
An Effective System for Mining Web Log

Zhenglu Yang Yitong Wang Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-Ku, Tokyo 153-8305, Japan
{yangzl, ytwang, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. The WWW provides a simple yet effective media for users to search,
browse, and retrieve information in the Web. Web log mining is a promising tool
to study user behaviors, which could further benefit web-site designers with better
organization and services. Although there are many existing systems that can be
used to analyze the traversal path of web-site visitors, their performance is still far
from satisfactory. In this paper, we propose our effective Web log mining system
consists of data preprocessing, sequential pattern mining and visualization. In
particular, we propose an efficient sequential mining algorithm (LAPINWEB:
LAst Position INduction for WEB log), an extension of previous LAPIN algo-
rithm to extract user access patterns from traversal path in Web logs. Our exper-
imental results and performance studies demonstrate that LAPINWEB is very
efficient and outperforms well-known PrefixSpan by up to an order of magnitude
on real Web log datasets. Moreover, we also implement a visualization tool to
help interpret mining results as well as predict users’ future requests.

1 Introduction

The World Wide Web has become one of the most important media to store, share and
distribute information. At present, Google is indexing more than 8 billion Web pages
[1]. The rapid expansion of the Web has provided a great opportunity to study user and
system behavior by exploring Web access logs. Web mining that discovers and extracts
interesting knowledge/patterns from Web could be classified into three types based on
different data that mining is executed: Web Structure Mining that focuses on hyperlink
structure, Web Contents Mining that focuses on page contents as well as Web Usage
Mining that focuses on Web logs. In this paper, we are concerned about Web Usage
Mining (WUM), which also named Web log mining.

The process of WUM includes three phases: data preprocessing, pattern discovery,
and pattern analysis [14]. During preprocessing phase, raw Web logs need to be cleaned,
analyzed and converted before further pattern mining. The data recorded in server logs,
such as the user IP address, browser, viewing time, etc, are available to identify users
and sessions. However, because some page views may be cached by the user browser
or by a proxy server, we should know that the data collected by server logs are not
entirely reliable. This problem can be partly solved by using some other kinds of usage
information such as cookies. After each user has been identified, the entry for each user
must be divided into sessions. A timeout is often used to break the entry into sessions.
The following are some preprocessing tasks [14]: (a) Data Cleaning: The server log is
examined to remove irrelevant items. (b) User Identification: To identify different users
by overcoming the difficulty produced by the presence of proxy servers and cache.
(c) Session Identification: The page accesses must be divided into individual sessions
according to different Web users.

The second phase of WUM is pattern mining and researches in data mining, ma-
chine learning as well as statistics are mainly focused on this phase. As for pattern
mining, it could be: (a) statistical analysis, used to obtain useful statistical information
such as the most frequently accessed pages; (b) association rule mining [12], used to
find references to a set of pages that are accessed together with a support value ex-
ceeding some specified threshold; (c) sequential pattern mining [13], used to discover
frequent sequential patterns which are lists of Web pages ordered by viewing time for
predicting visit patterns; (d) clustering, used to group together users with similar char-
acteristics; (e) classification, used to group together users into predefined classes based
on their characteristics. In this paper, we focus on sequential pattern mining for finding
interesting patterns based on Web logs.

Sequential pattern mining, which extracts frequent subsequences from a sequence
database, has attracted a great deal of interest during the recent surge in data mining
research because it is the basis of many applications, such as Web user analysis, stock
trend prediction, and DNA sequence analysis. Much work has been carried out on min-
ing frequent patterns, as for example, in [13] [16] [10] [7] [4]. However, all of these
works suffer from the problems of having a large search space and the ineffectiveness
in handling long patterns. In our previous work [18], we proposed a novel algorithm to
reduce searching space greatly. Instead of searching the entire projected database for
each item, as PrefixSpan [7] does, we only search a small portion of the database by
recording the last position of item in each sequence (LAPIN: LAst Position INduction).
While support counting usually is the most costly step in sequential pattern mining, the
proposed LAPIN could improve the performance significantly by avoiding cost scan-
ning and comparisons. In order to meet special features of Web data and Web log, we
propose LAPINWEB by extending our previous work.

