
Early Experience and Evaluation of File Systems on SSD with Database Applications

Yongkun Wang
Graduate School of Information Science and Technology

The University of Tokyo
Tokyo, Japan

yongkun@tkl.iis.u-tokyo.ac.jp

Kazuo Goda Miyuki Nakano Masaru Kitsuregawa
Institute of Industrial Science
The University of Tokyo

Tokyo, Japan
{kgoda,miyuki,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract—Flash SSDs are being incorporated in many enter-
prise storage platforms recently. However, the characteristics
of the flash SSD are quite different from that of hard disk.
The IO strategies in the existing systems should be carefully
evaluated. This paper provides an evaluation on the flash-based
transaction processing system. Two file systems, traditional in-
place update-based file system and log-structured file system,
are selected as the representative of two write strategies.
Usually, the log-structured file system is believed to play better
on flash SSDs. Our experiment shows that the performance
results of two database applications are diverse with two file
systems on different flash SSDs. We analyze the performance
in different configurations. Based on the analysis, we provide
our experience on building the flash-based database system to
better utilize the performance benefits of flash SSDs.

Keywords-Flash Memory; SSD; Database; Transaction Pro-
cessing; File System

I. INTRODUCTION
Flash SSDs are being incorporated into enterprise storage.

Sun and Oracle demonstrated high possibilities of flash
SSDs for enterprise database systems [1]. Many reports have
clarified the superiority of flash SSDs over conventional
hard disks in terms of access performance. Compared to the
conventional hard disk, flash SSD has special IO character-
istics. For example, there is no mechanical moving parts,
hereby no seeking time. The flash memory cells must be
erased before the data written in again, known as “erase-
before-write”, while the erase operation is a time-consuming
process compared to the read and write operations. There-
fore, the conventional IO optimizations and strategies which
are mainly designed for disk-based systems, should be re-
considered for flash-based systems.
Several researchers have proposed flash-aware techniques

for database systems [2][3]. Such elegant techniques look
helpful for deriving the potential performance of flash SSDs
in a experimental system. However, recent enterprise sys-
tems have many stacks through the IO path. Rewriting the
code of database systems is often expensive, but unfortu-
nately it may not help so much. It is very likely that flash
SSDs will play a vital role in the storage systems in the
future. But, all the current hard disks will not necessarily
be replaced with flash SSDs. Rather, the storage system
can become a mixture of performance-intensive flash SSDs

and capacity-intensive hard disks. Upcoming new solid-state
technologies such as PCRAM [4] may also be incorporated
here. It may not be a good choice to rewrite database systems
fully for flash SSDs.
If a particular optimization technique through the IO path

can derive reasonably potential performance of flash SSDs,
such a solution can be acceptable for a variety of systems. A
naive approach is to employ the log-structured write strategy.
As discussed in [5], the log-structured write strategy can
be simply incorporated along the IO path for enterprise
system to boost the performance of flash-based transaction
processing system. The log-structured write strategy may be
accepted as a solution to better utilized the flash SSD: the
“erase-before-write” defect can be overcame to some extent.
In this paper, we choose an implementation of log-

structured file system, compared with the traditional file sys-
tem on flash SSDs. TPC-C benchmark results are obtained
with two database management systems on three high-end
flash SSDs. The log-structured file system is usually believed
to have better IO performance on flash SSDs. We find that
the experiment results are diverse: the transaction throughput
on log-structured file system is not always better than that on
traditional file system. We analyze performance difference in
different configurations. Based on the analysis, we provide
our experience on building the flash-based database system
to better utilize the performance benefits of flash SSDs.
The rest of this paper will organize as follow: Section II

will give a brief introduction to flash SSD. Section III will
provide the basic performance study of several flash SSDs.
Section IV will provide an evaluation of the high perfor-
mance database system on flash SSDs. The related work
will be summarized in Section V. Finally, our conclusion
and the future work will be provided in Section VI.

