1

Efficient Searching Top-k Semantic Similar Words

Zhenglu Yang and Masaru Kitsuregawa
Institute of Industrial Science
The University of Tokyo, Japan
{yangzl, kitsuré@tkl.iis.u-tokyo.ac.jp

Abstract

Measuring the semantic meaning between words is
an important issue because it is the basis for many
applications, such as word sense disambiguation,
document summarization, and so forth. Although it
has been explored for several decades, most of the
studies focus on improving the effectiveness of the
problem, i.e., precision and recall. In this paper, we
propose to address the efficiency issue, that given
a collection of words, how to efficiently discover
the top£ most semantic similar words to the query.
This issue is very important for real applications yet
the existing state-of-the-art strategies cannot satisfy
users with reasonable performance. Efficient strate-
gies on searching top-semantic similar words are
proposed. We provide an extensive comparative
experimental evaluation demonstrating the advan-
tages of the introduced strategies over the state-of-
the-art approaches.

Introduction

and the similarity threshold is difficult to predefine by com-
mon users because many answers may be returned if the value
is too small and there may be no answers if the value is too
large. Therefore, searching for the thpnost similar words

is an interesting problem, as will be tackled in this paper.

The issue of finding similar words can be traced back to
the 19404 Shannon, 1948in the theory field where n-gram
was first introduced. Two words are considered similar to
each other if they have enough common subsequences (i.e.,
n-grams). While there are quite a few works on studying and
extending n-gram based stratedigkonen, 199Rand they
have been successfully applied in some applications such as
spell checking, this line of work only takes into account the
syntax of words and ignore the semantic meaning.

To remedy this problem, extensive studies have been ex-
plored and they can be classified into three main groups:
(1) knowledge-basédstrategiedRadaet al,, 1989; Resnik,
1994; (2) corpus-based strategid@sirney, 2001; and (3) hy-
brid methoddBollegalaet al, 2007.

Due to the large datasets we may have, there are two main
issues existing in the top-semantic similar word extraction:

(1) progressivenesgHellersteinet al, 1999. The first re-
sults should be output to the user almost instantly, and the

Searching semantic similar words is an important issue belgorithm should produce more and more results the longer
cause it involves many applications, such as query sugge&e execution time (i.e., first the top-1, then the top-2, and
tion, word disambiguation, machine translation, and so forthfinally the top% answer); and (2inefficiency on similarity
From a given collection of words, such queries ask for thoséneasuring Evaluating the similarities of all candidate pairs

words that are most (i.e., tap semantically similar to a

given one.
Intuitively, the problem can be solved by firstly measur-dress these two challenges. o

ing the semantic similarity score between the query and each Materializing all the similarities of word pairs in the pre-
word in the collection using the state-of-the-art techniquegrocessing may (partially) tackle the mentioned isqifes-

[Resnik, 1995; Turney, 2001; ket al, 2003; Budanitsky and

Hirst, 2006; Bollegalat al., 2007; Tsatsaronist al.,, 2014,
and then sorting them with regard to the score, and finally exall the similarities is space and time consuming. Moreover,
tracting those tog= ones. However, the scale of the problem it is possible that new similarity metric will be introduced.
has dramatically increased and prevented existing strategigdierefore, computing the similarities on-the-fly seems to be
from conducting on large volume of data (i.e., the Web). Notea practical solution. Furthermore, it is impossible to materi-
that almost all the previous work focus on improving the ef-alize the string similarity beforehand. The reason is that we
fectiveness of the problem (i.e., precision and recall) yet thigannot predict a user’s query, that it may be never seen before
paper is the first study in the literature on addressing the ef@.e., misspelled word).

ficiency issue, which is rather challenging especially when

is time consuming. This issue becomes even worse if more
features are taken into account. In this work we aim to ad-

tel et al, 2009. However, the difficulty is that the data (e.g.,
the Web) is frequently updated. Re-computing and storing

It should be noted that there exists some other optimization

conducting on large datasets. Another issue is that most of
the previous works are rooted in a threshold-based framework lltis also called dictionary-based or lexicon-based.

strategies (e.g., caching, parallel computing). However, all of e Corpus-based Similarity: Corpus-based measures of
these methods require specific techniques (e.g., appropriate
caching algorithm) and thus, the extension to these strategies
is out of the scope of this paper.

