322

1

2

3

4

5

6

7

8

similarityid

7.5655

5.1570

5.5801

8.8332

9.1600

5.9196

1

2

3

4

5

6

7

8

similarityid

5

2

5

6

4

5

4

 2

1

2

3

4

5

6

7

8

similarityid

(1) knowledge bases

(2) corpus bases

(3) string similarity base

(b) features used to measure similarity (c) raw similarity score of each feature

(e) result

n-gram inverted list

0.4176

0.4670

0.4176

0.5637

0.8121

0.4176

0.6242

 0.9033

1

2

3

4

5

6

7

8

similarityid

0.6915

0.4714

0.5101

0.8074

0.8373

0.5411

0.7537

 0.8772

1

2

3

4

5

6

7

8

similarityid

0.2857

0.7143

0.2857

0.1429

0.4286

0.2857

0.4286

 0.7143

1

2

3

4

5

6

7

8

similarityid

(d) normalized similarity score

ln(2D)=3.6889

log2W ebSize/

Pagecountmin

=10.9400

1-ed/L

0.4406

0.5770

0.5008

0.5182

0.7455

0.4282

0.6369

 0.8551

6

4

1

2

5

3

7

8

similarityTop-k list

8.2456

9.5968

cat

wn:W ord wn:W ordSense

wn:hasSense

wn:lexicalForm

wn:SynSet

wn:Noun

rdf:type

Relations to other word

sense, e.g., antonym
Relations to other synsets

e.g., hypernym, hyponym

dog

wn:W ord wn:W ordSense

wn:hasSense

wn:lexicalForm

wn:SynSet

wn:Noun

rdf:type

wn:word

wn:word

wn:inSynSet

wn:inSynSet

Figure 1: A general framework for searching top-k semantic strings

To measure the similaritysim(Q,P) between two
wordsQ andP , we apply the state-of-the-art strategy by
assembling multiple similarity metric features [8, 2]. Be-
cause we focus on tackling the efficiency issue, for sim-
plicity we select three representative features from the
main categories in word similarity measuring literature.

• Knowledge-based Similarity: Word dictionaries,
e.g., WordNet [9], have been acted as the knowledge
base for text processing. In this study, we consider
a representative metric,Leacock & Chodorow [5],
defined asSimlch(w1, w2) = −ln length(w1,w2)

2∗D ,
wherelength is the length of the shortest path be-
tween two concepts (that the two wordsw1 andw2

belong to) using node-counting, andD is the maxi-
mum depth of the taxonomy.

• Corpus-based Similarity: Corpus-based measures of
word semantic similarity try to recognize the degree
of similarity between words using large corpora. The
intuitive idea of corpus-based measures is that two
words are similar to each other if they co-occur fre-
quently in the large corpus. In this paper, we choose
PMI-IR as one of the representative similarity mea-
sures between two words,w1 and w2, defined as,
Simpmi−ir(w1, w2)=log2

pagecount(w1∩w2)∗WebSize
pagecount(w1)∗pagecount(w2)

,

wherepagecount(wi) is the number of documents
retrieved whenwi is submitted to the search engine.

• String similarity: String similarity measures the dif-
ference of syntax between words. An intuitive idea is
that two words are similar to each other if they have
enough common subsequences (i.e.,n-gram [12]).
We focus on a representative string similarity mea-
sure, i.e., edit distance [7].

2.1 A General Framework

A general framework of searching top-k similar words is
illustrated in Fig. 1, with a concrete example presented
to ground our discussion. The query word and each can-
didate in the collection are sent to the three modules (i.e.
knowledge bases, web search engine, and string similarity
evaluator), respectively, to obtain the corresponding sim-
ilarity score. Then, the scores from different modules are
normalized, assembled, and ranked, resulting in the final
ranked lists [8, 2].

For the example as illustrated in Fig. 1, all the eight
candidates need to be evaluated with the queryfather
and the top-3 semantic similar words aremother, leader,
andmale.