II. FLASH SSDS
NAND Flash memory is a kind of EEPROM (Electri-

cally Erasable Programmable Read-Only Memory). There
are three operations for NAND flash memory: read,
write(program), erase. The read and write operations are
very fast, while the erase operation is time-consuming. The
data cannot be written in place. When updating the data, the
entire erase-block containing the data must be erased before

2010 Fifth IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-4134-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NAS.2010.12

467

the updated data is written there. This “erase-before-write”
design leads to the relatively poor performance of random
write.
Recently, the large capacity flash memory is starting to

appear in the market. Large capacity flash memory chips are
assembled together as the flash SSD (Solid State Drive), with
dedicated control system, emulating the traditional block
device such as hard disk. The internal structure of the flash
SSD can be shown by block diagram in Figure 1. The flash
SSD can be directly connected to the current system by
the SATA interface1. Inside the flash SSD, the “On-board
System” contains the mapping logic called Flash Translation
Layer (FTL) which makes the flash SSD appear to be a
block device. The “NAND Flash Memory” packages are
assembled with a number of parallel flash memory buses.

Figure 1. An example of internal structure of flash SSD

III. BASIC PERFORMANCE STUDY
A. System Setup
In this section, we present our basic performance study

on three commercialized flash SSDs. Figure 2 illustrates our
test system. We developed a micro benchmark tool running
on the Linux system.
The benchmark tool has the capability of automatically

measuring overall IO performance by issuing several types
of IO sequences (e.g. purely sequential reads and 50% ran-
dom reads plus 50% random writes) to a target SSD. We let
the benchmark tool bypass the file system and the operating
system buffer in order to clarify the pure performance of the
given SSDs. The effects of file systems and operating system
buffers will be discussed in later sections. As target devices,
we chose three typical high-end (relatively fast and reliable
but having smaller capacity due to single-level voltage
design) SSDs from the major product lines of Mtron, Intel
and OCZ. These SSDs allow us to change their controller
configurations, but we employed default settings in all the
experiments: read-ahead prefetching and write-back caching
were enabled, because the vendors are supposed to ship their
products with reasonable configurations.

1Some flash SSDs are packed with the PCIe interface.

Figure 2. Experimental setup

B. Basic IO Throughput

The basic IO throughput with different request size is
shown in Figure 3 and Figure 4. Figure 3 shows the
throughput when issuing the requests in a sequential way. In
Figure 3(a), the Mtron SSD could present higher throughput
for larger request sizes, but the throughput saturated around
120MB/s. The throughput between sequential read and se-
quential write is very close to each other. Figure 3(b) shows
that the Intel SSD exhibits similar sequential throughput for
read and write. However, when the request size is larger than
32768 (32K) bytes, the sequential write throughput starts to
decrease and swing 2. The max read throughput is much
higher than that of Mtron SSD. In Figure 3(c), the disparity
between sequential read and sequential write is clear. The
sequential write throughput of OCZ SSD is much worse
than that of the sequential read. High read throughput is
also observed.
The random access performance is much more important

for some applications, such as the transaction processing
systems. Figure 4 shows the random throughput of each
SSD. Figure 4(a) shows that the random throughput of Mtron
SSD is different from the sequential throughput. The random
write throughput decreases dramatically while the random
read throughput keeps the same level as the sequential read
throughput. We also tested with the mixed access pattern.
The “Random %50Read & %50Write” shows the results
with mixed requests composed of 50% read and 50% write:
the mixed random throughput also decreases significantly.
It is probably because the competition for on-board cache
between reads and writes. As for the Intel and OCZ SSD,
Figure 4(b) and Figure 4(c) confirm the similar performance
gap between read and write respectively.
Combine Figure 3 and Figure 4, it is clear that the perfor-

mance difference between sequential read and random read
is not large. As a comparison, the performance difference
between sequential write and random write is large. We can

2Similar behavior is observed when we disable the write-back cache.
With write-through buffer policy, the decrease of throughput happens when
the request is larger than 65536 (64K) bytes.

468

(a) Mtron PRO 7500 (b) Intel X25-E (c) OCZ VERTEX EX

Figure 3. Sequential access throughputs on three flash SSDs

(a) Mtron PRO 7500 (b) Intel X25-E (c) OCZ VERTEX EX

Figure 4. Random access throughputs on three flash SSDs

(a) Mtron PRO 7500 (b) Intel X25-E (c) OCZ VERTEX EX

Figure 5. Response time distribution of random accesses on three flash SSDs (4KB request size)

469

use the function

Gap(RequestSize)
Read/Write
SSDname =

SequentialThroughput

RandomThroughput

to show the performance difference between sequen-
tial access and random access. The maximum value of
Gap for each SSD can be calculated. For example, the
Gap(32768)Write

Intel = 4.79 is the maximum Gap value we
can obtain from Figure 3 and Figure 4 for Intel SSD.
The maximum Gap value of each SSD is different, it can
help to find the optimal point for using the log-structured
write strategy. The performance difference is also useful for
the analysis of the transaction throughput on different IO
strategies, as discussed in section IV-B.