In pattern analysis phase, which mainly filter out uninteresting rules obtained, we
implement a visualization tool to help interpret mined patterns and predict users’ future
request.

Our contribution in this paper could be summarized as: 1) propose an effective
Web log mining system that deals with log preprocessing, sequential pattern mining,
and result visualizing; 2) propose an efficient sequential pattern mining algorithm by
extending previous LAPIN techniques; 3) implement a visualization tool to interpret
mining results and predict users’ future behavior. Experimental results on real datasets
demonstrate the effectiveness of the whole system as well as the high performance of
the proposed mining algorithm, which outperforms existing algorithm by up to an order
of magnitude.

The remainder of this paper is organized as follows. We present the related work in
Section 2. In Section 3, we introduce our Web log mining system, including preprocess-
ing, pattern discovery and pattern analysis parts. Experimental results and performance
analysis are reported in Section 4. We conclude the paper and provide suggestions for
future work in Section 5.

2 Related Work

Commonly, a mining system includes three parts, as mentioned in Section 1, data pre-
processing, pattern discovery and pattern analysis. In this section, we first introduce
some related work in data preprocessing and then we focus on pattern mining and pat-
tern analysis.

Data preprocessing:Because of the proxy servers and Web browser cache existing,
to get an accurate picture of the web-site access is difficult. Web browsers store pages

that have been visited and if the same page is requested, the Web browser will directly
displays the page rather than sending another request to the Web server, which makes
the user access stream incomplete. By using the same proxy server, different users leave
the same IP address in the server log, which makes the user identification rather diffi-
cult. [14] presented the solution to these problems by using Cookies or Remote Agents.
Moreover, in the same paper, the authors have presented several data preparation tech-
niques to identify Web users, i.e., the path completion and the use of site topology. To
identify the user sessions, a fixed time period, say thirty minutes [14] [3], is used to be
the threshold between two sessions.

Sequential pattern mining: Srikant and Agrawal proposed the GSP algorithm [16],
which iteratively generates candidate k-sequences from frequent (k-1)-sequences based
on the anti-monotone property that all the subsequences of a frequent sequence must
be frequent. Zaki proposed SPADE [10] to elucidate frequent sequences using efficient
lattice search techniques and simple join operations. SPADE divides the candidate se-
quences into groups by items, and transforms the original sequence database into a
vertical ID-List database format. SPADE counts the support of a candidate k-sequence
generated by merging the ID-Lists of any two frequent (k-1)-sequences with the same
(k-2)-prefix in each iteration. Ayres et al. [4] proposed the SPAM algorithm, which uses
SPADE’s lattice concept, but represents each ID-List as a vertical bitmap. SPADE and
SPAM can be grouped as candidate-generation-and-test method. On the other hand, Pei
et al. proposed a pattern growth algorithm, PrefixSpan [7], which adopts a projection
strategy to project sequences into different groups calledprojected databases. The
PrefixSpan algorithm recursively generates a projected database for each frequent k-
sequence to find the frequent (k+1)-sequences. A comprehensive performance study
showed that PrefixSpan, in most cases, outperforms former apriori-based algorithms
[8]. However, PrefixSpan still needs to scan large projected database and it does not
work well for dense datasets, i.e. DNA sequences, which is an very important applica-
tion. These observations motivate our work in [18], which proposed an efficient sequen-
tial pattern mining algorithm LAPIN by the idea of using the last position of each item
to judge whether a k-length pattern could grow to a (k+1)-length pattern. LAPIN could
improve the performance significantly by largely reduce the search space required. In
this paper, we propose another pattern mining algorithm by combining the merits of
both LAPIN and PrefixSpan to meet the special requirement of Web logs, which is very
sparse.