2

ROOT

be

lie

cap

make

father,mother

move

transfer

mail

travel

return

home

ROOT

leader

father

male

 boy

juvenile

kid

 person,human

 organism

(a) One example taxonomy

 of noun words (partly)
(b) One example taxonomy

 of verb words (partly)

support

further

Figure 2: Top-k word searching on WordNet

3 Approaches

The assembling process on multiple similarity measures
can be analog to the traditional rank aggregation issue [4],
where each similarity measure in the former can be treated
as a list in the latter. In this paper, we study several best
first search strategies to facilitate accessing those top-k
items (words) in each list (similarity measure feature).

3.1 Knowledge based Feature

WordNet is employed as the knowledge base in this pa-
per. The traditional strategy is to measure the similarity
of each candidate word and the query, by traversing the
topology of WordNet. However, it is inefficient because
every candidate needs to be tested. Fig. 2 illustrates the
example aforementioned, where every pair of red word
(query) and blue word (candidate) is evaluated.

We introduce a best first search strategy to efficiently
obtain the top-k similar words. Because the query word
could be polysemous, we address the issue when the
query and the candidates exist in more than one taxon-
omy (i.e., Fig. 2 (a) and (b)). In this case, the ranking of a
candidate not only depends on the shortest path in a tax-
onomy but also the maximum depth of the taxonomy (i.e.,
D
L , whereD is the maximum depth andL is the shortest
path). A best first search strategy can be constructed with
regard to the value ofDL .

We illustrate the main process (i.e., order of nodes ac-
cessed) by using the aforementioned example. The se-
quentially accessed nodes should be: (1)father in the
noun taxonomy (i.e.,DL =20)2; (2) father,mother in the
verb taxonomy (i.e.,DL =14); (3) leader in the noun tax-
onomy (i.e.,DL =10); and so forth.

2The maximum depths of the two taxonomies are 20 for noun and 14
for verb by querying WordNet in the preprocessing.

3.2 Corpus based Feature

To obtain the top-k similar words based on large corpus
(i.e., the Web), the traditional strategy is to submit the
query and each candidate to the search engine and com-
pute their similarity (i.e., PMI-IR [14]). However, evalu-
ating every candidate pair words may cause large compu-
tation cost (i.e., network delay time used to transfer words
to search engine and return answer, computation time at
server, and parsing time on the answer stream). We intro-
duce a method to evaluate as few candidates as possible.

We sort all the candidates in ascending order of their
pagecount in the preprocessing, and measure the sim-
ilarity while querying one by one. If we find that the
pagecount of the current candidate word is greater than
WebSize
2τtop−k , whereτtop−k is the top-k similar score so far,

we can terminate the process and thus, avoid to evaluate
the remaining candidates.

3.3 String Similarity Feature

There are not many studies on exploring how to efficiently
search top-k similar words with respect to string similarity
[16]. In this paper, we apply the existing efficient strate-
gies. Specifically, they are (1) count filtering; (2) length
filtering; and (3) divide-merge-skip.

3.4 Assembling Similarity Features

Given the progressively extracted words in each feature,
i.e., the result obtained from the above sections, we apply
an efficient approach to hasten the process of searching
top-k similar words, based on the traditional rank aggre-
gation algorithm [4].

4 Performance Analysis

We performed the experiments using a Intel(R) Core(TM)
2 Dual CPU PC (3GHz) with a 2G memory, running Red-
hat linux. We conducted experiments on two real life
datasets: (1)Dict3; and (2)Word4.

3http://www.aspell.net/
4http://wordnet.princeton.edu/

3

4.1 Progressiveness

1

2

3

4

1 3 5 10 20

Naive
BFS-WSM (no opt. on corpus)
BFS-WSM (no opt. on WordNet)
BFS-WSM

top-k queries (#=100)

q
u

e
ry

in
g

 t
im

e
 (

s
e

c
 i
n

 l
o

g
)

(a) Dict dataset

1

1.7

2.4

3.1

1 3 5 10 20

top-k queries (#=100)

q
u

e
ry

in
g

 t
im

e
 (

s
e

c
 i
n

 l
o

g
)