2

The contributions of this paper are as follows:
e We propose to tackle the efficiency issue of searching

top-k semantic similar words, which is different from
most previous works that concern on the effectiveness
aspect. The comprehensive similarity employed in this
paper is composed of three representative kinds of mea-
sures. More similarities can be taken into account for
the framework, as will be discussed in this paper.

We propose efficient strategies to extract the toge-
sults. For each similarity measure, we introduce a corre-
sponding best first search method to minimize the num-
ber of candidates to be evaluated. A rank aggregation
approach is presented to optimally obtain the tope-
sults when assembling the features.

We conduct comprehensive experiments on two real
datasets, and evaluate the query efficiency of the pro-
posed strategies in terms of several aspects. The results
show that the proposed strategies exhibit a superior per-
formance compared with the state-of-the-art approaches
(i.e., more than two orders of magnitude improvement).

Problem Statement and Analysis

We consider the to-semantic similar word query on a given
collection of wordd4. Formally, for a query word), finding

a set ofk words R in W most similar toQ), that is,vVr € R
andvs € (W — R) will yield sim(Q,r) > sim(Q, s).

To measure the similarityim(Q, P) between two words
Q and P, we apply the state-of-the-art strategy by assemblin
multiple similarity metric features togethéli et al, 2003;
Bollegalaet al, 2007. Because we focus on tackling the
efficiency issue in this paper, for simplicity we select three
representative features from the main categories in word si
ilarity measuring literature.

word semantic similarity try to recognize the degree of
similarity between words using large corpora. The in-
tuitive idea is that two words are similar to each other
if they co-occur frequently in the large corpus. There
are several kinds of strategies: PMI-IR (Pointwise Mu-
tual Information-Information RetrievaljTurney, 2001
uses web search engine (i.e., AltaVista) to gather the ex-
istence information from the Web; LSA (Latent Seman-
tic Analysis) (Deerwesteet al,, 1994) applies Singu-

lar Value Decomposition (SVD) to analyze the statisti-
cal information between words and then further obtain
their semantic relationship. Some other strategies in-
clude log-likelihood, chi-square, MI (Mutual Informa-
tion), and so forth. In this paper, we choose PMI-IR
as one of the representative similarity measures between
two words,w; andws, defined as:

pagecount(wi Nws) * WebSize

S. i—1) =1
iMpmi—ir (W1, w2) = logs pagecount(wy) * pagecount(ws)

wherepagecount(w;) is the number of documents re-
trieved whenw; is submitted to the search engine (i.e.,
Google).

e String similarity: String similarity measures the differ-

ence of syntax between words. An intuitive idea is that
two words are similar to each other if they have enough
common subsequences (i.e-gram[Shannon, 1943.

We focus on a representative string similarity measure,
i.e., edit distance, denoted 88m..q (w1, w2).

2.1 A General Framework

A general framework of searching tdpsimilar words is
illustrated in Fig. 1, with a concrete example presented to
%round our discussion. The query word and each candidate
in the collection are sent to the three modules (i.e. knowledge
bases, web search engine, and string similarity evaluator), re-
spectively, to obtain the corresponding similarity score. Then,
he scores from different modules are normalized, assembled,

and ranked, resulting in the final ranked lifits et al., 2003;

e Knowledge-based Similarity: Word dictionaries, e.g., Bollegalaet al, 2007.

WordNet[Miller, 1995], have been acted as the knowl- T i h hav&im Py —
edge base for text processing. The words are linked, 10 Normalize the scores, we havin,(Q, P) =

manually with labels and organized in a taxonomy man-%@, where D,,,.,2> denotes the maximum value of

ner (i.e., tree). An intuitive idea on measuring similar- p for ali the taxonomies of the collection. The PMI-IR
ity is that words are similar to each other if the short- similarity is normalized agfnpmiiir _ i

est path between them is sméRadaet al, 1989. <
This edge counting strategy has been extended later byhere pagecount,,;,,(P)® denotes the minimum value of
taking into account the depttWu and Palmer, 1994; ,,;4ccount for words in the collection.WebSize is set to

Leacock and Chodorow, 19B&emantic densitjdiang 12 ; T ;
and Conrath, 1997 and information conteniResnik. 10'2 according to the report of GoodleThe edit distance is