Visualization tools: Pitkow et. al. proposed WebViz [9] as a tool for Web log anal-
ysis, which provides graphical view of web-site local documents and access patterns.
By incorporating the Web-Path paradigm, Web masters can see the documents in their
web-site as well as the hyperlinks travelled by visitors. Spiliopoulou et. al. presented
Web Utilization Miner (WUM) [11] as a mining system for the discovery of interesting
navigation patterns. One of the most important features of WUM is that using WUM
mining language MINT, human expert can dynamically specify the interestingness cri-
teria for navigation patterns. To discover the navigation patterns satisfying the expert
criteria, WUM exploits Aggregation Service that extracts information on Web access
log and retains aggregated statistical information. Hong et. al. proposed WebQuilt [5]
as a Web logging and visualization system that helps Web design teams run usability
tests and analyze the collected data. To overcome many of the problems with server-side
and client-side logging, WebQuilt uses a proxy to log the activity. It aggregates logged
usage traces and visualize in a zooming interface that shows the Web pages viewed.
Also it shows the most common paths taken through the web-site for a given task, as
well as the optimal path for that task.

Fig. 1. Web Log Mining System Structure

3 Web Log Mining System

We designed a Web log mining system for sequential pattern mining and its visualiza-
tion, as shown in Fig. 1. The input and output of the system is Web log files as well
as visualized patterns or text reports. As mentioned in Section 1, the whole system
includes:

• Data Preprocessing.This is the phase where data are cleaned from noise by over-
coming the difficulty of recognizing different users and sessions, in order to be used
as input to the next phase of pattern discovery. Data preprocessing phase always in-
volves data cleaning, user identification and session identification.

• Pattern Mining.While various mining algorithms could be incorporated into the
system to mine different types of patterns, currently, we only implemented sequen-
tial pattern mining on Web log data. We plan to add other part in future work.

• Pattern Analysis.In this phase, the mined patterns which in great numbers need
to be evaluated by end users in an easy and interactive way: text report and and
visualization tool.

We will discuss each part in more detail in following subsections.

3.1 Data Preprocessing

The raw Web log data is usually diverse and incomplete and difficult to be used directly
for further pattern mining. In order to process it, we need to:

1) Data Cleaning. In our system, we use server logs in Common Log Format. We
examine Web logs and remove irrelevant or redundant items like image, sound, video
files which could be downloaded without an explicit user request. Other removal items
include HTTP errors, records created by crawlers, etc., which can not truly reflect users’
behavior.

2) User Identification. To identify the users, one simple method is requiring the users
to identify themselves, by logging in before using the web-site or system. Another ap-
proach is to use cookies for identifying the visitors of a web-site by storing an unique
ID. However, these two methods are not general enough because they depend on the
application domain and the quality of the source data, thus in our system we only set
them as an option. More detail should be implemented according to different applica-
tion domains.

We have implemented a more general method to identify user based on [14]. We
have three criteria:

(1) A new IP indicates a new user.
(2) The same IP but different Web browsers, or different operating systems, in terms

of type and version, means a new user.
(3) Suppose the topology of a site is available, if a request for a page originates

from the same IP address as other already visited pages, and no direct hyperlink
exists between these pages, it indicates a new user. (option)

3) Session Identification.To identify the user sessions is also very important because it
will largely affects the quality of pattern discovery result. A user session can be defined
as a set of pages visited by the same user within the duration of one particular visit to a
web-site.

According to [2] [6], a set of pages visited by a specific user is considered as a single
user session if the pages are requested at a time interval not larger than a specified time
period. In our system, we set this period to 30 minutes.