C. IO Response Time
For deeper analysis, we traced response time for each

IO in the measurement. Figure 5 shows the cumulative
frequency distribution of the response time in case of ran-
dom accesses of 4KB requests. We can have the following
observations:

• “Mtron PRO 7500” clearly has the best random read
performance: most of the “Random Read” response
time is shorter than 100μs in Figure 5(a). As a com-
parison, most of the “Random Read” response time of
“Intel X25-E” is longer than 100μs in Figure 5(b),
while most of the “Random Read” response time of
“OCZ VERTEX EX” is around 100μs in Figure 5(c).

• “Intel X25-E” has the best random write performance:
most of the “Random Write” response time is shorter
than 100μs in Figure 5(b). As a comparison, most of
the “Random Write” response time of “OCZ VERTEX
EX” is longer than 100μs in Figure 5(c), while about
1/3 of the “Random Write” response time of “Mtron
PRO 7500” is much longer than 100μs in Figure 5(a),
and the rest 2/3 is shorter than 100μs.

• The values of “Random %50Read & %50Write” are
close to that of “Random Write”.

It is clearly that the “Mtron PRO 7500” is suitable for
random read-intensive applications, “Intel X25-E” is suitable
for random write-intensive applications, while the “OCZ
VERTEX EX” has some trade-offs between the random
performance of read and write.
In Figure 5, the response time distribution of random

reads has a single cliff in all the three devices, while the
distribution of random writes has multiple cliffs and the
situations are different among the devices. In Figure 5(a),
about 1/3 of the random write response time is very distinct
and much longer than the rest. In order to disclose the
reason, we then examined the response time of each request
in sequence. Figure 6 shows each response time of the 4KB
random write request on Mtron SSD. At the bottom of the
figure, the data points are very dense. Most of the values
of the bottom data points are smaller than 100μs. In the

Figure 6. IO behavior of random write access on Mtron SSD(4KB Request
Size)

Figure 7. A transaction processing system on flash SSD

middle of the figure, many data points are scattered between
10000μs and 30000μs, representing a very long response
time. The long response time data points (between 10000μs
and 30000μs) are along with the short ones. Since the inside
logic is not documented, our conjecture is that the long
response time is caused by the flush operation by the “On-
board System” described in Figure 1. When the “SDRAM
buffer” is full, the “On-board System” will flush some pages
and make room for the new requests. The flush operation
is very time-consuming since it may involve many internal
activities which may incur the “erase” operations.

IV. PERFORMANCE EVALUATION OF DIFFERENT FILE
SYSTEMS USING TPC-C BENCHMARK

A. Experimental setup
We built a database server on the system described in

Figure 2. The configuration of the database system can be
seen in Figure 7. We will describe it in a top-down manner.

We used the TPC-C [6] as the benchmark for the perfor-
mance of transaction processing systems. TPC Benchmark

470

Table I
PERCENTAGE OF THE MIX OF TRANSACTION TYPE IN TPC-C

BENCHMARK

Transaction Type
% of mix

normal read write
intensive intensive

New-Order 43.48 4.35 96.00
Payment 43.48 4.35 1.00
Delivery 4.35 4.35 1.00
Stock-Level 4.35 43.48 1.00
Order-Status 4.35 43.48 1.00

C(TPC-C) is an OLTP workload. Although TPC-C cannot
reflect the entire range of OLTP requirements, the perfor-
mance results of TPC-C can provide important reference
for the design of database system, thus it is accepted by
many famous hardware and software vendors of the database
systems. The workload of TPC-C is composed of read-only
and update-intensive transactions that simulate the activities
in OLTP application environments. Therefore, the disk input
and output is very significant, hereby can be used to exploit
the potentials of the new storage media, such as the flash
SSDs. We started 30 threads to simulate 30 virtual users.
30 warehouses are created. The database size is 2.7GB. The
“Key and Thinking” time was set to zero in order to get a
hot workload. The mix of the transaction types followed the
standards in [6], shown in the “normal” column of Table I,
only the “New-Order” transaction is counted in the transac-
tion throughput since it is the backbone of the workload.
The transaction throughput is measured in tpmC, which
means the number of “New-Order” transactions processed
in one minute. Besides the “normal” mix of the transaction
types shown in Table I, we also configure another two types
of workload “read intensive” and “write intensive”. The
86.96% of “read intensive” transactions consist of “Stock-
Level” and ”Order-Status” which are read-only transactions.
On the other hand, the 96% of “write intensive” transactions
are “New-Order” which has a lot of insertions and updates
to the data tables.
As for the database applications, we chose a commercial