H o Sime P
1994 of the words in the knowledge base. In this pa- Normalized asim.q(Q,) = }—ﬁf?v whereL,q,°
per, we consider a representative mettieacock & is the maximum word length in the collection.
Chodorow [Leacock and Chodorow, 19B&lefined as: The assembling strategy follows the state-of-the-art ap-
proaches on measuring semantic similafity et al., 2003;

M pmi—ir
WebSize 1
loga pagecount

length(w, w2)

2x D (1)

Simlch(wl,wg) = —In
2For this concrete example, by querying WordN&f, .. =20.

wherelength is the length of the shortest path between 3we havepagecount. i (P)=5.09 * 10° by querying Google.

two concepts (that the two words, andw, belong to) “http://googleblog.blogspot.com/2008/07/we-knew-web-was-

using node-counting, anf? is the maximum depth of big.html

the taxonomy. SFor this example, the value @f,, .. is 7.

similarity id similarity
15404 1| 04176
1.7227 2 | 04670
1.5404 In(20)=3.6889 | 3 0.4176
2.0794 4 | 05637
2.9957 5 | 08121
Query word: 1.5404 6 | 04176
father 23026 7 | 06242
3.3322 8 | 09033
id string (1) knowledge bases - —
1 id similarity id similarity Top-k list| similarity
cap
2 | further 1| 75655 1| 06915 8 0.8551
S 2 | 51570 | Pagecountnn | 2 | 0.4714 5 0.7455
3 | home - 3 | 58801 | = 3 | 05101 7 0.6369
4 kid |::> ey |:: > 14| ss2 |::> 4 | 08074 |::> 4 05770
5 | leader 5 | 9.1600 5 | 08373 2 0.5182
6 mail Google 6 | 59196 6 | 05411 1 0.5008
7 8.2456 7 0.7537 6 0.4406
7 male (2) corpus bases 8 95068 8 0.8772 3 0.4282
8 mother
- - - A (e) result
id similarity id similarity
(a) word collection th | he | er S E—— —
1 5 1| 02857
% 222 2 2 1ol 2 | 07143 f]
8|85 3 5 3 | 02857
e —> . 6 4| 01420
5 4 5 | 04286
n-gram inverted list 6 5 6 0.2857
7 4 7 | 04286
(3) string similarity base 8 2 8 0.7143
(b) features used to measure similarity (c) raw similarity score of each feature (d) normalized similarity score
Figure 1: A general framework for searching tbjgemantic strings
. ROOT
Bollegalaet al., 2007%: : ROOT
organism // ‘ \\
. n o person‘ human be make move support travel
] = E :Sim; ' [| | |
SZTn(Q? P) wlSZ,n‘Lz(Q’ P) (3) Iea{ mLIe juvenile lie father,mother transfer ~ further return
i=1 \ \ \ \ \ [
o father boy kid cap mail home
where Sim; represents a specific feature of similarity mea- (a) one example taxonomy (b) One example taxonomy
sure,w; denotes the corresponding weight of the feature, and of noun words (partly) of verb words (partly)
n is the total number of features taken into account. Figure 2: Topk word searching on WordNet

Due to lack of large labeled data, the existing state-of-
the-art assembling techniques on semantic similarity me
sure commonly set the weight values arbitrafily et al.,
2003. We apply the same strategy by emphasizing the ef
fect of semantic similarity (i.€.1;ch=Wpmi—ir=2Weq) and
>, w;=1. While obtaining optimal values of these weights
is certainly an interesting issue, it is out of the scope of this[h

paper. We argue that this work is orthogonal to the existing{han one taxonomy (i.e.. Fig. 2 (a) and (b)). In this case, the

effectiveness-oriented studies in a complementary manner. : .
For the example as illustrated in Fig. 1, all the eight Can_ranklng of a candidate not only depends on the shortest path

. . , in a taxonomy but also the maximum depth of the taxonomy.
didates need_to .bel evaluated with the quéayher and the Derived from Eq. 1, we have the following lemma:
top-3 semantic similar words areother, leader, andmale.

ig. 2 (a)). According to the definition &fim;.;° (i.e., Eq.

ai), we know that the ranking of a candidate only depends on

its shortest path to the query. We can simply start from the

node of the query, then expand to its neighbors in a recursive
manner to find similar words.