3.2 Sequential Pattern Mining

Problem Definition. A Web access sequence, s, is denoted as〈i1, i2, . . . , ik〉, where
ij is apage item for 1≤ j ≤ k. The number of page items in a Web access sequence
is called thelength of the sequence. A Web access sequence with lengthl is called
an l-sequence. A sequence,sa = 〈a1, a2, . . . , an〉, is contained in another sequence,
sb = 〈b1, b2, . . . , bm〉, if there exists integers1 ≤ i1 < i2 < . . . < in ≤ m, such
that a1 = bi1 , a2 = bi2 ,. . . , an = bin . We denotesa a subsequence of sb, andsb

a supersequence of sa. Given a Web access sequences = 〈i1, i2, . . . , il〉, and an
page itemα, s ¦ α denotes that s concatenates withα, asSequence Extension (SE),
s ¦ α=〈i1, i2, . . . , il, α〉. If s′ = p ¦ s, thenp is aprefix of s′ ands is asuffix of s′.

A Web access sequence database, S, is a set of tuples〈uid, s〉, whereuid is a
userid ands is a Web access sequence. A tuple〈uid, s〉 is said to contain a sequenceβ,
if β is asubsequence of s. The support of a sequence,β, in a sequence database,S, is
the number of tuples in the database containingβ, denoted assupport(β). Given a user
specified positive integer,ε, a sequence,β, is called a frequent Web access sequential
pattern ifsupport(β) ≥ ε. For sequential pattern mining in the pattern discovery phase,
the objective is to find the complete set of Web access sequential patterns of databaseS
in an efficient manner. Let our running database be the sequence databaseS shown in
Table 1 with minsupport = 2. We will use this sample database throughout the paper.

Here, we propose an efficient sequential pattern mining algorithm to mine Web logs
by extending our previous work LAPIN [18]. Let us first briefly introduce the idea of
LAPIN:

LAPIN Algorithm. For any time series database, the last position of an item is the
key used to judge whether or not the item can be appended to a given prefix (k-length)

Table 1.Sequence Database

UID Sequence
10 acbcdadc

20 bcbcbab

30 dbcbadca

Table 2. Item Last Position List

UID Last Position of Different Item
10 blast = 3 alast = 6 dlast = 7 clast = 8
20 clast = 4 alast = 6 blast = 7
30 blast = 4 dlast = 6 clast = 7 alast = 8

sequence (assumed to bes). For example, in a sequence, if the last position of itemα
is smaller than, or equal to, the position of the last item ins, then itemα cannot be
appended tos as a (k+1)-length sequence extension in the same sequence.

Example 1. When scanning the database in Table 1 for the first time, we obtain Table
2, which is a list of the last positions of the 1-length frequent sequences in ascending
order. Suppose that we have a prefix frequent sequence〈a〉, and its positions in Table
1 are 10:1, 20:6, 30:5, where uid:pid represents the sequence ID and the position ID.
Then, we check Table 2 to obtain the first indices whose positions are larger than〈a〉’s,
resulting in 10:1, 20:3, 30:2, i.e., (10:blast = 3, 20:blast = 7, and 30:dlast = 6). We
start from these indices to the end of each sequence, and increment the support of each
passed item, resulting in〈a〉 : 2, 〈b〉 : 2, 〈c〉 : 2, and 〈d〉 : 2, from which, we can
determine that〈aa〉, 〈ab〉, 〈ac〉 and〈ad〉 are the frequent patterns.

From the above example, we can show that the main difference between LAPIN and
most existing algorithms is the searching space. PrefixSpan scans the entire projected
database to find the frequent pattern. SPADE temporally joins the entire ID-List of the
candidates to obtain the frequent pattern of next layer. LAPIN can obtain the same result
by scanning only part of the search space of PrefixSpan and SPADE, which indeed, are
the last positions of the items. The full justification and more detail about LAPIN can
be found in [18].

However, we can not get the best performance by directly applying LAPIN to Web
log ming because of the different properties between datasets. Comparing with general
transaction data sequences that are commonly used, Web logs have following charac-
teristics:

(a) no two items/pages are accessed at the same time by the same user.
(b) very sparse, which means that there are huge unique items and few item repeti-

tion in one user sequence.
(c) user preference should be considered during mining process.