DBMS and the popular open source DBMS MySQL. In the
commercial database system, the default of buffer cache was
set to 8MB, redo log buffer was 5MB, and the block size was
4KB. For logging, we set the behavior to immediately do
flushing of the redo log buffer with wait when committing
the transaction. The data file was fixed to a large size
(5.5GB) in order to have a better sequential IO performance.
All the IOs were set to be synchronous. For MySQL, we
installed the InnoDB storage engine, the default of buffer
cache was set to 4MB, log buffer was 2MB, and the block
size was 16KB. The block size of MySQL was different
from that of the commercial DBMS, because MySQL does
not allow us to configure the block size, although 16KB
might not be optimal. The data buffer pool size was 4MB,

(a) Conventional in-place update-based file system

(b) Log-structured file system

Figure 8. Two write strategies of modern file systems

and log buffer was 2MB. We also fixed the size of data
file instead of “autoextend”. Synchronous IO behavior was
chosen. For the flushing method of log, we set it to flush
the log at transaction commit; for the flushing of data, we
also used the synchronous IO.
We choose to use the file system to manage the data

for database applications. The OS can incorporate different
file systems to process the IOs from database application.
Generally, there are two IO strategies of modern file systems,
as illustrated in Figure 8. Figure 8(a) illustrates the concept
of the conventional in-place update-based file system. The
data pages may be scattered across the whole disk space.
The seek operations are required when reading the pages
into the OS buffer. When writing them back to the disk,
the seek operations may also be required for each page,
even though the pages may be continuous in the OS buffer.
As a comparison, Figure 8(b) shows the mechanism of
log-structured file system. The data pages are scanned and
read into the OS buffer, applied changes, then written to
the new address continuously. The obsolete data pages
on disk will be recycled later by the garbage collection
process. The seek operations are avoided for writes, hereby
the overall performance can be improved for those write-
intensive applications.
We evaluated two file systems, the conventional EXT2

file system and a log-structured file system, NILFS2 [7]. For
EXT2, we set it with the default block size, that was 4KB
blocks. For NILFS2, we set the block size to 4KB too, with
2KB blocks per segments. The segment size is influential to
the garbage collection (GC, a.k.a segment cleaning) policy.
By default we disabled it for the simplicity of analysis. The
influence of the garbage collection have been discussed in
[5].
The “Anticipatory” was chosen as the default IO schedul-

ing algorithm. Three high-end flash SSDs are used to host
the database and serve the requests via the block device
driver.

471

Figure 9. Overall transaction throughputs on different DBMSs, different
file systems and different flash SSDs

B. Transaction Throughput

Transaction throughput is the basic measurement of the
performance of the transaction processing system. Figure 9
shows the the transaction throughput of our test system. It
is clear that the performance of Intel and OCZ SSD are
much better in our test system. We think that there may
be strong hardware support inside the Intel and OCZ SSD,
such as the number of flash buses and size of on-board
cache. With the help of the log-structured file system, the
slow random write performance can be improved a lot on
Mtron SSD. This is proved by the transaction throughput
of Mtron SSD on Commercial Database with NILFS2: the
transaction throughput is 5.63 times more than that of EXT2,
and comparable to that of OCZ SSD.
In order to analyze the performance difference, we also

have a trace on the request size at the device driver level
(device driver trace) where the requests are ready to be
issued to the flash SSDs. The exact request size for each
case will be provided along the analysis of the transaction
throughput. The analysis of transaction throughput by three
SSDs is as follow:
Mtron SSD The transaction throughput on log-structured

file system (NILFS2) are much better than that on traditional
file system (EXT2), about x5.63 (Commercial DBMS) and
x1.63 (MySQL) can be observed in Figure 9. This is due
to the different performance between sequential access and
random access. The benefit of the log-structured file system
comes from the great disparity between the sequential write
and random write performance. Recall the performance of
the basic IO throughput in section III-B, we can see that
the sequential write performance of Mtron SSD in Figure
3(a) is much better than random write performance in
Figure 4(b)when request size is smaller than 1MB. The
device driver trace shows that the average write request size
of Mtron SSD is about 14KB (14347 bytes, Commercial
DBMS) and 102KB (104563 bytes, MySQL) respectively,
where there is a big advantage of sequential write per-