The query word could be polysemous and we next address
e issue when the query and the candidates exist in more

Lemma 1 (ordering in WordNet) Let @ be the query. Let
3 Proposed Approaches P and S be two candidates which exist in the same taxonomy

et . ; ; - of @, i.e.,Tp andTyg, respectively. The shortest path between
We first introduce best first search strategies for different sim (or $)andQ is Lp (or L) in Tp (of Ts). The maximum

ilarity measures in Section 3.1-3.3, and then present a rang . : :
aggregation algorithm to assemble the features in Section 3. m'eopr:ehsci)rfriﬁllgag(icr)g%‘) VIVSeDhZV(:B—PD S>) ’ Dj"mpared witht, P is

Lp Ls*
3.1 Knowledge based Feature This lemma tells us that the similarity ordering between
WordNet is employed as the knowledge base in this papetandidates in WordNet is dependent on the integration of
The traditional strategy is to measure the similarity of eachthe shortest path and the maximum depth of the taxonomy.
candidate word and the query, by traversing the topology ofrherefore, a best first search strategy can be constructed and
WordNet. However, it is inefficient because every candidatehe self-explanatory pseudo code for searchingitamilar
needs to be tested. Fig. 2 illustrates the example aforemeRyords is shown in Algorithm 1.
tioned, where every pair of red word (query) and blue word e illustrate the main process of the algorithm (i.e., or-
(candidate) is evaluated. der of nodes accessed) in Fig. 3 by using the aforemen-

We propose a best first search strategy to efficiently obtioned example. The sequentially accessed nodes should
tain the topk similar words. We first tackle the issue when

the query and the candidate exist in the same taxonomy (e.g., ®Normalization does not affect the ranking here.

Algorithm 1: Top-k Similar Word Searching on WordNet

Input: Query@, word collection C, WordNetW N, k
Output: Top-k similar words inW C'

/I preprocessing

n=number of taxonomies il NV;

D[1,n]=a list of maximal depth of taxonomies iV NV;
I=an index that associates nodedifN to words inW C;
/I query processing

m=number of polysemous meaning Qf

T[1,m]=a list of taxonomy ID that) belongs to;
L[1,m]=a list of lengths (hops fron®), initialized as 1;
N[1,m]=alist of visited nodes in taxonomies, initialized as the nodes that Q
belongs to;

8 while not k& words are outputio

WN P

~NOoO g A

9 Tmaz=0; I Dmaxs=0;
10 for i=1tomdo// | ook for node to expand
= D[T[i]].
11 T3 Ll
12 if 7 > Tmae then Tmae=Ti I Dmas=i;

13 forall p € Nip,, ., do// e xpand nodes

14 N N=neighbor nodes g that are unvisited,;

15 foreachnodee € NN do

16 | if e € WC based onl then outpute; k=k-1;

17 N[IDpaz|=N[IDpaz] U NN;
18 | LU Dpas]++;
19 End
order of nodes accessed
father father,mother leader make | —\ ...
@ = 7 e :>‘ o |~
output output
top-1: mother top-2: leader

Figure 3: Progressive searching tbgimilar words

be: (1) father in the noun taxonomy (i.e.2=20); (2)
father,mother in the verb taxonomy (i.e.2=14); (3)
leader in the noun taxonomy (i.e.%:lo); and so forth. As

Proof [Sketch of Proof] (Proof by Contradiction) Assume
there is one candidate wordwhich haspagecount(r) >

WebSize in R and it is ranked in the top-list. Then we have

pagecount(Q Nr) x WebSize
2 pagecount(Q) * pagecount(r)

Ttop—k < lo

pagecount(Q) * WebSize

< - CE
< logs pagecount(Q) x pagecount(r)’ hence
pagecount(r) < %
which contradicts the assumption. O

This lemma tells us that we can sort all the candidates in
ascending order of thejifagecount in the preprocessing, and
measure the similarity while querying one by one. If we find
that thepagecount of the current candidate word is greater
than%:25iz¢ we can terminate the process and thus, avoid to
evaluate the remaining candidates. The pseudo code is shown
in Algorithm 2. To progressively extract the tdpsimilar
words, we partition the whole process intaterations. In
each iteration only the best one word is output (lines [9-11]).
Therefore, in each iteration we set the threshold as the top-1
score of the visited words (line [7,15]).