Based on above points, we extended LAPIN to LAPINWEB with:
(1) dealing with only Sequence Extension (SE) case, no Itemset Extension (IE)

case.
(2) using sequential search instead of binary search. In more detail, LAPINWEB

does not use binary search in the item position list, but use pointer+offset
sequential search strategy, which is similar to that used in PrefixSpan.

(3) incorporating user preference into mining process to make the final extracted
pattern more reasonable.

——————————————————————————————————————
LAPIN WEB Algorithm :
Input : A sequence database, and the minimum support threshold,ε
Output : The complete set of sequential patterns

Function : GenPattern(α, S, CanIs)
Parameters : α = length k frequent sequential pattern;S = prefix border position set of
(k-1)-length sequential pattern;CanIs = candidate sequence extension item list of length k+1
sequential pattern
Goal : Generate (k+1)-length frequent sequential pattern

Main():
1. Scan DB once to do:

1.1Bs ← Find the frequent 1-lengthSE sequences
1.2Ls ← Obtain the item-last-position list of the 1-lengthSE sequences

2. For each frequentSE sequenceαs in Bs

2.1 Call GenPattern (αs, 0,Bs)

Function Gen Pattern(α,S ,CanIs)
3. Sα ← Find the prefix border position set ofα based onS
4. FreItems,α ← Obtain theSE item list ofα based onCanIs andSα

5. For each itemγs in FreItems,α

5.1 Combineα andγs asSE, results inθ and output
5.2 Call GenPattern (θ, Sα, FreItems,α)

——————————————————————————————————————–

Fig. 2. LAPIN WEB Algorithm pseudo code

LAPIN WEB: Design and Implementation. We used a lexicographic tree [4] as the
search path of our algorithm. Furthermore, we adopted a lexicographic order, which was
defined in the same way as in [17]. This used the Depth First Search (DFS) strategy.

For Web log, because it is impossible that a user clicks two pages at the same time,
Itemset Extension (IE) case in common sequential pattern mining does not exist in
Web log mining. Hence, we only deal with Sequence Extension (SE) case. The pseudo
code of LAPINWEB is shown in Fig. 2. In Step 1, by scanning the DB once, we can
obtain all the 1-length frequent patterns. Then we sort and construct theSE item-last-
position list in ascending order based on each 1-length frequent pattern’ last position,
as shown in Table 2.

Definition 1 (Prefix border position set) Given two sequences, A=〈A1A2 . . . Am〉 and
B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m andl ≤ n, and
that C is a common prefix for A and B. We record both positions of the last itemCl in
A and B, respectively, e.g.,Cl=Ai and Cl=Bj . The position set, (i, j), is called the
prefix border position setof the common prefix C, denoted asSc. Furthermore, we de-
noteSc,i as the prefix border position of the sequence, i. For example, if A=〈abc〉 and
B=〈acde〉, then we can deduce that one common prefix of these two sequences is〈ac〉,
whose prefix border position set is (3,2), which is the last item C’s positions in A and B.

In functionGen Pattern, to find the prefix border position set of k-lengthα (Step
3), we first obtain the sequence pointer and offset of the last item ofα, and then perform
a sequential search in the corresponding sequence for the (k-1)-length prefix border
position. This method is similar to pseudo-projection in PrefixSpan, which is efficient
for sparse datasets.

Definition 2 (Local candidate item list) Given two sequences, A=〈A1A2 . . . Am〉 and
B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m andl ≤ n, and

——————————————————————————————————-
Input : Sα = prefix border position set of length k frequent sequential patternα;
BVs = bit vectors of the ITEMIS EXIST TABLE; Ls = SE item-last-position list;
CanIs = candidate sequence extension items;ε = user specified minimum support
Output : FreItems = local frequentSE item list

1. For each sequence, F, according to its priority (descending)
2. Sα,F ← obtain prefix border position of F inSα

3. if (Sizelocal cand item list > Sizesuffix sequence)
4. bitV← obtain the bit vector of theSα,F indexed from BVs
5. For each itemβ in CanIs