Naive
BFS-WSM (no opt. on corpus)
BFS-WSM (no opt. on WordNet)
BFS-WSM

(b) Word dataset

Figure 3: Progressiveness of query performance

The progressiveness performance of the introduced al-
gorithm was evaluated by varyingk. We randomly se-
lected 100 queries from the datasets and reported the av-
erage value. The result is shown in Fig. 3. We can see that
Naive outputs all the top-k results at the same time, and
much slower thanBSF -WSM (i.e., more than two or-
ders of magnitude slower for top-1 query onDict data, as
illustrated in Fig. 3 (a)).BSF -WSM can progressively
extract more results the longer the execution time. For
the effect of different optimization strategies, optimiza-
tion on corpus-based similarity measuring seems to dom-
inate the whole query processing (i.e., red line in the fig-
ure). This is not surprising because the cost of requesting
word pagecount to search engine is high. Moreover, we
can see that the introduced two optimizations (i.e., mea-
suring on WordNet and corpus similarities) account for
most of the performance improvement.

4.2 Number of Candidate Words Accessed

We evaluate the number of candidates tested in different
algorithms when varyingk. As shown in Fig. 4, we can
seeBSF -WSM accesses much smaller sets of words
compared withNaive. This is the intrinsic reason why it
performed better on query processing (as shown in Fig. 3).

5 Conclusion

We have studied the top-k similar word searching prob-
lem. Several efficient strategies are introduced following
the best first search manner. Several experiments are con-
ducted and the results show that the introduced strategies
can efficiently answer the top-k semantic similar word
queries.

1

2

3

4

5

1 3 5 10 20
1

2

3

4

5

1 3 5 10 20

nu
m

. o
f c

an
d.

 te
st

ed
 (i

n
lo

g)

nu
m

. o
f c

an
d.

 te
st

ed
 (i

n
lo

g)

Naive

BFS-WSM

Naive

BFS-WSM

k

measuring corpus-based similarity
 k

measuring WordNet-based similarity

(a) #candidates vsk onDict dataset

1

1.7

2.4

3.1

3.8

4.5

1 3 5 10 20
1

1.7

2.4

3.1

3.8

4.5

1 3 5 10 20k

nu
m

. o
f c

an
d.

 te
st

ed
 (i

n
lo

g)

measuring corpus-based similarity

nu
m

. o
f c

an
ds

 te
st

ed
 (i

n
lo

g)

 k

measuring WordNet-based similarity

Naive

BFS-WSM

Naive

BFS-WSM

(b) #candidates vsk on onWord dataset

Figure 4: Number of words tested for different algorithms
References

[1] E. Agirre and G. Rigau. Word sense disambiguation using
conceptual density. InCOLING, 1996.

[2] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring se-
mantic similarity between words using web search en-
gines. InWWW, 2007.

[3] A. Budanitsky and G. Hirst. Evaluating wordnet-based
measures of lexical semantic relatedness.CL, 2006.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InPODS, 2001.

[5] C. Leacock and M. Chodorow.Combining local context
and WordNet similarity for word sense identification. In
C. Fellbaum (Ed.), 1998.

[6] C. Leacock, G. A. Miller, and M. Chodorow. Using cor-
pus statistics and wordnet relations for sense identifica-
tion. CL, 1998.

[7] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Technical Report, 1966.

[8] Y. Li, Z. A. Bandar, and D. McLean. An approach for
measuring semantic similarity between words using mul-
tiple information sources.TKDE, 2003.

[9] G. A. Miller. Wordnet: a lexical database for english.
Commun. ACM, 1995.

[10] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Develop-
ment and application of a metric on semantic nets.SMC,
1989.

[11] P. Resnik. Using information content to evaluate semantic
similarity in a taxonomy. InIJCAI, 1995.

[12] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 1948.

[13] G. Tsatsaronis, I. Varlamis, and M. Vazirgiannis. Text re-
latedness based on a word thesaurus.JAIR, 2010.

[14] P. D. Turney. Mining the web for synonyms: Pmi-ir versus
lsa on toefl. InECML, 2001.

[15] E. Ukkonen. Approximate string-matching with q-grams
and maximal matches.TCS, 1992.

[16] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms for
top-k approximate string matching. InAAAI, 2010.

4