Algorithm 2: Top-k Similar Word Searching on Corpus

Input: Query@, word collectionW C, k

Output: Top-k similar words inW C'

/I preprocessing

n=number of words iV C;

H[1,n]=alist of pagecount in ascending order by querying Google;
Ttop—1=0; m=1;

/I query processing

4 pagecount(Q)=pagecount of Q;
5 while not k£ words are outputio
6
7

WN

if |¢| > Othen// g: max _queue stores visited words
L Ttop—1=the score value of q.top;

we can see, the topresults are output in a progressive man- 8

ner (i.e.,mother, leader, etc). 1?)
3.2 Corpus based Feature i;

To obtain the topk similar words based on large corpus (i.e.,13
the Web), the traditional strategy is to submit the query and#
each candidate to the search engine and compute their sim-
larity (i.e., PMI-IR[Turney, 200]). Although this technique 16
can benefit a lot from the power of search engine, evaluating
every candidate pair words may cause large computation cost

foreachi=m to n do

if H[i] > WebSize then

pop and outpug.top;
m=i; break;

P=the word corresponding t&l [4];
pagecount(QNP)-WebSize .
pagecount(Q)-pagecount(P)’
pushP into g with valueT;
Ttop—1=the score value of g.top;

T=loga

End

(i.e., network delay time used to transfer words to search en3-3 String Similarity Feature

gine and return answer, computation time at server, and parshere are not many studies on exploring how to efficiently
ing time on the answer stream). This issue becomes worsgearch top: similar words with respect to string similarity

when testing on huge word collection.

[Yanget al, 201d. In this paper, we apply the existing effi-

In this paper, we propose to evaluate as few candidates agent strategies. Specifically, they are (1) count filtering; (2)
possible. We achieve this by constructing a simple index inength filtering; and (3) divide-merge-skip.

the preprocessing, according to the following lemma.

Lemma 2 (upper bound of word pagecount) Let@ be the
query word andP be the topk candidate similar word so
far. @ and P have the PMI-IR similarity score as,,—_j. \We
denote the sef? of the remaining untested words. Wf <
R, pagecount(r) > WebSiz¢ then the topk similar words

w.r.t. PMI-IR score have been found.

"The maximum depths of the two taxonomies are 20 for noun

and 14 for verb by querying WordNet in the preprocessing.

3.4 Assembling Similarity Features

Given the progressively extracted words in each feature, i.e.,
the result obtained from the above sectfnge introduce an
efficient approach to hasten the process of searching: top-
similar words, based on the traditional rank aggregation algo-
rithm [Faginet al, 2001.

8The transformation from the raw score to its normalized value
is achieved by the approach presented in Section 2.1.

—— top—k H
Lemma 3 (threshold filtering) Let Simiol be the nor- 4.1 Progressiveness
malized similarity score of the top-word in featurei. Let ¢ .

t be the threshold where=S" w; - Sim. " . A word P
is in the top# list if the following condition holds:}" w; -

Simi(P, Q) >t.

o

2.4

x

e

querying time (sec in log)

querying time (sec in log)

. 2k o L 17}
One interesting observation is that if we have a candidates | -~ e
word P whose total similarity scor® w; - Sim;(P, Q) > t, SRR, L RIS
. — —— top—k ! 1 3 5 10 20
there is at least for one feature ti$atn; (P, Q) > Sim; ' ® opk queries (4100 top-k queries (#=100)
This intuition introduces a possible way to progressively out- (a) Dict dataset (b) Word dataset
put the topk results. To illustrate the process, we use the Figure 5: Progressiveness of query performance
aforementioned example to eXpIaIn, as shown in Flg 4. The progressiveness performance of the proposed a|go-
[0] ecore 1D { soore |10 T score | testolascore (D frotlscore | rithm was evaluated by varying We randomly selected 100
—| 8 [09033][8 | 08772 2 | 0.7143] 0.8551 —»’("'S‘:";’ .
o T o queries from the datasets and reported the average value. To
ist of Simie list of Simpmic ist of Simes threshod list max_queue . .
(a) Tst iteration test the effect of the proposed strategies, we disable each one
_ ST — of them while keeping others unchandéd
[Too0ss|[s [0err2][2 o143 oasst [5 | orass The result is shown in Fig. 5. We can see thative out-
—[5 | 08121 |[5 | 08373 |[8 | 0.7143 0.8026 2 | 05182 .
OtoSime @isofSimns (@) atofSma (W) treshodit () e puts all the topk results at the same time, and much slower
(b) 2nd iteration than BSF-WSM (i.e., more than two orders of magnitude
T T T T tvesto s [B e slower for top-1 query oDict data, as illustrated in Fig. 5
s Joooss [[s Tomrrell 2 [orias | osser |2 RHR o - (@))- In contrast, our algorithm can extract the togke.,
— [T Tome]~ Tosora][Cs Tommss] oesss (41 05770 1) answer efficiently, and progressively extract more results
(1)list of Simer (8t of Simone Ull)lls(olS\m.m (-W)lhreshodllst (V) max_queue the |onger the execution time. For the effect of different op-
(@) 3rd teration timization strategies, optimization on corpus-based similar-