formance over random write performance. Therefore, the
overall transaction throughput can be improved dramatically
when converting the random writes into sequential writes
by NILFS2. The average request size of MySQL (102KB)
is much long than that of commercial database (14KB). We
can clearly see from Figure 3(a) and Figure 4(a) that theGap
value between sequential write and random write decreases
with the increasing of request size. That is the reason why
speedup of the transaction throughput on MySQL is smaller
than that of commercial database.
Intel SSD The transaction throughput of log-structured

file system (NILFS2) is worse than that on traditional file
system EXT2. Recall that the sequential write performance
drops significantly after request size is larger than 32KB in
Figure 3(b). The device driver trace shows that the average
request size is about 21KB (21142 bytes, Commercial) and
176KB (180304 bytes, MySQL) respectively, where the
sequential write performance (Figure 3(b)) is only about two
times better than the random write performance (Figure 4(b))
(Gap ≈ 2). Theoretically, the transaction throughputs of log-
structured file system could still gain around twofold over
the traditional file system. We will learn in section IV-G that
this implementation of log-structured file system introduced
more than twofold writes to provide additional function
which cannot be disabled. Therefore, the performance gain
is totally diminished.
OCZ SSD The transaction throughput of log-structured

file system (NILFS2) is a little bit better (x1.12) than that
of traditional file system (EXT2) on commercial database
system, but much worse (x0.55) on MySQL. The device
driver trace shows that the average request size of OCZ
SSD is about 13KB (13190 bytes, Commercial DBMS) and
173KB (177404 bytes, MySQL) respectively. Figure 3(c)
shows that the sequential write performance, though very
low compared to read, is at the peak between 8192 (8KB)
and 16384 (16KB). It can be safely estimated that with 13KB
request, the sequential performance is more than two times
better than that of random write performance. Therefore,
the transaction throughput of this log-structured file system
could be a little bit better than that of traditional file system
though around twofold additional IOs (discussed in section
IV-G) are introduced. Figure 3(c) also shows that there might
be the lowest point for sequential write performance between
131072 (128KB) and 262144 (256KB). Therefore, for the
173KB request size, the performance gain between the
sequential write performance (Figure 3(c)) and random write
performance (Figure 4(c)) is less than two. Therefore, with
more than two times additional IOs introduced by NILFS2,
it is easy to understand that the transaction throughput on
NILFS2 is worse than that of EXT2.
To sum up, we find that the request size is kind of

important for the speedup of the log-structured file system
to traditional file system. Long write request size may not
be always superior on the SSDs. This should be considered

472

(a) Read Throughput (b) Write Throughput

Figure 10. IO throughputs on different DBMSs, different file systems and different flash SSDs

for the design of the system with the log-structured write
strategy. For example, the Gap value calculated in section
III-B shows that it may be better to tune the system to use
32768 bytes (32KB) requests for Intel SSD to utilized the
sequential write performance on the basis of the full consid-
eration of the overall transaction throughput. Although there
is influence from reads because the reads may compete the
cache as discussed by the “Random %50Read & %50Write”
in section III-B, the reads are usually not dominant in the
transaction processing system and are mostly absorbed by
the system buffer as we observed in section IV-G. Therefore,
the Gap value may be helpful to confirm the benefit of
log-structured file system on flash SSDs. With the existence
of the performance asymmetry between sequential write to
random write, we think the log-structured write strategy
could be more beneficial for flash SSD. We will show the
superior points by more experiments and analysis in the
following sections.

C. IO Throughputs
Figure 10 shows the IO throughput for each case in Figure

9. The IO throughput confirms the transaction throughput
and validates the analysis in section IV-B.

D. IO Behavior
A device driver level trace in Figure 12 shows the differ-

ence of the address distribution between the traditional file
system EXT2 and the log-structured file system NILFS2. In
Figure 12(a), writes are in series from the lower addresses
to the upper addresses, and repeating with the reads between
each series of writes. The serialized writes shows that the
writes of Commercial DBMS on EXT2 are organized to
approximately sequential writes with some help of “Antici-
patory” scheduling algorithm. As comparison, Figure 12(b)
shows the access pattern of Commercial DBMS on NILFS2:
the addresses of writes are in sequence.
The address distribution in Figure 12 shows that the writes

in the traditional file system are ordered with some help from
the IO scheduler, so that it appears to be approximately
sequential in each series. However, the writes are limited
in the address space of the file, so that it will frequently

go back and update the data from the starting address of
the file, causing the erase operations for each series. As
a comparison, writes of log-structured file system are in a
“copy-on-write” manner to the whole disk space, thereby
the frequency of erase operations may be lower than that
of traditional file system. Therefore, the address distribution
shows that the flash SSD would be quite favorable on the
log-structured file system.