6. Suplist[β] = Suplist[β] + bitV[β];
7. CanIs,p ← obtain the candidate items based on prior sequence
8. else
9. Ls,F ← obtainSE item-last-position list of F inLs

10. M = Find the corresponding index forSα,F

11. while (M< Ls,F .size)
12. Suplist[M.item]++;
13. M++;
14. CanIs,p ← obtain the candidate items based on prior sequence
15. For each itemγ in CanIs,p

16. if (Suplist[γ] ≥ ε)
17. FreItems.insert(γ);
——————————————————————————————————–

Fig. 3. Finding the SE frequent patterns

that C is a common prefix for A and B. LetD = (D1D2 . . . Dk) be a list of items, such
as those appended to C, andC ′ = C ¦ Dj (1 ≤ j ≤ k) is the common sequence for
A and B. The list D is called thelocal candidate item list of the prefix C’. For exam-
ple, if A=〈abce〉 and B=〈abcde〉, we can deduce that one common prefix of these two
sequences is〈ab〉, and〈abc〉, 〈abe〉 are the common sequences for A and B. Therefore,
the item list (c,e) is called thelocal candidate item list of the prefixes〈abc〉 and〈abe〉.

Step 4, shown in Fig. 2, is used to find the frequentSE (k+1)-length pattern based
on the frequent k-length pattern and the 1-length candidate items. Commonly, support
counting is the most time consuming part in the entire mining process. In [18], we have
found thatLCI-oriented andSuffix-oriented have their own advantages for differ-
ent types of datasets. Based on this discovery, in this paper, during the mining process,
we dynamically compare the suffix sequence length with the local candidate item list
size and select the appropriate search space to build a single general framework. In
other words, we combine the two approaches, LAPINLCI and LAPIN Suffix, together
to improve efficiency at the price of low memory consuming. The pseudo code of the
frequent pattern finding process is shown in Fig. 3.

From a system administrator’s view, the logs of special users (i.e. domain experts)
are more important than other logs and thus, should be always considered more prior,
as shown in Fig. 3 (Step 1). The appended candidate items are also judged based on this
criteria (Step 7 and Step 14).

3.3 Pattern Visualization

We could see from pattern mining process that given a support, usually there are great
number of patterns produced and effective method to filter out and visualize mined
pattern is necessary. In addition, web-site developers, designers, and maintainers also
need to understand their efficiency as what kind of visitors are trying to do and how

they are doing it. Towards this end, we developed a navigational behavior visualization
tool based on Graphviz1.

At present, our prototype system has only implemented the basic sequential pattern
discovery as the main mining task, which requires relevant simple user-computer inter-
face and visualization. As more functions are added and experiment done, we will make
the tool more convenient to the users.

4 Performance Study

In this section, we will describe our experiments and evaluations conducted on the real-
world datasets. We performed the experiments using a 1.6 GHz Intel Pentium(R)M PC
machine with a 1 G memory, running Microsoft Windows XP. The core of LAPINWEB
algorithm is written in C++ software. When comparing the efficiency between LAPINWEB
and PrefixSpan, we turned off the output of the programs to make the comparison equi-
table.

4.1 Real Data

We consider that results from real data will be more convincing in demonstrating the ef-
ficiency of our Web log mining system. There are two datasets used in our experiments,
DMResearch and MSNBC. DMResearch was collected from the web-site of China Data
Mining Research Institute2, from Oct. 17, 2004 to Dec. 12, 2004. The log is large, about
56.9M, which includes 342,592 entries and 8,846 distinct pages. After applying data
preprocessing described in Section 2.1, we identified 12,193 unique users and average
length of the sessions for each user is 28. The second dataset, MSNBC, was obtained
from the UCI KDD Archive3. This dataset comes from Web server logs for msnbc.com
and news-related portions of msn.com on Sep. 28, 1999. There are 989,818 users and
only 17 distinct items, because these items are recorded at the level of URL category,
not at page level, which greatly reduces the dimensionality. The 17 categories are ”front-
page”, ”news”, ”tech”, ”local”, ”opinion”, ”on-air”, ”misc”, ”weather”, ”health”, ”liv-
ing”, ”business”, ”sports”, ”summary”, ”bbs”, ”travel”, ”msn-news”, and ”msn-sports”.
Each category is associated with a category number using an integer starting from ”1”.
The statistics of these datasets is given in Table 3.