Figure 4:Integrated process for progressive searching ity measuring seems to dominate the whole query processing

In the first iteration, we obtain the top-1 words with their (i.e., red line in the figure). This is not surprising because the
scores in all the features, as shown in Fig. 4 (a) (I-1ll). Nextcost of requesting worgdagecount to search engine is high.

—— top—

1 29
we can calculate the thresholdy” w; - Sim, =0.8551, Moreover, we can see that the proposed two optimizations

where the weights are set as described in Section 2.1. Morﬁ—;-' measuring on WordNet and corpus similarities) account

over, we compute the compre?Pensive score of the access& Most of the performance improvement.
words (i.e., whose IDs are 8 an d put them into a max- .
imum (gueue, as shown in Fig. 42?;) (pV). Because the scorél'2 Number of Candidate Words Accessed

of word mother (i.e., whose ID is 8) is not smaller than the We evaluate the number of candidates tested in algorithms
thresholdynother can be output immediately as the top-1 re- when varyingk. As illustrated in Fig. 6, we can see that
sult (Lemma 3). We can see that for this example, the perforBSF-W SM accesses much smaller sets of words compared
mance of obtaining the top-1 result is very efficiently becausavith Naive. This is the intrinsic reason why our algorithm
we avoid to evaluate many candidates. The remaining properformed better on query processing (as shown in Fig. 5).
cesses are executed in a similar way, as illustrated in Fig. 4. ° ﬂ .

4 4

3 3

4 Performance Analysis
We performed the experiments using a Intel(R) Core(TM) 2

2

num. of cand. tested (in log)
num. of cand. tested (in log)

Dual CPU PC (3GHz) with a 2G memory, running Redhat - L L = s e Eu Bw o=
linux. The Naive algorithm was implemented based on the measuing corpus-pased smiarly easuring WordNetbased simiarty
general topk framework (Section 2.1). The BFS-WSM (Best (a) #candidates v on Dict dataset

First Search for Word Semantics Measure) algorithm was de-

signed using the proposed strategies in this paper. We con-

ducted experiments on two real life datasets: QEyt. It

was downloaded from the Web site of GNU Aspell projéct

It included 51K words; and (2)Vord. It was downloaded

from the Web site of WordNet in US, which includes 149K .

words. We randomly selected 10K words from this data as " measuring corus- based miarty”

our word collection. (b) #candidates vk on onWord dataset

— _ Figure 6: Number of words tested for different algorithms

Here we need to randomly access the value in each feature, by

measuring it using traditional techniques. e focus on the effect of optimizing WordNet and corpus based
Ohttp://www.aspell.net/ measure, because the cost of measuring string similarity is much
Uhttp://wordnet.princeton.edu/ smaller and can be neglected compared with others.

= Naive 45 = Naive
= BFS-WSM = BFS-WSM

I w L
= 3

num. of cand. tested (in log)
3

num. of cands tested (in log)

1
1

3 5 1 20 k
measuring WordNet-based similarity

querying time (sec. in log)
Saos NNRR
NabaNNRo®®

© o querying time (sec in log)

p%
2
=3
[

- s ogﬂ“\ ¢
(a) Dict dataset (b) Word dataset
Figure 7: Effect ofpagecount andintegrated depths of queries on performancé£10)

4.3 Effect of Pagecount and Depths References

ollegalaet al, 2007 D. Bollegala, Y. Matsuo, and M. Ishizuka.
Measuring semantic similarity between words using web search
engines. INWWW 2007.