E. Workload Property Effects
We tested with another two types of workload, “read

intensive” (86.96% of transactions are read-only) and “write
intensive” (98% of transactions are read-write) shown in
Table I. Since the log-structured file system favors the
write-intensive workload, the performance speedup of write-
intensive workload should be much better than that of the
“normal” and “read intensive” workload. Figure 11 validates
our expectation on both Commercial DBMS and MySQL:
speedup increases in all the “write intensive” cases, and
decreases in all the “read intensive” cases.

F. Database Buffer Effects
The database buffer size will have an essential influence

on the performance. We configure 5.5GB datafile (2.7GB
data), while the default buffer size in our test is small: 8MB
(Commercial DBMS) and 4MB (MySQL). Figure 13 shows
that the transaction throughput increases with large database
buffer, and is saturated at about 512MB (about 10% of the
datafile size). The performance speedup of log-structure file
system to traditional file system decreases when increasing
the database buffer size. Since more writes are cached in
the database buffer, the advantage of the log-structured file
system cannot be fully utilized.

G. IO Workloads Analysis
In order to see the difference of IO processing between

this two file system, we traced the number of requests to file
system issued by the DBMS (default buffer settings) and the
number of requests processed by the flash SSD at the device
driver level. Theoretically, the IOs per transaction between
EXT2 and NILFS2 should be close to each other. Figure

473

Figure 11. Workload property effects on transaction throughput on
commercial database , Mtron SSD

14 shows the captured IOs per transaction on traditional file
system. We can see in Figure 14(a) that the read requests
of “Issued by DBMS” are greatly reduced compared to that
of “Processed by flash SSD”, which manifests that a large
amount of the read requests are served by the cache. As
a comparison, the amount of writes in Figure 14(b) are
almost equal between “Issued by DBMS” and “Processed
by flash SSD”. This is because we use the synchronous
IO for the database. Similar results on read requests of
log-structured file system can be observed in Figure 15(a),
this is as expected. As for writes in Figure 15(b), we find
that amount of writes of “Processed by flash SSD” is more
than twofold as many as that of “Issued by DBMS”. We
checked the newly created NILFS2 blocks on disk after
30,000 transactions, finding that around 50% of the new
blocks are not used for data. These additional blocks store
the B-Tree nodes and metadata. A large amount of additional
blocks hinder the performance speedup. We believe that a
log-structured file system aiming at the performance can gain
much more on flash SSDs for those applications in which
the small and random writes are dominant.

V. RELATED WORK

A. Log-structured File System

The Log-structured file system (LFS) [8] is designed
to exploit fast sequential write performance of hard disk,
by converting the random writes into sequential writes.
However, the side effect is that the sequential reads may also
be scattered into random reads. Overall, the performance can
be improved to write-intensive applications. The LFS is also
expected to improve the random write performance of flash
memory, since the fast read performance of flash memory
well mitigates the side effect. For the garbage collection of
LFS, an adaptive method based on usage patterns is proposed
in [9].

B. Flash-based Technologies
By a systematical “Bottom-Up”view, the research on flash

memory can be categorized as follow:
1) Hardware Interface: This is a layer to bridge the op-

erating system and flash memory, usually called FTL (Flash
Translation Layer). The main function of FTL is mapping
the logical blocks to the physical flash data units, emulating
flash memory to be a block device like hard disk. Early
FTL using a simple but efficient page-to-page mapping [10]
with a log-structured architecture [8]. However, it requires
a lot of space to store the mapping table. In order to reduce
the space for mapping table, the block mapping scheme is
proposed, using the block mapping table with page offset
to map the logical pages to flash pages [11]. However, the
block-copy may happen frequently. To solve this problem,
Kim improved the block mapping scheme to the hybrid
scheme by using a log block mapping table [12].
2) File System: Most of the file system for flash memory

exploit the design of Log-structured file system [8] to
overcome the write latency caused by the erasures. JFFS2
[13] is a journaling file system for flash with wear-leveling.
YAFFS [14] is a flash file system for embedded devices.
3) Database System: Early design for database system

on flash memory mainly focused on the embedded systems.
FlashDB [3] is a self-tuning database system optimized for
sensor networks, with two modes; disk mode for infrequent
write and log mode for frequent write. LGeDBMS [15], is a
relational database system for mobile phone. For enterprise
database design on flash memory, In-Page Logging [2] is
proposed. The key idea is to co-locate a data page and its
log records in the same physical location.