Table 3.Real Dataset Characteristics

Dataset # Users # Items Min. len. Max. len. Avg. len. Total size
DMResearch 12193 8846 1 10745 28 56.9M

MSNBC 989818 17 1 14795 5.7 12.3M

4.2 Comparing PrefixSpan with LAPIN WEB

Fig. 4 shows the running time and the searched space comparison between PrefixS-
pan and LAPINWEB. Fig. 4 (a) shows the performance comparison between Pre-
fixSpan and LAPINWEB for DMResearch data set. From Fig. 4 (a), we can see that
LAPIN WEB is much more efficient than PrefixSpan. For example, at support 1.3%,

1 http://www.research.att.com/sw/tools/graphviz
2 http://www.dmresearch.net
3 http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

Fig. 4. Real datasets comparison

LAPIN WEB (runtime = 47 seconds) is more than an order of magnitude faster than
PrefixSpan (runtime = 501 seconds). This is because the searched space of Prefixspan
(space = 5,707M) was much larger than that in LAPINWEB (space = 214M), as shown
in Fig. 4 (c).

Fig. 4 (b) shows the performance comparison between PrefixSpan and LAPINWEB
for MSNBC data set. From Fig. 4 (b), we can see that LAPINWEB is much more effi-
cient than PrefixSpan. For example, at support 0.011%, LAPINWEB (runtime = 3,215
seconds) is about five times faster than PrefixSpan (runtime = 15,322 seconds). This
is because the searched space of Prefixspan (space = 701,781M) was much larger than
that in LAPIN WEB (space = 49,883M), as shown in Fig. 4 (d).

We have not compared PrefixSpan and LAPINWEB on user’s preference, because
the former one has no such function.

4.3 Visualization Result

To help web-site developers, and Web administrators analyze the efficiency of their
web-site by understanding what and how visitors are doing on a web-site, we developed
a navigational behavior visualization tool. Fig. 5 and Fig. 6 show the visualization result
of traversal pathes for the two real datasets, respectively. Here, we set minimum support
to 9% for DMResearch and 4% for MSNBC. The thickness of edge represents the
support value of the corresponding traversal path. The number value, which is right of
the traversal path, is the support value of the corresponding path. The ”start” and ”end”
are not actual pages belong to the site, they are actually another sites placed somewhere
on the internet, and indicate the entry and exit door to and from the site.

From the figures, We can easily know that the most traversed edges, the thick ones,
are connecting pages ”start”→ ”\loginout.jsp”→ ”end” in Fig. 5, and ”start”→ ”front-
page”→ ”end” in Fig. 6. Similar interesting traversal path can also be understood, and
used by web-site designers to make improvement on link structure as well as document
content to maximize efficiency of visitor path.

Fig. 5. DMResearch visualization result

Fig. 6. MSNBC visualization result

5 Conclusions

In this paper, we have proposed an effective framework for Web log mining system
to benefit web-site designer to understand user behaviors by mining Web log data. In
particular, we propose an efficient sequential pattern mining algorithm LAPINWEB
by extending previous work LAPIN with special consideration of Web log data. The
proposed algorithm could improve the mining performance significantly by scanning
only a small portion of projected database and extract more reasonable web usage pat-
terns. Experimental results and evaluations performed on real data demonstrate that
LAPIN WEB is very effective and outperforms existing algorithms by up to an or-
der of magnitude. The visualization tool could be further used to make final patterns
easy to interpret and thus improve the presentation and organization of web-site. Our
framework of Web log mining system is designed in such a way that it could be easily
extended by incorporating other new methods or algorithms to make it more functional
and adaptive. We are now considering other pattern mining algorithms as we mentioned
earlier such as clustering and association rule. Moreover, we are planning to build more
sophisticated visualization tools to interpret the final results.