While conducting experiments, we mentioned that different[B
gueries may have distinct performance from each other. A

popular” word, i.e., that with large value giigecount and LBudanitsky and Hirst, 20Q6A. Budanitsky and G. Hirst. Evalu-

more_meanings, has a high probability to be tested With.mor ating wordnet-based measures of lexical semantic relatedness.
candidates. We also found that the depths of a word in the comput. Linguist.2006.

synsets of WordNet are critical to the performance becausgyeenwesteet al, 1990 S. Deerwester, S. T. Dumais, G. W. Fur-
of the definition of theSim,.;, and the computation of the ~ nas, T. K. Landauer, and R. Harshman. Indexing by latent se-
shortest path. Specifically, we define theegrated depth mantic analysisJASIST 1990.

of a word as the sum of all the depths of the word in the cor{Faginet al, 2001 R. Fagin, A. Lotem, and M. Naor. Optimal ag-
responding synsets of WordNet. Fig. 7 illustrates the perfor- gregation algorithms for middleware. RODS 2001.

mance of each randomly selected query. We can see that ffidellersteinet al, 1999 J. M. Hellerstein, R. Avnur, A. Chou, C.
Naive, the performance fluctuation is not obvious. The rea- Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas. Interactive

son is that the cost of obtaininggecount is constant and it data analysis: The control projec@omputer 1999.
dominants the performance. In contrd$#'S-W SM largely ~ [Jiang and Conrath, 1997. Jiang and D. Conrath. Semantic sim-
reduces the number of candidates for acquimngecount ilarity based on corpus statistics and lexical taxonomy.R®-

Therefore, the performance of queries may be very different CLING, 1997.

from each other by taking into account the effect of optimiza-ILeacock and Chodorow, 19P&. Leacock and M. Chodorow.
tion on WordNet similarity. Moreover, the result illustrates ~ COMPining local context and WordNet similarity for word sense
that many queries with highagecount and large value of ILi 'gteglt 'ffgggn\;nf'ZF(Z"b;:er;Edé)r’]gﬂg l\le::eLs; 5,1:92?1. approach
integrated depth spend more time on extracting the result, ; ot . ' ' op

hich is i d ith the intuiti . dab for measuring semantic similarity between words using multi-
which is in accordance with the intuition mentioned above. ple information sourcedEEE Trans. on Knowl. and Data Eng.

2003.
[Miller, 1995] G. A. Miller. Wordnet: a lexical database for english.
Commun. ACM1995.

Other similarity measures can be taken into account in a simiPanteletal, 2009 P. Pantel, E. Crestan, A. Borkovsky, A. M.
ilar way to the proposed strategies. For example, for the in- Popescu, and V._Vyas. Web-scale distributional similarity and
formation content based measures (dBgsnik, 1995, we [R:dn;gasletlzgraan;logécljﬁaMS Ll\F/’l,'Ig Oggé'cknell and M. Blettner
can build an index similar to the n-gram list. Each word in X ; o e M, . B ! ! '

the inf fi tent b - d th Development and application of a metric on semantic HEfSE
€ Information content can be seen as a unigram an e Trans. Sys., Man, and Cybgt989.

corresponding list contains all the words Who_se infOrm"j‘tior'[Resnik, 1995 P. Resnik. Using information content to evaluate
contents have the same gram. Then the candidate whose fre- semantic similarity in a taxonomy. IICAI, 1995.

guency is the highest in the lists of the query’s grams is firstly[Shannony 1948C. E. Shannon. A mathematical theory of com-
evaluated, and so forth. For the other path-based measures munication.Bell System Technical Journdl948.

(e.g.,[Wu and Palmer, 1994 we can optimally choose the [Tsatsaroniet al, 2014 G. Tsatsaronis, I. Varlamis, and M. Vazir-
nearest candidates to the query based on the specific measure giannis. Text relatedness based on a word thesadrustif. Int.

5 Discussion

Res, 2010.
. [Turney, 2001 P. D. Turney. Mining the web for synonyms: Pmi-ir
6 Conclusion versus Isa on toefl. IECML, 2001.

. I N . [Ukkonen, 199 E. Ukkonen. Approximate string-matching with
We have studied the top-similar word searching issue. This g-grams and maximal matcheEheor. Comp. Sci1992.

?S the first work on t_ackling the efficiency issue t_h?‘t is very [Wu and Palmer, 1994Z. Wu and M. Palmer. Verbs semantics and
important for searching on large data. Several efficient strate- " |oyical selection. IACL, 1994,

gies are proposed fqllowing the best first search manner. OLH(anget al, 201d Z. Yang, J. Yu, and M. Kitsuregawa. Fast algo-
strategies are experimentally demonstrated to be efficient on jthms for top-k approximate string matching. AmAl, 2010.
answering the top-semantic similar word queries.