VI. CONCLUSION AND FUTURE WORK

In order to better utilize the flash SSD in enterprise storage
system, we provide an evaluation on the transaction process-
ing system between two file systems as the representative of
two IO strategies: in-place update and log-structured write
strategy. Several enterprise-class flash SSDs are selected to
be evaluated. The overall transaction throughput and IO
behaviors are analyzed from several aspects. On the basis of
analysis, we provide our experience on building the flash-
based database system to better utilize the performance
benefits of flash SSDs.
As for the future work, we plan to design the experiment

system to maximize the performance gain by log-structured
write strategy.

REFERENCES
[1] TPC-C Report, Sun SPARC Enterprise T5440 Cluster with

Oracle Database 11g with Real Application Clusters and
Partitioning, January 2010. [Online]. Available: www.tpc.org

[2] S.-W. Lee and B. Moon, “Design of flash-based DBMS: an
in-page logging approach,” in SIGMOD Conference, 2007,
pp. 55–66.

474

(a) Commercial DBMS on EXT2 (b) Commercial DBMS on NILFS2

Figure 12. The address of IOs transfered to Intel SSD by Commercial DBMS at device driver level

(a) Commercial DBMS (b) MySQL

Figure 13. Database buffer effects on transaction throughput on Mtron SSD

(a) Read (b) Write

Figure 14. IO workloads analysis on EXT2 and different flash SSDs

(a) Read (b) Write

Figure 15. IO workloads analysis on NILFS2 and different flash SSDs

475

[3] S. Nath and A. Kansal, “FlashDB: dynamic self-tuning
database for NAND flash,” in IPSN, 2007, pp. 410–419.

[4] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi,
D. Ielmini, A. L. Lacaita, and R. Bez, “Reliability study of
phase-change nonvolatile memories,” IEEE J DMR, vol. 4,
no. 3, pp. 422–427, Sept. 2004.

[5] Y. Wang, K. Goda, and M. Kitsuregawa, “Evaluating non-in-
place update techniques for flash-based transaction processing
systems,” in DEXA, 2009, pp. 777–791.

[6] Transaction Processing Performance Council (TPC), TPC
BENCHMARK C, Standard Specification,Revision 5.10, April
2008. [Online]. Available: www.tpc.org

[7] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and
S. Moriai, “The Linux implementation of a log-structured file
system,” Operating Systems Review, vol. 40, no. 3, pp. 102–
107, 2006.

[8] M. Rosenblum and J. K. Ousterhout, “The Design and Im-
plementation of a Log-Structured File System,” ACM Trans.
Comput. Syst., vol. 10, no. 1, pp. 26–52, 1992.

[9] J. M. Neefe, D. S. Roselli, A. M. Costello, R. Y. Wang,
and T. E. Anderson, “Improving the Performance of Log-
Structured File Systems with Adaptive Methods,” in SOSP,
1997, pp. 238–251.

[10] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-
Memory Based File System,” in USENIX Winter, 1995, pp.
155–164.

[11] A. Ban, “Flash file system,” US Patent No. 5404485, April
1995.

[12] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho,
“A space-efficient flash translation layer for CompactFlash
systems,” IEEE J CE, vol. 48, no. 2, pp. 366–375, May 2002.

[13] JFFS2, The Journalling Flash File System, Red Hat Corpo-
ration, http:// sources.redhat.com/ jffs2/ , 2001.

[14] YAFFS, Yet Another Flash File System, http://www.yaffs.net.

[15] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and M. J. Joe,
“LGeDBMS: A Small DBMS for Embedded System with
Flash Memory,” in VLDB, 2006, pp. 1255–1258.

[16] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S.
Manasse, and R. Panigrahy, “Design Tradeoffs for SSD
Performance,” in USENIX ATC, 2008.

476