References

1. Google Website. http://www.google.com.
2. K. Wu, P.S. Yu. and A. Ballman, “Speedtracer: A Web usage mining and analysis tool,” In

IBM Systems Journal, 37(1), pp. 89-105, 1998.

3. H. Ishikawa, M. Ohta, S. Yokoyama, J. Nakayama, and K. Katayama, “On the Effectiveness
of Web Usage Mining for Page Recommendation and Restructuring,” In2nd Annual Inter-
national Workshop of the Working Group ”Web and Databases” of the German Informatics
Society, Oct. 2002.

4. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential Pattern Mining using A Bitmap Rep-
resentation,” In8th ACM SIGKDD Int’l Conf. Knowledge Discovery in Databases (KDD’02),
pp. 429-435, Alberta, Canada, Jul. 2002.

5. J.I. Hong and J.A. Landay, “WebQuilt: A Framework for Capturing and Visualizing the Web
Experience,” In10th Int’l Conf. on the World Wide Web (WWW’01), pp. 717-724, Hong
Kong, China, May 2001.

6. J. Pei, J. Han, B. Mortazavi-Asl and H. Zhu, “Mining access pattern efficiently from web
logs,” In Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’00),
Kyoto, Japan, pp. 396-407, 2000.

7. J. Pei, J. Han, M. A. Behzad, and H. Pinto, “PrefixSpan:Mining Sequential Patterns Ef-
ficiently by Prefix-Projected Pattern Growth,” In17th Int’l Conf. of Data Engineering
(ICDE’01), Heidelberg, Germany, Apr. 2001.

8. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu, “Min-
ing Sequential Patterns by Pattern-growth: The PrefixSpan Approach,” InIEEE Transactions
on Knowledge and Data Engineering, Volume 16, Number 11, pp. 1424-1440, Nov. 2004.

9. J. Pitkow and K. Bharat, “WebViz: A Tool for World-Wide Web Access Log Analysis,” In
1st Int’l Conf. on the World Wide Web (WWW’94), Geneva, Switzerland, May 1994.

10. M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences,” InMachine
Learning, Vol. 40, pp. 31-60, 2001.

11. M. Spiliopoulou and L.C. Faulstich, “WUM : A Web Utilization Miner,” InEDBT Workshop
on the Web and Data Bases (WebDB’98), Valencia, Spain, 1998. Springer Verlag.

12. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” In20th Int’l
Conf. on Very Large Databases (VLDB’94), pp. 487-499, Santiago, Chile, Sep. 1994.

13. R. Agrawal and R. Srikant, “Mining sequential patterns,” In11th Int’l Conf. of Data Engi-
neering (ICDE’95), pp. 3-14, Taipei, Taiwan, Mar. 1995.

14. R. Cooley, B. Mobasher, and J. Srivastava, “Data Preparation for Mining World Wide Web
Browsing Patterns,” InJ. Knowledge and Information Systems, pp. 5.32, vol. 1, no. 1, 1999.

15. R. Kosala, H. Blockeel, “Web Mining Research: A Survey,” InSIGKDD Explorations, ACM
press, 2(1): 1-15, 2000.

16. R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance
improvements,” In5th Int’l Conf. Extending Database Technology (EDBT’96), pp. 13-17,
Avignon, France, Mar. 1996.

17. X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed sequential patterns in large datasets,”
In 3rd SIAM Int’l Conf. Data Mining (SDM’03), pp. 166-177, San Francisco, CA, May 2003.

18. Z. Yang, Y. Wang, and M. Kitsuregawa, “LAPIN: Effective Sequential Pattern Mining Al-
gorithms by Last Position Induction,”Technical Report (TR050617), Info. and Comm. Eng.
Dept., Tokyo University, Japan, Jun. 2005.
http://www.tkl.iis.u-tokyo.ac.jp/∼yangzl/Document/LAPIN.pdf

